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Hutchinson Equation

In the Logistic equation, the growth rate per capita is a decreasing function of the
current population size. But in the reality, the female individual may need some
maturing time to be able to reproduce. Hence in some cases, the growth rate per
capita should instead depend on the population size of a past time. That is the delay
effect in the density-dependent population growth. In 1948, British-American biologist
George Evelyn Hutchinson (1903-1991) proposed the Logistic equation with delay
(now called Hutchinson equation) (7 is the time delay).

40 1= 25:7)

Left: George Evelyn Hutchinson (1903-1991) Right: Simulation of Hutchinson
equation
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Mackey-Glass Equation and Nicholson's Blowfly equation

In 1977, Mackey and Glass constructed an equation of physiological control (for
. . . dx aVpx(t—71
respiratory studies, or for white blood cells): — =\ — M It was shown
dt 0n + x"(t — 1)
that when X increases, a sequence of period-doubling Hopf bifurcations occurs and
chaotic behavior exists for some parameter values. A similar equation is Nicholson's

d
equation for blowfly population d—): = Bx"(t — 7) exp(—x(t — 7)) — ax(t)

M.C. Mackey, L. Glass, Oscillation and chaos in physiological control systems.
Science, 1977.

A. Nicholson, An outline of the dynamics of animal populations, Aust. J. Zool., 1954.
W. Gurney, S. Blythe, R. Nisbet, Nicholson's blowflies revisited, Nature, 1980.

Left: Michael Mackey; Right: Leon Glass



Delay-induced instability

dP(t)
dt

aP(t)(1— P(t—1))

Linearization at P = 1 without time delay:

v/(t) = —av(t) (so P =1 is stable when there is no time delay)
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Delay-induced instability

dP(t)
dt

Linearization at P = 1 without time delay:
v/(t) = —av(t) (so P =1 is stable when there is no time delay)

=aP(t)(1 - P(t—7))

Linearization at P = 1 with time delay:
v/(t) = —av(t— 1)
Characteristic equation: A + ae~*7 = 0.
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Delay-induced instability

dP(t)
dt

Linearization at P = 1 without time delay:
v/(t) = —av(t) (so P =1 is stable when there is no time delay)

=aP(t)(1 - P(t—7))

Linearization at P = 1 with time delay:
v/(t) = —av(t— 1)
Characteristic equation: A + ae~*7 = 0.

neutral stability: A = 8i cos(B7) =0, asin(87) =8
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Delay-induced instability

dP(t)
dt

Linearization at P = 1 without time delay:
v/(t) = —av(t) (so P =1 is stable when there is no time delay)

=aP(t)(1 - P(t—7))

Linearization at P = 1 with time delay:
v/(t) = —av(t— 1)
Characteristic equation: A + ae~*7 = 0.

neutral stability: A = 8i cos(B7) =0, asin(87) =8

(2n+ )x

T . e
So 79 = — is the value where the stability is lost when 7 > 79. And 7, = 2
a

a
is a Hopf bifurcation point.
(Thus P =1 is stable when the time delay 7 < 21, but it is unstable if 7 > 21)

a a
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Delay-induced instability

dP(t)
dt

Linearization at P = 1 without time delay:
v/(t) = —av(t) (so P =1 is stable when there is no time delay)

=aP(t)(1 - P(t—7))

Linearization at P = 1 with time delay:
v/(t) = —av(t— 1)
Characteristic equation: A + ae~*7 = 0.

neutral stability: A = 8i cos(B7) =0, asin(87) =8

(2n+ )x

T . e
So 79 = — is the value where the stability is lost when 7 > 79. And 7, = 2
a

a
is a Hopf bifurcation point.
(Thus P =1 is stable when the time delay 7 < 21, but it is unstable if 7 > 21)

a a

Basic lesson: a large delay destabilizes an equilibrium
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Another example

d

FL: = ru(t)[1 — au(t) — bu(t — 7).
Here a and b represent the portions of instantaneous and delayed dependence of the
growth rate respectively, and we assume that a, b € (0,1) and a+ b= 1. Then

ux = 1 is an equilibrium.
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Another example

% — ru(t)[1 — au(t) — bu(t — 7).

Here a and b represent the portions of instantaneous and delayed dependence of the
growth rate respectively, and we assume that a, b € (0,1) and a+ b= 1. Then
ux = 1 is an equilibrium.

Linearization at u = 1 with time delay:
v/(t) = —arv(t) — brv(t — 7)
Characteristic equation: A + ar 4+ bre= 27 = 0.
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Another example

% — ru(t)[1 — au(t) — bu(t — 7).

Here a and b represent the portions of instantaneous and delayed dependence of the
growth rate respectively, and we assume that a, b € (0,1) and a+ b= 1. Then
ux = 1 is an equilibrium.

Linearization at u = 1 with time delay:
v/(t) = —arv(t) — brv(t — 7)
Characteristic equation: A + ar 4+ bre= 27 = 0.
neutral stability: A = Bi
a . B
cos = ——,sin = —
(87) =~ sin(Br) =
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Another example

% — ru(t)[1 — au(t) — bu(t — 7).

Here a and b represent the portions of instantaneous and delayed dependence of the
growth rate respectively, and we assume that a, b € (0,1) and a+ b= 1. Then
ux = 1 is an equilibrium.

Linearization at u = 1 with time delay:
v/(t) = —arv(t) — brv(t — 7)
Characteristic equation: A + ar 4+ bre= 27 = 0.

neutral stability: A = Bi
cos(f87) = —i, sin(87) = B
b br
B =rvb?— a2
If a > b, then the neutral stability condition cannot be achieved. Indeed one can prove
us is globally stable for any 7 > 0.
1
If a < b, then 79 = ——— arccos <73> is the value where the stability is lost
rvb? — a2 b
1

when 7 > 79. And 7, = Tr (arccos (—Z) + 2n7r> is a Hopf bifurcation point.



% = fu(t), u(t — 7).

Here f = f(u, w) is a smooth function, and we assume that u = u, is an equilibrium.

«O» «F»

it
a
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General case

du = f(u(t), u(t — 7)).

Here f = f(u, w) is a smooth function, and we assume that u = u, is an equilibrium.

Linearization at u = u, with time delay:
v/(t) = fu(us, ux)v(t) + fu(us, u)v(t — 7)
Characteristic equation: A\ — f, — f,e~ 2™ = 0.
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General case

du = f(u(t), u(t — 7)).

Here f = f(u, w) is a smooth function, and we assume that u = u, is an equilibrium.

Linearization at u = u, with time delay:
v/(t) = fu(us, ux)v(t) + fu(us, u)v(t — 7)
Characteristic equation: A\ — f, — f,e~ 2™ = 0.
neutral stability: A = i

f,
cos(B7) = ——, sin(B1) = _B

fu fw
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General case

du = f(u(t), u(t — 7)).

Here f = f(u, w) is a smooth function, and we assume that u = u, is an equilibrium.

Linearization at u = u, with time delay:
v/(t) = fu(us, ux)v(t) + fu(us, u)v(t — 7)
Characteristic equation: A\ — f, — f,e~ 2™ = 0.

neutral stability: A = i

cos(Bt) = 7;—”, sin(81) = s

B=+\fI-f2
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General case

% = f(u(t), u(t — 7)).

Here f = f(u, w) is a smooth function, and we assume that u = u, is an equilibrium.

Linearization at u = u, with time delay:
v/ (1) = fu(us, us)v(t) + i (U, us)v(t — 7)
Characteristic equation: A\ — f, — f,e~ 2™ = 0.

neutral stability: A = i

cos(Bt) = f:_-—u

8= VBT,
If |f4| > |fw|, then the neutral stability condition cannot be achieved. Hence uy is

locally stable for any 7 > 0.
1 f,
If |fu| < |fw|, then 79 = ——=—— arccos (——u) is the value where the stability is
f2—f2 fw

, sin(B7) = 7"_&

lost when 7 > 79.
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General case

% = f(u(t), u(t — 7)).

Here f = f(u, w) is a smooth function, and we assume that u = u, is an equilibrium.

Linearization at u = u, with time delay:
v/ (1) = fu(us, us)v(t) + i (U, us)v(t — 7)
Characteristic equation: A\ — f, — f,e~ 2™ = 0.

neutral stability: A = i

cos(Bt) = f:_-—u

8= VBT,
If |f4| > |fw|, then the neutral stability condition cannot be achieved. Hence uy is

locally stable for any 7 > 0.
1 f,
If |fu| < |fw|, then 79 = ——=—— arccos (——u) is the value where the stability is
f2—f2 fw

, sin(B7) = 7"_&

lost when 7 > 79.

Lesson: If the strength of instantaneous dependence is stronger than the delayed
dependence, then the equilibrium is always stable; and if it is weaker, then the
equilibrium loses the stability with a larger delay.



An equation with k different delays, and variable x € R":

x(t) = F(x(8), x(t = m), -+, x(t = 7%))-

«O» «F»r « =
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Stability

An equation with k different delays, and variable x € R":

x(t) = f(x(t), x(t — 1), , x(t — 7%)). (1)

The characteristic equation takes the form
m
det | M — Ag — Y Aje i | =0,
j=1

where A; (0 <j < m)isan n x n constant matrix, n; > 0.

[Brauer, 1987, JDE], [Ruan, 2001, Quer.Appl.Math]

An steady state x = xx of system (1) is said to be (i.e.,
asymptotically stable independent of the delays) if it is asymptotically stable for all
delays 77 > 0 (1 <j < k); and x = x is said to be (i.e.,

asymptotically stable depending on the delays) if it is asymptotically stable for 7;
(1 <j < k) in some intervals, but not necessarily for all delays.
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Transcendental characteristic equation

The characteristic equation takes the form
m
det | A — Ag— > Aje i | =0,
j=1

where A; (0 < j < m)isan n x n constant matrix, n; > 0.

Conclusion
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Transcendental characteristic equation

The characteristic equation takes the form

m
det | A — Ag— > Aje i | =0,
j=1

where A; (0 < j < m)isan n x n constant matrix, n; > 0.

Most previous work considers n < 3 and m < 2.

Books: Hale-Verduyn Lunel [1993], Kuang [1993], Wu [1996], Smith [2011]
Hale-Huang [1993], Belair-Campbell [1994], Li-Ruan-Wei [1999]

Ruan [2001], Ruan-Wei [2001, 2003], Li-Wei [2005] many many others
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Transcendental characteristic equation

The characteristic equation takes the form

m
det | A — Ag— > Aje i | =0,
j=1
where A; (0 < j < m)isan n x n constant matrix, n; > 0.

Most previous work considers n < 3 and m < 2.

Books: Hale-Verduyn Lunel [1993], Kuang [1993], Wu [1996], Smith [2011]
Hale-Huang [1993], Belair-Campbell [1994], Li-Ruan-Wei [1999]

Ruan [2001], Ruan-Wei [2001, 2003], Li-Wei [2005] many many others

Most work has a characteristic equation with only one transcendental term:
P(A) +eQ(N) =0,

where P and Q are polynomials of A, and the degree of P is greater than that of Q.
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Transcendental characteristic equation

The characteristic equation takes the form

m
det | A — Ag— > Aje i | =0,
j=1

where A; (0 < j < m)isan n x n constant matrix, n; > 0.

Most previous work considers n < 3 and m < 2.

Books: Hale-Verduyn Lunel [1993], Kuang [1993], Wu [1996], Smith [2011]
Hale-Huang [1993], Belair-Campbell [1994], Li-Ruan-Wei [1999]

Ruan [2001], Ruan-Wei [2001, 2003], Li-Wei [2005] many many others

Most work has a characteristic equation with only one transcendental term:
P(A) +eQ(N) =0,

where P and Q are polynomials of A, and the degree of P is greater than that of Q.

1. scalar equations with a single delay or planar systems with only one delay term
2. planar system: x(t) = f(x(t),y(t —11)), y(t) = g(x(t — 72), y(t))

3. planar system: x(t) = f(x(t), y(t)) £ kig(x(t — 7), y(t — 7)),

y(t) = h(x(t), y(t)) £ keg(x(t — 7), y(t — T)).



General form
[Cooke-Grossman, 1982, JMAA], [Ruan, 2001, Quar.Appl.Math]
Characteristic equation

N 4+ar+b+(chA+d)e =0
Neutral stability: +iw, (w > 0), is a pair of roots.
—w? + awi + b+ (cwi + d)e™ @7 = 0.

(2

DA
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General form

[Cooke-Grossman, 1982, JMAA], [Ruan, 2001, Quar.Appl.Math]
Characteristic equation

XN tar+b+(cA+de =0

Neutral stability: +iw, (w > 0), is a pair of roots.
—w? + awi + b+ (cwi + d)e™ w7 = 0.

—d cos(wT) + cwsin(wr) = b — w?, —cw cos(wT) — dsin(wT) = aw

Conclusion

(2
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General form

[Cooke-Grossman, 1982, JMAA], [Ruan, 2001, Quar.Appl.Math]
Characteristic equation

XN tar+b+(cA+de =0 (2)

Neutral stability: +iw, (w > 0), is a pair of roots.
—w? + awi + b+ (cwi + d)e™ w7 = 0.

—d cos(wT) + cwsin(wr) = b — w?, —cw cos(wT) — dsin(wT) = aw

wh — (c? — a% +2b)w? + (b? — d?) = 0.
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General form

[Cooke-Grossman, 1982, JMAA], [Ruan, 2001, Quar.Appl.Math]
Characteristic equation

XN tar+b+(cA+de =0 (2)

Neutral stability: +iw, (w > 0), is a pair of roots.
—w? + awi + b+ (cwi + d)e™ w7 = 0.

—d cos(wT) + cwsin(wr) = b — w?, —cw cos(wT) — dsin(wT) = aw
wh — (c? — 2% + 2b)w? + (b?> — d?) = 0.

Let T = c? — a® +2b, and D = b?> — d?. Then there is no positive root w? if (i)
T <0and D> 0; or (i) T? —4D < 0.

Theorem. If a4+ ¢ >0, b+ d > 0, and either (i) T <0 and D > 0; or (ii)
T? — 4D < 0 is satisfied, then all roots of (2) have negative real part for any 7 > 0.
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General form

[Cooke-Grossman, 1982, JMAA], [Ruan, 2001, Quar.Appl.Math]
Characteristic equation

XN tar+b+(cA+de =0 (2)

Neutral stability: +iw, (w > 0), is a pair of roots.

—w? + awi + b+ (cwi + d)e™ T = 0.

—d cos(wT) + cwsin(wr) = b — w?, —cw cos(wT) — dsin(wT) = aw
wh — (c? — 2% + 2b)w? + (b?> — d?) = 0.

Let T = c? — a® +2b, and D = b?> — d?. Then there is no positive root w? if (i)
T <0and D> 0; or (i) T? —4D < 0.

Theorem. If a+¢ >0, b+d >0, and either (i) T < 0 and D > 0; or (ii)
T2 — 4D < 0 is satisfied, then all roots of (2) have negative real part for any 7 > 0.

On the other hand, if (i) D <0 or (i) T >0, D >0and T? —4D >0, then
w* — (c? — 2% + 2b)w? + (b? — d?) = 0 has one or two positive roots. And the critical
delay value can be solved:

1 ( ((dfac)wabd)+2 )
Th = — (arccos |\ ————————F— nm ).
T w d? 4+ c2u?
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Example 1: Rosenzwing-MacArthur Model

[Chen-Shi-Wei, 2012, CPAA]

ou u muv

gt—dluxxu<1—K)(—u+)l, x € (0,I7), t >0,
ov mu(t —T)v

— — = —d _ € (0,/r), t >0,
ar 2V V+u(t—7’)+1 x € (0,Im)

M:M:O, X:0,/ﬂ',t>0,
ox Ox

u(x, t) = up(x,t) > 0,v(x,t) = w(x,t) >0, xe€(0,/n), te€[-T,0]

and vy = KZNA+FN
m—d Km

Constant steady state: (A, vy) where A =

Conclusion
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Example 1: Rosenzwing-MacArthur Model

[Chen-Shi-Wei, 2012, CPAA]

ou u muv

gt—dluxxu<1—K)(—u+)l, x € (0,I7), t >0,
v mu(t —7)v

— — = —d _ € (0,/r), t >0,

ar 2V v u(t—7)+1 x € (0,Im)

M:M:O, X:0,/ﬂ',t>0,
ox Ox

u(x, t) = up(x,t) > 0,v(x,t) = w(x,t) >0, xe€(0,/n), te€[-T,0]

K=X)(14+X
Constant steady state: (A, vy) where A = and vy = M
m—d Km

Main result: For any A € ((K —1)/2, K), there exists T9(\) > 0 such that (X, vy) is
stable when 7 < 19(A), and (A, v) is unstable when 7 > (). Moreover

A—>(Ii|(r21)/27—0()\) =0, and /\IEPK 70(A) = oo0; At 7 = 19(A\), a branch of homogenous
periodic orbits bifurcate from (A, vy).

There is no parameter region in which the stability persists for all delay 7 > 0 (not
absolutely stable).
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Calculation

The characteristic equation

An(A\T) =X+ AN+ B, +Ce =0, n=0,1,2,---,

where
A — (d1 —+ dz)n2 _ ﬁ(k —1—- 2ﬁ)
" 2 k(1+8)
B — didon*  dan® B(k —1 - 28) c— r(k — B)
oo P k@+B) T k(B+1)

If £ic(o > 0) is a pair of roots of characteristic equation, then we have

n=01.2,

02— B, = CcosoT,
ogAp, = Csinor,

which leads to
o+ (A2 —2B,)o?+B2—-C2=0, n=0,1,2, -,

where

d2n* din? Bk —1-28)\?
Iz +( 2 k(1+8) )

g2 Bt (i Bk—1-28)\* (k- p)?
n _T( 2 k(1+8) )7k2(,8+1)2'

A2 —2B, =

Conclusion
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Delayed Diffusive Leslie-Gower Predator-Prey Model

[Chen-Shi-Wei, 2012, 1JBC]

QUE2) gy mu(t ) = u(t, x)(p — (e, x) — Bult =, x)), x€D, £>0,
vat,x) — dhAv(t,x) = pv(t,x) (1 — _vitx) , x€Q, t>0,

ot u(t — 72,x)
u(t,x) _ ovt,x) _ X €0, t>0,

ov ov
u(x,t) = ug(x,t) >0, x €Q, t €[-m,0].
v(x,t) = vo(x,t) >0, x €Q, t€[—71,0].

P P
Constant steady state: (ux, vi) = s .
y state: (v, ve) (a T8 at B)
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Delayed Diffusive Leslie-Gower Predator-Prey Model

[Chen-Shi-Wei, 2012, 1JBC]

aU(?ti ) _ dhAu(t, ) = (e x)(p — au(tyx) — fu(t — X)), x €D £>0,
t t
ov(t.x) b Av(t,x) = pv(t,x) (1— G ) x€Q, t>0,
ot u(t — 72, x)
Au(t, x) _ Av(t, x) -0, x€0Q, t >0,
ov v
u(x,t) = ug(x,t) >0, x €Q, t €[-m,0].
v(x,t) = vo(x,t) >0, x€Q, te[-7,0]
Constant steady state: (us, vs) = ( P ) P )
a+pB a+ B

Main result: (a) If a > B, then (ux«, v«) is globally asymptotically stable for any

71 >0, 72 > 0. (proved with upper-lower solution method)

(b) If & < B, then there exists 7 > 0 such that (us, v«) is stable for 74 + 7 < 7%, and
it is unstable for 71 + 7 > T%.
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Delayed Diffusive Leslie-Gower Predator-Prey Model

[Chen-Shi-Wei, 2012, 1JBC]

M — diAu(t,x) = u(t,x)(p — au(t,x) — Bv(t — 11,x)), x€Q, t>0,

t t
L/? ) b Av(t,x) = pv(t,x) (1— G ) x€Q, t>0,

ot u(t — 72, x)
Au(t, x) _ Av(t, x) —o, x€0Q, t>0,

ov v
u(x,t) = ug(x,t) >0, x €Q, t €[-m,0].
v(x,t) = vo(x,t) >0, x€Q, te[-7,0]

Constant steady state: (us, vs) = ( P ) P )
a+pB a+ B

Main result: (a) If a > B, then (ux«, v«) is globally asymptotically stable for any

71 >0, 72 > 0. (proved with upper-lower solution method)

(b) If & < B, then there exists 7 > 0 such that (us, v«) is stable for 74 + 7 < 7%, and
it is unstable for 71 + 7 > T%.

[Du-Hsu, 2004, JDE] When 71 = 7 =0, if a > sp8, for some sy € (1/5,1/4), then
(ux, v«) is globally asymptotically stable. (proved with Lyapunov function, and it is
conjectured that the global stability holds for all «, 3 > 0.)
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Bifurcation diagram of Leslie-Gower system

There is a parameter region in which the global stability persists for all delay 7 > 0
(absolutely stable). The other region conditionally stability holds.

304

au_*(beta)
254 ‘
20 | unstable
|
| :
tau 15 | Hopf bifurcation
\
\
\
\
10 globally stable \
5 \\
locally stable ———
0 5 10 15 20 25

beta

Figure : Bifurcation Diagram with parameters 8 and 7 = 71 + 72. Here
d =01, db=02 a=10, p=1, p=2.



ODE Background One trans-term Two trans-terms Characteristic equation Reaction-diffusion

Calculation

The characteristic equation

Ay(\T) =X+ AN+ B, +Ce =0, n=0,1,2,---,

where
«a «a
Ap = mp-&-u-i— (di+ d2)An, Bn= ()\ndl + mp) (Andz + 1),
B
C = , and T=T7+ 7.
'ua+ﬁp 1 2

If £ic(c > 0) is a pair of roots of the characteristic equation, then we have

{(725,,:Ccoscr7'7 =012

oA, = Csinor,
which lead to
ot + (A2 —2B,)0? + B2 - C*=0, n=0,1,2,---,
where
o 2
A% —2B, = <d1>\n + 7P> + (d2/\n + M)27
a+p

2 ) 5 2
p) (Anda + )" — (“a+,3p> .

«
B2-C%= ()\nd1+a+ﬂ

Conclusion
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Motivation of this work

Gierer-Meinhardt system with the gene expression time delays
Gierer-Meinhardt [1972], Seirin Lee et.al. [2010]

Au(x, t) - 8%u(x, t) v (x, t — )
=D — - 7

ot € : a2 TP qu(x, t) + o) ) x € (0,m), t >0,

) oD w7~ vl t), x€(0,m), £>0,
X

BU?O, t)  Ou(m,t) 0ov(0,t)  Ov(m,t) 0 £>0

ax ox  ox  ax ’
u(x,t) = ¢1(x,t) > 0,v(x,t) = ¢2(x,t) >0, x € (0,m), t € [-T,0],

where D, ¢, p, q, v and T are positive parameters.
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Motivation of this work

Gierer-Meinhardt system with the gene expression time delays
Gierer-Meinhardt [1972], Seirin Lee et.al. [2010]

Au(x, t) - 8%u(x, t) v (x, t — )
=D — - 7

ot € : a2 TP qu(x, t) + o) ) x € (0,m), t >0,

dV{Xt’ D _pTD) |2t - 1) — v(x ), x€(0,7), t>0,
X

BU?O, t)  Ou(m,t) 0ov(0,t)  Ov(m,t) 0 £>0

ax ox  ox  ax ’
u(x,t) = ¢1(x,t) > 0,v(x,t) = ¢2(x,t) >0, x € (0,m), t € [-T,0],

where D, €, p, q, v and 7 are positive parameters. Or more general (for non-PDE):
{k(t) = F(x(), y(8), x(t = 7). y(t = 7)),
y(t) = g(x(t), y(8), x(t — 7), y(t — 7).
The corresponding characteristic equation:
M4 ad+ b+ (cA+d)e ™ + he™ =0. (3)
Here a,b,c,d,h € R, and 7 > 0.

¢ =d =0 or h=0: considered previously

a = b= 0: Hu-Li-Yan [2009]

We consider the full case for any a, b, c,d, h € R, with at least one of ¢ and d is not
zero, and h is not zero.
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Solving characteristic equation

Characteristic equation: A2 + aX + b+ (cA + d)e™ 7 + he=2*"™ = 0.
Neutral stability: +iw, (w > 0), is a pair of roots.

—w? 4 awi + b+ (cwi 4 d)e T 4 he 2@ = 0.

Conclusion
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Solving characteristic equation

Characteristic equation: A2 + aX + b+ (cA + d)e™ 7 + he=2*"™ = 0.
Neutral stability: +iw, (w > 0), is a pair of roots.

—w? 4 awi + b+ (cwi 4 d)e T 4 he 2@ = 0.

. 1—i6
If % #* ngjﬂ',jG Z, then let 0 = tan % and we have e '¥7 = 1T ;6'
Separating the real and imaginary parts, we obtain that 6 satisfies
(w? —b+d—h)f? —2awh = w?> — b—d — h,
(cw — aw)h? + (—2w? + 2b — 2h)0 = —(aw + cw).
Define )
- w*—b+d—h —2aw
D(w) = det ( (c—a)w  —2w?+2b—2h ) ’
w—b—d—h —2aw
Ew)= det( “(c+aw  —2w+2b-2h )

_ w—b+d—h w?—b-—d—nh
F(w)fdet< (c — a)w —(c+ a)w )

Conclusion
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Quartic equation

w satisfies D(w)E(w) = F(w)?, and w? is a positive root of
49l 49t 3248 = 0,

where

s1 =2a% — 4b — c2,

sp =6b% — 2h? — 4ba® — d? + a* — a2c? + 2c?b + 2hc?,

s3 =2d%b — ad? — 4b% 4 2b%a% — 2b* — 2bc?h

+dacdh — 2d®h + 4bh? — 2h? 2% — 2 K2,
sq =b* — d?b% — 2b%h% + 2bd?h — d*h? + h* = (b — h)*[—d? + (b + h)?],

Lemma. If +iw, (w > 0), is a pair of purely imaginary roots of the characteristic
equation, then w? is a positive root of the above quartic polynomial equation.

Lemma. If the quartic equation has a positive root w,QV, (wy > 0), and D(wpy) # 0,

F(wn)
D(wn)

characteristic equation has a pair of purely imaginary roots +iwpy when

then the equation of 6 has a unique real root 6y =

T:T’];I:Zarctané‘,\,—l—2j7r7 jez

WN

Conclusion

when w = wy. Hence the

4)
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Non-degeneracy, transversality, quartic eq
: D(w) #0

Lemma. Suppose the quartic equation has a positive root w? for some w > 0. Then
D(w) # 0 if
ad
(1) c#0,b+h< —;
c
d d d
) c#0 2 <2hfi) fa(b+hfa—) 40and a#c;
c c c

(3) c=0and a#0;
(4)c=0,a=0,b+h—d<0,and b—h<O0.
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Non-degeneracy, transversality, quartic eq
: D(w) #0

Lemma. Suppose the quartic equation has a positive root w? for some w > 0. Then
D(w) # 0 if
ad
(1) c#0, b+h< —;
c
d d
) c#0 2 (2/17‘9—) fa(b+hf—) #0and a#c;
c c
(3) c=0and a#0;
(4) c=0,a=0, b+h—d<0, and b — h < 0.(degenerate case D(w) = 0 can also
be analyzed similarly.)

Transversality: the pair of complex eigenvalue moving across the imaginary axis.
Lemma. Suppose that (w?, ) are solved from the procedure. Define

G(w,0) =[d(1 4 6%) + 2h(1 — 6%)] - [2w(1 — 6?) + 2ad]
— [ew(1 + 62) — 4h6] - [a(1 — 0%) — 4wb + c(1 + 6°)].

If G(w, 0) # 0, then iw is a simple root of the characteristic equation for 7 = 7/ and
there exists A\(7) = a(7) + iw(7) which is the unique root of the characteristic
equation for 7 € (7 — ¢, 7/ + €) for some small € > 0 satisfying a(7/) = 0 and
w(™) =w.

Solving quartic equation: standard procedure and conditions guaranteeing existence of
a positive root.
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Summary of one of routes

Theorem. Suppose that a, b, c,d, h € R satisfy
(i) c#0and h#0;
(i) b# hand d?> (b+ h)%

(iii) b+h§%or <g <2hf%)fa<b+hfﬁ))-(afc)7é0.

c
Then
@ The quartic equation has a root w3, for wy > 0 with D(wpy) # 0.
O Let 0y — F(o.zN)7 and 7':7-,/;, _ 2arctan Oy + 2jm
D(WN) Wy .
characteristic equation has a pair of roots +iwy when 7 = 7'1/\1
© If G(wn,0n) # 0O, then iwy is a simple root of the characteristic equation for
T= 7JN and there exists A(7) = a(7) + iw(7) which is the unique root for 7 near
71;, satisfying a(r,’;,) =0, w(ﬂv) = wy and 0/(74,;,) #0.
Moreover if a, b, c,d, h € R also satisfy
(iv) a+c>0and b+d+h >0,
then there exists 7« > 0 such that when 7 € [0, 7« ), all roots have negative real parts;
if G(6+«,wx) # 0, then when 7 = 7, it has one pair of simple purely imaginary roots,
and for 7 € (7«, 7« + €), it has one pair of complex roots with positive real parts.
Corollary: Define a subset in the parameter space

P={(ab,c,dh) R’ :a+c>0, b+d+h>0, b—d+h< 0}

, where j € Z. Then the

Then the above results occur for almost any (a, b, ¢, d, h) € P.
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Setup

g——DlAquf(uvuT,vT) xeQ, t>0,
g— = DoAv + g(u,v,ur,vs), xeQ, t>0, (5)
t 1o} t
Qu(x,t) _ V(X:):Q X €O, t>0,
ov ov

u(x, t) = ¢1(x,t) > 0,v(x,t) = ¢2(x,t) >0, x€Q, te[-T0],

u=u(x,t),v=v(x,t), ur =u(x,t —7), and vy = v(x,t — 7);
Q is a bounded connected domain in R” (n > 1) with smooth boundary 6;

A is the Laplace operator in R”, and Ow/dv is the outer normal derivative of
w=u,v;

The functions f(u, v, w, z) and g(u, v, w, z) are continuously differentiable in
R4,
There exist u* > 0 and v* > 0 such that

f(u*, v u*,v*) =0, g(u*,v*,u",v")=0.

Then (u*, v*) is a constant positive equilibrium.
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Linearization
£(88) -2 (38 (20 o3

D, 0 fu fw f
D= L L= , L= ,
(0 D2) ' (gu gv) : (gw gz)

Let the eigenvalues of —A with Neumann boundary condition be pu,, and the
corresponding eigenfunction are v,(x), n € Ng = N[J{0}. Then for a fixed n € No,
the characteristic equation at (u«, vi) is

A+ Dijin — fy — fe™ 7 —f, — fe= AT
det AT —A\T = 07
—8u — 8we€ >\+D2Hn—gv — 8z¢€

where

K\, 7,n) = X2 + aph + by + (cad + dn)e > + he 2 =0, ne Ny,
where
an =(D1 + D2)pn — (fu + &v),
by =D1Dopi2 — (D1gy + Dafy)pin + fugy — fugu,
e =—(fw + &),
dn = — (D1gz + Dafw)pn + (fugz — f28u) + (fwgv — fvgw),
hn =fwgz — f:8w.
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Hierarchy of stability

KA, 7,n) = X2 + aph + by + (cad + dn)e ™ + hpe 2 = 0.
Define the spectrum set for a fixed 7 € RT and n € Ny by
Srn={reC: K(\ 1,n)=0},

57-: U ST,n-

nENp
Define C~ = {x+iy: x,y € R,x < 0}.
@ stable w.r.t. ODE (Ordinary Differential Equation) if Sp.0 C C—;
@ stable w.r.t. DDE (Delay Differential Equation) for 7 > 0 if S, g C C—;
@ stable w.r.t. PDE (Partial Differential Equation) if So C C™;
@ stable w.r.t. DPDE (Delay Partial Differential Equation) for 7 > 0 if S; CC~.
Turing instability: stable w.r.t. ODE but unstable for PDE

and for a fixed T € R,

Stable-DPDE Stable-PDE

Stableﬁ‘_—, Stable—ODE
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Instability w.r.t. DDE

ur = f(u, v, ur, vr), t>0,
ve = g(u, v, ur, vr), t>0,
u(t) = ¢1(t) > 0,v(t) = ¢2(t) 20, te€[-7,0],

where u = u(t),v = v(t), ur = u(t — 1), and v; = v(t — 7).
K(A,7,0) = A% + apA + by + (oA + do)e ™ + hge ™™ =0, n e Ny,
where
ap = —Tr(L1), bo = Det(L1), co = —Tr(L2),

1
dy = 5 [Det(L1 =+ L2) - Det(L1 - Lg)] , ho = Det(L2).

Recall that

Conclusion

(6)
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Instability w.r.t. DDE

Theorem. Assume that
Tr(l_z) 75 0, Tr(Lg) 75 Tr(Ll), Det(L2) 75 0, Det(L2) 76 Det(l_l),

and

d d d d
bo—‘rhoSaL or i(2h0—ao0)—ao(bo+h0—aoo)750.

o
[e)) (o)) <o <0
If L1 and L satisfy
Tr(Li + L) <0, Det(Ly + L2) >0, and Det(L; — L) <0, (7)
then there exists 79 > 0, the equilibrium (u*, v*) is stable for the DDE when
0 < 7 < 79, but it is unstable when T € (79,70 + €). Moreover, a Hopf bifurcation for

(6) occurs at 7 = 7p.

The conditions in (7) lead to delay-induced instability. The matrix Ly is the

“non-delay” part, and L; is the “delay” part of the linearization.
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Diffusive case

Theorem. Assume that Dq, D are the diffusion coefficients, and p, is a simple
eigenvalue of —A with Neumann boundary condition for n € Ny. Assume that

Tr(L2) # 0, Tr(L2) # Tr(L1) — (D1 + D2)pn,
Det(Ly) # 0, Det(Ly) # Det(L1) — (D1gy + Dafy)uun + D1Dopi?,

and

d d d d
by + by < 2090 o —"(2hnfm)fan(bn+hnfm>7ﬁ0.

Cn Cn Cn Cn
If (D1, D7), Ly and L; satisfy

Tr(Ly + L2) < (D1 + D2)pn,
Det(Ll + LQ) > [Dl(gv +gz) + D2(fu + fw)]Mn - D1D2M%7
and Det(L; — L) < [Di(gv — &z) + Da(fu — fu)|pin — D1Dapi2,
then there exists 7, > 0, the equilibrium (u*, v*) is stable in mode-n when 0 < 7 < 7,

but it is unstable in mode-n when 7 € (7, 7n + €). Moreover, a Hopf bifurcation
occurs at 7 = 7p, and the bifurcating periodic orbits have the spatial profile of v,(x).
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Delayed Gierer-Meinhardt system

Gierer-Meinhardt system with gene expression time delays

Ou(x, t) - 0%u(x, t) ( v (x, t — 7’))
=¢eD - —_— 0 0
ot € : a2 TP qu(x, t) + i=n) ) x €(0,7), t >0,
aV(X; 2 p? V();’ 2 + (P (x t = 7) = v(x, ), x € (0,7), t >0,
X
l?U?O7 t)  OQu(m,t) 0Ov(0,t) Ov(m,t)
= = = = 0, t> 0,
Ox Ox Ox ox
u(x, t) = ¢1(x, t) > 0, v(x, t) = ¢a(x,t) >0, x € (0,7), t € [-T7,0],

1 1\?
Unique positive equilibrium (u*, v*) = <p+7 (i) > .
q q
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Delayed Gierer-Meinhardt system

Gierer-Meinhardt system with gene expression time delays

Ou(x, t) - 0%u(x, t) ( v (x, t — 7’))
=¢eD - —_— 0 0
i LT e ) R I
aV(X; 2 p? V();’ 2 + (P (x t = 7) = v(x, ), x € (0,7), t >0,
X
l?U?O7 t)  OQu(m,t) 0Ov(0,t) Ov(m,t)
- - - -0, t>0,
Ox Ox Ox ox
u(x, t) = ¢1(x, t) > 0, v(x, t) = ¢a(x,t) >0, x € (0,7), t € [-7,0],
2
Unique positive equilibrium (u*, v*) = <p+17 (LH) ) .
q q
2(¢ —
For DDE: % =9 (p —qu(t) + %) % = y(u?(t — 1) — v(t)):

Characteristic equation: A% +v(q + 1)\ +~v?q + %[—(A +7)e" M +ye=2AT] = 0.

qg—1
@ Ifp>
P qg+1

, then (u*, v*) is local asymptotically stable for ODE.

@ There exist po(q) > 0 such that for any p > po(q), (u*, v*) is locally
asymptotically stable for DDE with any 7 > 0.

+1

Hence delay-induced instability can occur for g < p < po(q).
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Numerical example

Assume that p = 0.2, ¢ = 0.8, and v = 1. Then (u*,v*) = (1.5,2.25).

A2 +1.80 + 0.8 + (—1.3333\ — 1.3333)e ™ +1.3333¢ 72" =0, ®)
z* +1.502223 4 0.46152% — 2.4124z + 0.7886 = 0.

Positive roots of the quartic equation: w% =~ 0.4194 and w% =~ 0.6441
w1 &~ 0.6476 and wy ~ 0.8026.

Two sequences of Hopf bifurcation points: 7 = 741 =~ 0.4243 + kil ,
2i 0.6476
— 578174+ -2 i=0,1,2,---.
i * 08026 =

Phase portraits: Left: 7 = 0.2; Right: 7 = 0.43

()
R R S - S T

o 1 2 3 a 5 05 1 15 2 25 3 35
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Simulation with diffusion

p=02g=08andy=1 €€ =01 D=03
Upper: 7 = 0.2, Lower: 7 =6 (left u(x, t), right v(x, t))
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Conclusion

@ The stability of an equilibrium in a delayed system is usually difficult to
determine if there is more than one transcendental terms in the characteristic
equation. A systematic approach to solve the purely imaginary roots of a second
order transcendental polynomial is provided here to consider the stability of a
(constant) equilibrium in a (reaction-diffusion) planar system with a
simultaneous delay.
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Conclusion

@ The stability of an equilibrium in a delayed system is usually difficult to
determine if there is more than one transcendental terms in the characteristic
equation. A systematic approach to solve the purely imaginary roots of a second
order transcendental polynomial is provided here to consider the stability of a
(constant) equilibrium in a (reaction-diffusion) planar system with a
simultaneous delay.

@ Our approach is easy to be applied to a specific model from application as the
coefficients in the transcendental polynomial depend only on the linearization of
the system, and a complete set of conditions on the coefficients leading to
instability are proved. Such conditions are easy to verify and numerical
algorithms of finding bifurcation values are given so the sequence of Hopf
bifurcation points can be explicitly calculated.
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Conclusion

@ The stability of an equilibrium in a delayed system is usually difficult to
determine if there is more than one transcendental terms in the characteristic
equation. A systematic approach to solve the purely imaginary roots of a second
order transcendental polynomial is provided here to consider the stability of a
(constant) equilibrium in a (reaction-diffusion) planar system with a
simultaneous delay.

@ Our approach is easy to be applied to a specific model from application as the
coefficients in the transcendental polynomial depend only on the linearization of
the system, and a complete set of conditions on the coefficients leading to
instability are proved. Such conditions are easy to verify and numerical
algorithms of finding bifurcation values are given so the sequence of Hopf
bifurcation points can be explicitly calculated.
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Future work

@ Our work here is still a special case of the characteristic equation with two
delays (in our case, the two delays are 7 and 27), and a complete analysis for
the case of two arbitrary delays is still out of reach.

@ Our general analysis for delayed reaction-diffusion systems shows that the
equilibrium loses its stability at a lowest delay value 7 > 0. In all our examples,
T« is identical to 79, where spatially homogeneous periodic orbits bifurcate from
the equilibrium. The possibility of equilibrium first loses stability to spatially
nonhomogeneous periodic orbits remains an open problem.

@ Global bifurcation such as stability switches and higher co-dimensional
bifurcations such as double Hopf bifurcation or Turing-Hopf bifurcation.
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