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Stability of a Stationary Solution

. . . . du
For a continuous-time evolution equation pri F (X, u), where u € X (state space),

A € R, a stationary solution us is (or just stable) if for
any € > 0, then there exists § > 0 such that when [|u(0) — u«||x < d, then
[lu(t) — us||x < € forall t >0 and tlim [lu(t) — ux||x = 0. Otherwise ux is

— 00
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Stability of a Stationary Solution

. . . . du
For a continuous-time evolution equation pri F (X, u), where u € X (state space),

A € R, a stationary solution us is (or just stable) if for
any € > 0, then there exists § > 0 such that when [|u(0) — u«||x < d, then
[lu(t) — us||x < € forall t >0 and tlim [lu(t) — ux||x = 0. Otherwise ux is

— 00

Principle of Linearized Stability: If all the eigenvalues of linearized operator
D, F (X, us) have negative real part, then u, is locally asymptotically stable.
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Stability of a Stationary Solution

. . . . du
For a continuous-time evolution equation — = F(\, u), where u € X (state space),

A € R, a stationary solution us is (or just stable) if for
any € > 0, then there exists § > 0 such that when [|u(0) — u«||x < d, then
[lu(t) — us||x < € forall t >0 and tlim [lu(t) — ux||x = 0. Otherwise ux is

— 00

Principle of Linearized Stability: If all the eigenvalues of linearized operator
D, F (X, us) have negative real part, then u, is locally asymptotically stable.

Bifurcation: when the parameter A changes from A\, — ¢ to A« + ¢, the stationary
solution u«(A) changes from stable to unstable; and other special solutions (stationary
solutions, periodic orbits) may emerge from the known solution (X, ux())).
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Stability of a Stationary Solution

. . . . du
For a continuous-time evolution equation pri F (X, u), where u € X (state space),

A € R, a stationary solution us is (or just stable) if for
any € > 0, then there exists § > 0 such that when [|u(0) — u«||x < d, then
[lu(t) — us||x < € forall t >0 and tlim [lu(t) — ux||x = 0. Otherwise ux is

— 00

Principle of Linearized Stability: If all the eigenvalues of linearized operator
D, F (X, us) have negative real part, then u, is locally asymptotically stable.

Bifurcation: when the parameter A changes from A\, — ¢ to A« + ¢, the stationary
solution u«(A) changes from stable to unstable; and other special solutions (stationary
solutions, periodic orbits) may emerge from the known solution (X, ux())).

Stationary Bifurcation (transcritical/pitchfolk): if 0 is an eigenvalue of DyF(A«, ux).
It generates new stationary (steady state, equilibrium) solutions.

Hopf Bifurcation: if £ki (k > 0) is a pair of eigenvalues of D,F(\«, us). It generates
new small amplitude periodic orbits.

stationary bifurcation Hopf bifurcation
ImX Im A

continuous continuous

dynamical Re A dynamical Re A

system system
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Poincaré-Andronov-Hopf Bifurcation Theorem

Consider ODE x’ = f()\,x), A € R, x € R", and f is smooth.

Suppose that for A near )\ the system has a family of equilibria x°()\).

Assume that its Jacobian matrix A()\) = fi(\, x%()\)) has one pair of complex
eigenvalues p1(A) £ iw(A), p(Xo) =0, w(AXo) > 0, and all other eigenvalues of A(X)
have non-zero real parts for all A near Ag.

If ' (Xo) # 0, then the system has a family of periodic solutions (A(s), x(s)) for
s € (0,6) with period T(s), such that A(s) = Ag, T(s) — 27/w(Xg), and
[Ix(s) — x%(Xo)|| = 0 as s — O*.

‘f () ‘;11/.::%‘1
7 o

B<o p=0 B0
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Poincaré-Andronov-Hopf bifurcation

Henri Poincaré (1852-1912)  Aleksandr Andronov (1901-1952)
Eberhard Hopf (1902-1983)

Andronov, A. A. [1929] “Les cycles limites de Poincaré et la théorie des oscillations
auto-entretenues,” Comptes Rendus Hebdomadaires de I'’Acad’emie des Sciences 189,
559-561. limit cycle in 2-D systems

E. Hopf. [1942] “Abzweigung einer periodischen LoSung von einer stationafen eines
Differentialsystems”. Ber. Verh. Sachs. Akad. Wiss. Leipzig. Math.-Nat. Kl. 95,
(1943). no. 1, 3-22. limit cycle in n-D system

Poincaré, H. [1894] “Les Oscillations 'Electriques” (Charles Maurain, G. Carr'e & C.
Naud, Paris).
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Proof of Hopf bifurcation theorem: (1) transformation

Consider ODE x’ = f(\,x), A € R, x € R", and f is smooth.
Assumptions:

Suppose that for A near )\ the system has a family of equilibria x°()\).

Assume that its Jacobian matrix A()\) = fi(\, x%()\)) has one pair of complex
eigenvalues p1(A) £ iw(A), p(Ao) =0, w(Xo) = wp > 0, and all other eigenvalues of
A()\) have non-zero real parts for all A near \g.

W' (Xo) # 0.

Preparation:

1. We can assume x°(\) = 0 (if not we can make a change of variables:

y = x — x9()\)), so from now we assume that f(\,0) = 0 for \ near o, and

AQ\) = £(),0)

2. A periodic solution x(t) satisfying x(t + p) = x(t) for a period p. We rescale the

d;
time s = t/p. Then the equation d—); = f(\, x) becomes d—X = pf(A, x), and now x(s)
s

satisfies x(s) = x(s + 1) for a period 1. From now we consider the equation
x" = pf(A, x), and we look for periodic solutions with period 1.
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Proof of Hopf bifurcation theorem: (2) Setup

Consider ODE x’ = pf()\,x), A € R, x € R",
Assumptions:

Suppose that for X near Ag, f(A,0) = 0.

Assume that its Jacobian matrix A(X) = (X, 0) has one pair of complex
eigenvalues p(A) £ iw(A), w(Xo) =0, w(Ao) = wo > 0, and all other eigenvalues of
A(X) have non-zero real parts for all A near Ao.

# (o) # 0.

Define the spaces
X={xe C'R:R") :x(t+1) =x(t)}, Y ={y € CR,R"):y(t+1)=y(t)}
and a mapping F: UX V x X = Y, where \g € UCR, po =27/wp € V CR,

F(Av va) =x - pf()‘vx)

Since the eigenvalues are complex, hence we may consider the linearized equations in

X(C:X+I.X:{X1+I'X2:X17X2€X}7 Ye=Y+iY.
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Proof of Hopf bifurcation theorem: (3) Linearization

Consider F: UX V x X — Y, where \g € UCR, pg =27/wp € V CR,
F(X\, p,x) = x" — pf (A, x).
Then

2
Fe\, p,x)[w] = w' — pf(\ x)w,  Fx(Xo, po, 0)[w] = w/ — = (Ao, 0)w.
wo

Kernel is two-dimensional:
N (Fx(Xo, po,0)) = span {exp(2mit)vy, exp(—2mit)Vo} ,

where £, (Ao, 0)vo = iwgvp and vo(# 0) € Xc.

Range is codimensional two:
R(Fx(Xo, p0,0)) = {h € Yc : hexp(2mit)vg = 0, hexp(—2mit)vg = 0},

or more precisely h = Z hy exp(2kmit) (Fourier series), h_y = hy, hy - vo = 0.
kEZ

References
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Proof of Hopf bifurcation theorem: (4) New spaces

For
X={xe CYR:R") :x(t+1)=x(t)}, Y={yeCRR"):y(t+1)=y(t)},
there are the space decompositions:
X = N(Fx(Xo,p0,0)) + Z, Y = R(Fx(Xo, p0,0)) + W,

where Z and W are complements of NV(Fx(Xo, po,0)) and R(Fx(Xo, po,0))
respectively.

Let wp = exp(2mit)vo + exp(—2mit)vg

X1 = span{wo} + Z.

= cos(2mt)up (up € R"), and let

We restrict F(\, p,x) = x" — pf(X, x) for x € Xi. Then N'(Fx(Xo, po,0)) = span{wg}.

Define Y1 = {y € Y : 35, vk exp(2kmit) + y1 cos(2mt)}. Then
F:UXxV x X; — Y satisfies codim(R(Fx(Xo, po,0))) = 1. Indeed
R(FX()‘O’pO’O)) = {y EYiiy1-x= 0}
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Bifurcation from simple eigenvalue with two parameters

. [Crandall-Rabinowitz, 1971, JFA]

Let U be a neighborhood of (Ag, ug) in R X X, and let F: U — Y be a continuously
differentiable mapping such that F), exists and continuous in U. Assume that
F(X, up) =0 for (A, up) € U. At (Ao, up), F satisfies

(F1) dimN (Fu(Xo, uo)) = codimR(Fu(Xo, up)) =1, and

(F3) F)\U(AO, uo)[Wo] & 'R,(Fu()\o7 uo)), where wg € N(Fu()\o, uo)),
Let Z be any complement of N'(F,(Xo, up)) = span{wo} in X. Then the solution set
of F(\,u) = 0 near (Ao, up) consists precisely of the curves u = up and
{(A(s),u(s)):se€l =(—e,€)}, where \: | = R, z: | — Z are continuous functions
such that u(s) = up + swp + sz(s), A(0) = Xo, z(0) = 0.

two-parameter case. [Shearer, 1978, MPCPS] Let U be a neighborhood of (g, po, to)
inR xR x X, and let F: U — Y be a continuously differentiable mapping such that
Fxu and F,, exist and continuous in U. Assume that F(, p, up) = 0 for
(A, p, up) € U. At (Xo, po, Up), F satisfies

(F1) dimN (Fy(Xo, po, uo)) = codimR(Fu(Xo, po, up)) = 1, and

(F3) there exists (a1, a2) € R? such that
a1 Fu(Xo, to)[wo] + a2 Fpu(Xo, pos, uo)[wo] € R(Fu(Ao, uo)), where wo € N (Fu(Xo, wo)),
Let Z be any complement of N'(F,(Xo, up)) = span{wo} in X. Then the solution set
of F(X, p,u) = 0 near (Ao, po, Ug) consists precisely of the set u = up and a curve
{(A(s), p(s),u(s)) : s €l =(—e,€)}, where X\,p: | - R, z: | — Z are continuous
functions such that u(s) = ug + swp + sz(s), A(0) = Ao, p(0) = po, z(0) = 0.
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Proof of Hopf bifurcation theorem: (5)

For the mapping F : U x V X X1 — Y1, F(\, p, x) = x’ — pf(A, x), (F1) is satisfied.

Fpu(Ao, po, 0)[wo] = —f(Xo, 0)wo = O,
Fxu(Xo, po; 0)[wo] = —pofiax(Xo, 0)wo

Let f(X, 0)[w(A)] = (a(X) + iB(A))w(X). By differentiating with respect to A, we get
frx (Mo, 0)[exp(2mit)vo] =

(o (Xo) + iB (X)) exp(2mit)vo — [A (Ao, 0)w’ (o) — (a( o) + iB(Xo))w' (Xo)]. Then
frx (Mo, 0)wo = o/ (Ao)wo + z for some z € R(Fu(Xo, po,0)), hence

fax(Ro,0)wo & R(Fu(Xo, po,0)) since o (Xo) # 0.

From the bifurcation from simple eigenvalue with two-parameter theorem, all
nontrivial solutions of F(X, p,x) = 0 are on a curve {(\(s), p(s), x(s)) : |s| < 6}.

In this way, we prove the periodic solutions in Xj are all on the curve

{(A(s), p(s), x(s)) : |s| < ¢}. Note that with different choice of X; and Y1, different
periodic solutions can be obtained, but they are only the same as the ones in X; after
a time phase shift.
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Dynamical system approach

Consider ODE x’ = pf(\,x), A € R, x € R",
Assumptions:

Suppose that for A near Ao, f(X,0) =0.

Assume that its Jacobian matrix A(X) = (), 0) has one pair of complex
eigenvalues p(X) £ iw(X), w(ro) =0, w(Ao) = wo > 0, and all other eigenvalues of
A()\) have non-zero real parts for all A near \g.

W' (Xo) # 0.

More non-degeneracy condition: /1(0) # 0 (where /(«) is the first Lyapunov
coefficient), then according to the Center Manifold Theorem, there is a family of
smooth two-dimensional invariant manifolds W near the origin. The n-dimensional
system restricted on W is two-dimensional.

Moreover, under the non-degeneracy conditions, the n-dimensional system is locally
topologically equivalent near the origin to the suspension of the normal form by the
standard saddle, i.e.

1=By1 —y2+oy1(yZ +y2). y2 = y1 + By2 + oya(y? + y3), (center manifold)

y® = —y®, (stable manifold), y“ = +y" (unstable manifold)

Whether Andronov-Hopf bifurcation is subcritical or supercritical is determined by o,
which is the sign of the “first Lyapunov coefficient” /;(0) of the dynamical system
near the equilibrium.
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First Lyapunov coefficient
Write the Taylor expansion of f(x,0) at x =0 as

1 1
f(X7 0) = A0X+ EB(X7X) + EC(X,X,X) + O(”X”4)7

where B(x,y) and C(x,y, z) are the multilinear functions with components

n 2 £
Bixy) = 3 2560

XKyl s
iic1 96081 le=o
n
oM f—(gv 0)
C(x,y,2z) = — = XkY1Zm
! k7§:1 agkaflaﬁm £=0
where j =1,2,...,n. Let g € C" be a complex eigenvector of Ay corresponding to the

eigenvalue jwp: Aog = iwpq. Introduce also the adjoint eigenvector p € C":
Ag—p = —iwgp, (p,q) = 1. Here (p,q) = P’ q is the inner product in C". Then (see,
for example, [Kuznetsov, 2004, book])

1 _ — _ ~ _
h(0) = 2 [(P7 C(q.9,9)) — 2(p, B(a, Ay " B(4,9))) + (P, B(d, (2iwoln — Ao) "' B(q, q))>]
where I, is the unit n X n matrix. Note that the value (but not the sign) of /;(0)
depends on the scaling of the eigenvector q. The normalization (g, q) =1 is one of
the options to remove this ambiguity.
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Rosenzweig-MacArthur model

du ( u> muv dv 0 Jrmuv
— =u(l——-)— , — = —0Ov
dt k 1+u dt 14+ u
Nullcline: u:O,v:w;v:O,Gz mu.
m 1+ u
6
Solving 6 = ﬂ, one have u =)= ——
1+ u m—

.
(k= 2+

Equilibria: (0,0), (k,0), (X, vx) where vy =
m

We take X as a bifurcation parameter

Case 1: A\ > k: (k,0) is globally asymptotically stable
Case 2: (k—1)/2 < X < k: (k,0) is a saddle, and (A, vy) is a globally stable
equilibrium
Case 3: 0 < A < (k—1)/2: (k,0) is a saddle, and (), vy) is an unstable equilibrium
(A= Xo = (k —1)/2 is a Hopf bifurcation point)
Xo(k —1—2X)g)
k(L+ XA

Ao = Lo(No) = S

k(1 + Xo)
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Normal form (1)

[Yi-Wei-Shi, 2009, JDE]
Eigenvector: Agq = iwoq, Ajq* = —iwg*, (q,q*) = 1.

[ @ \ _ 1 . a§
= (8) = (i ) e o= ()

where wo = +/0/k.

(oritoemy )

f(\uv)=(u+A) (1— u'}(_)‘> ~ m(u+A)(v+w)

)

1+u+A 1)
g\ u,v)=—0(v+vy)+ W,
then we have,
—2(k — 1) 4 8iwgk 4(k — 1) + 8iwgk
O k- nk+1) T Tk —D(k+ 1) @)
80:2(17k) 4 ’gO:_hO:_24(k71)+16iwok

k(k+1)" ° 7 T k(k+1) k(k —1)(k + 1)2
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Normal form (2)

and,

_ 40wok — (k — 1)%wo + 20(3 — k)i

(@ Qua) = k(k — 1)(k + L)wo ’
s (L= K)wo — 20i
<q 7Qqq> - k(k+1)u.)o
. _ (k—1)’wo + 20kwo — 40ki
(@, Qaq) = k(k —1)(k + L)wo
—12(k — 1)wo — 80kwo + 40(3k — 5)i
(@ Coqg) = 2= oo~ Bk W03k 9)1

k(k —1)(k + 1)2wp

o= (9 ) -t () -@.eu (£ ) =0
= (2)-wam (2 ) @ ( 2 )=-o

which implies that wyg = w1 = 0. So

(CI*, QWll,q) = <q*7 szo,ﬁ> =0.

References

3)

4)

(5)
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Normal form (3)

Therefore
Re(c(30)) =Re { 574", Qo) (4", Qua) + 50" Ca) |
040k — (k —1)2 — (3 — k)(1 — k)) | 6wo(1 — k) — 40wk
k2(k — 1)(k + 1)2w? k(k —1)(k + 1)2wq
_ 0(40k — (k—1)2— (3—k)(1—k))  6(k—1)+ 46k 6
- K2(k — 1)(k + 1)2w2  k(k —1)(k +1)2 ©)
40k — (k—1)2— (3— k)(1 — k) — 6(k — 1) — 40k
N k(k —1)(k +1)2
__2Ak=k+y 2
T k(k—1)(k+1)2 " k(k+1)
The bifurcation is supercritical(resp. subcritical) if
ﬁRe(Cl(Ao)) < O(resp. > 0); %)

see also [Kuznetsov, 2004, book]
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Higher dimension

ODE model: % =f(\y), yER" f:RxR" 5 R"

© ¥y =y so that f(Xo,y0) =0
Jacobian Matrix: J = f,(Xo, yo) is an n X n matrix
Characteristic equation:
P(\) = Det(AM — J) = A"+ a1 A" L+ apA\" 2 -+ a, 1A+ ag
Routh-Hurwitz criterion: complicated for general n

=1 A+a=0a>0

n=2: A2+ aiA+ax =0, ag > 0, a» > 0 Trace-determinant plane
a3
a

n=3 AN+ 2+ +a3=0a>0 a>=,a3>0
1

2 2
n=4 M4+ a X+ +a3h+a,=0, a1 >0, a2>m
aia

n > 5: check books

,a3>0,a3>0
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3D system

n=3 AN+ 2+ apA+a3=0, a1 >0, ag>§,a3>0
a1

Hopf bifurcation point: a; > 0, a3 > 0, ajap — a3 =0.
Eigenvalues: A1 = i, Ao = —fi, and A3 = —a (for o, 3 > 0) Then

a1 = —(M+A+A3) =a >0, a = M+ Az +dods = 82> 0, a3 = —Atdo)s = % > 0.

And aijap — az = 0.
Example: (Lorenz system) x’ = o(y — x), y' =rx —y — xz, 2/ = xy — bz.
Basic dynamics:

equilibria: Co = (0,0,0), C+ = (£+/b(r — 1), £+/b(r — 1),r — 1).
global stability: when 0 < r < 1, G is globally stable

—o o 0
Jacobian: r—z —1 —x |, characteristic equation at C4:
y x —b

N4 (e+b+1)N+ (r+o)br+2bo(r—1)=0

Hopf bifurcation: ai = o+ b+ 1> 0, a3 = 2bo(r —1) > 0,

ajax —a3=(oc+b+1)(r+o)b—2bo(r—1)=0

o(c+ b+3)
oc—b—1

Hopf bifurcation point: r = . It is a subcritical bifurcation.
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Global bifurcation of periodic orbits

Consider ODE x’ = f(\,x), A € R, x € R", and f is smooth.
Assumptions:

Suppose that for A near )\ the system has a family of equilibria x°()\).

Assume that its Jacobian matrix A()\) = f(\, x%()\)) has one pair of complex
eigenvalues p1(A) £ iw(A), p(Ao) =0, w(Xo) = wp > 0, and all other eigenvalues of
A()) have non-zero real parts for all A near \g.

W (X0) # 0.

Let x(\, t; xo) be the solution of the equation with initial condition x(A,0; xg) = xo.

We say (A, xp) is stationary if x(\, t;x0) = xo for all t > 0.

We say (A, xg) is periodic if it is not stationary, and there exists T > 0 such that
x(A\, T; x0) = xo-

If (A, xo) is periodic, then all positive T > 0 such that x(\, T;xp) = xo are the
periods. The smallest positive period is the least period.

Define

Y ={(\, T,x0) ER X (0,00) x R": x(\, T; x0) = xo0 and (X, xg) is periodic}.

References
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Global bifurcation of periodic orbits

[Alexander-Yorke, 1978, AJM]
Consider ODE x’ = f()\,x), A € R, x € R", and f is smooth.
Assumptions:

Suppose that for A near A the system has a family of equilibria x°()\).

Assume that its Jacobian matrix A()\) = fi(\, x%()\)) has one pair of complex
eigenvalues p(X) £ iw(X), w(Xo) =0, w(Ao) = wo > 0, and all other eigenvalues of
A()\) have non-zero real parts for all A near \g.

1 (o) # 0.
Define

S={(\T,x0) €ERx(0,00) x R": x(\, T; x0) = xo and (X, xo) is periodic}.

@ There exists connected component Sy of S U {yo = (Ao, 27/wo, x°(No))}
containing yp and at least one periodic solution. Near yp, every
y =\ T,x0)(# yo) € So is periodic with the least period T.

@ One or both of the following are satisfied: (i) Sp is not contained in any compact
subset of R X (0,00) x R"; (ii) there exists a point (A«, T, x0x) € So\So.

@ For any (A, T, x04) € S\S, (A, x0x) is stationary. For any ¢ > 0, there is a
neighborhood Ue of (A«, Tk, X0« ) such that for any (A, T, x) € U: N S, all
points of the orbit x(\, t; xp) are of distance less than & from xp..
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Remarks

o

©

The assumptions (ii) and (iii) can be generalized to: there are k pairs of purely
imaginary eigenvalues of A(Xg) in form {iBjwo : 1 < j < k} with

1 <61 < B2 <+ < By, and the change of the number of such eigenvalues
with positive real part from A = X\g — & to A = g + ¢ is odd.

The proofs of the result use homotopy theory or Fuller index or other
topological invariants.

The theorem states that either the connected component Sy contains another
stationary solution, or it is unbounded in the sense that

sup (\)\|+|T|+|T_1\+\x()\, t;xo)\) = oo.
(A, T,x0)ESp,tER

If (X, T,x0) € So, then T is not necessarily the least period of the periodic
solution x(A, T; xp). If iwg is an simple simple eigenvalue of A(\g), then near
Yo, T is the least period. Note that if T is a period, so is kT for k € N, so the
periods are always unbounded. The main point of the theorem is the periods
can be unbounded continuously.

The notation x(\, t; x0) is a periodic solution, and {x(\, t;x0) : t € R} ia a
periodic orbit. It is clear that for any x; = x(, t; x0), x(, t; x¢) is also a
periodic solution, but it has the same orbit as x(\, t; xp). For a fixed A, the
periodic solution is never unique, but the periodic orbit may be unique. Hence it
is wrong to say “there exists at least two periodic solutions” in a theorem, and
you should say “there exists at least two periodic orbits”.
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Example

Rosenzweig-MacArthur model
du u muv dv muv
=u (1 - ) - — = —0v+ .

dt K 1va de . T 14
Parameter: A\ = 0
m—0
k—X)(1+ X
Equilibria: (0,0), (k, 0), (A, vs) where vy = KL= NEFA)
m

Case 1: A\ > k: (k,0) is globally asymptotically stable

Case 2: (k—1)/2 < X < k: (X, vy) is a globally stable equilibrium
Case 3: 0 < XA < (k—1)/2: (k,0) and (X, vy) are both unstable
(A= Xo = (k —1)/2 is a Hopf bifurcation point)

There exists a branch of periodic orbits So = {(\, T,x0) : 0 < A < (k —1)/2}.
One can show that |xp| is bounded for Sg, so T is unbounded when A — 0. In this
case, the limit of the orbits {x(), t; x0) : t € R} when X — 0 is not an orbit.
[Hsu-Shi, 2009, DCDS-B]

Sometimes if T — 0o as A — A«, the limit of the orbits {x(\, t; xp) : t € R} when
A — A« is a homoclinic orbit or a heteroclinic loop of the system.
[Wang-Shi-Wei, 2011, JMB]
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Abstract version: Hopf bifurcation theorem

[Crandall-Rabinowitz, ARMA, 1977]
Consider an evolution equation in Banach space X:

du

S Lut fuu) =0, (®)

Here X is a Banach space, and X¢ = X + iX is the complexification of X; L : X — X
is a linear operator and it can be extended to X¢ naturally. The spectral set o(L) C C,
and X € o(L) if and only if A € o(L).
Conditions on L (HL):
@ - L is the infinitesimal generator of a strongly continuous semigroup T(t) on X;
@ T7(t) is a holomorphic (analytic) semigroup on Xc;
© (M — L) !is compact for A € o(L);
@ i is a simple eigenvalue of L (with eigenvector wy # 0);
@ nigo(l)forn=0and n=2,3,---.
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Abstract version: Hopf bifurcation theorem

Conditions on f: (Hf)

@ There exists a € (0,1) and a neighborhood U of (i, u) = (0,0) in R x X% such
that f € C3(U, X);
@ f(1,0) =0 for (,0) € U and £,(0,0) = 0.

(HL) and (Hf) imply that there exists C! functions (8(u), v(1)) for i € (=6, ) such
that
(L4 fu(p, O)]v(r) = B(w)v(w), B(0) =i, v(0) = wo.

Condition on 8: (HB)
@ Re 5/(0) £0.
7 = p~Lt: change the period of periodic orbit to a parameter
du
— + pLu+ pf(p, u) = 0. 9)
dr
Looking for a period-1 periodic orbit for the rescaled equation.

u(T) is a solution to (9) for 7 € [0, r] if and only if, for
T [0,r],

F(p, 1, u) = u(r) = T(p7)u(0) + P/OT T(p(r = £))f(u, u(§))dg = 0.
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Abstract version: Hopf bifurcation theorem

Let Gor (R, Xo) be the set of 27-periodic continuous functions, and let
Co([0,27], Xo) = {h : [0,27] = Xa, h(0) = 0, h is continuous }. Then

Flp, 1) = u(r) — T(pr)u(0) + p /0 " T (ol - ) (, u(€))dé

is well-defined so that F : R X R X Gox (R, Xo) = Go([0, 27], Xa ).

Theorem. Let (HL), (Hf) and (HpB) be satisfied. Then there exist €, > 0 and C!
functions (p, p, u) : (—m,m) = R X R X Cox (R, Xo) such that

Q F(p(s), u(s), u(s)) = 0 for |s| < 7.

@ 1(0) =0, u(0) =0, p(0) =1 and u(s) #0 for 0 < |s| < n.

@ If (u1,u1) € R X C(R, Xy ) is a solution of (8) with period 2mp;, where

lp1 — 1] <e, |pa] <e, and ||ui||a < €, then there exist s € [0,7) and
0 € [0,27) such that u(p17) = u(s)(7 + 0) for 7 € R.

Note: There is a relation between the solutions with s € (0,7) and s € (—n,0), and
they are the same orbit with different phases.
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Reaction-Diffusion systems

[Yi-Wei-Shi, 2009, JDE]
A general reaction-diffusion system subject to Neumann boundary condition on spatial
domain Q = (0, ¢x).

ur — diuse = (A u,v), x € (0,¢47), t >0,
Vi — dovix = g(A, u, v), x € (0,4r), t >0, (10)
ux(0,t) = vx(0,t) =0, ux(4m,t) = vx(m, t) =0, t>0,
u(x,0) = up(x), v(x,0) = vo(x), x € (0,4r),
where di,dy, A € RT, f, g : R x R? — R are CK(k > 3) with
f(X,0,0) = g(\,0,0) = 0. Define the real-valued Sobolev space
X = {(u,v) € H3(0, £m) x H?(0, £7)|(ux, vx)|x=0, £x = 0}. (11)

The linearized operator of the steady state system of (10) evaluated at (X, 0,0) is,

62
L(\) = G TAN ;(A) : (12)
c(\) do 5 + D)

with the domain Dy(y) = Xc, where A(A) = fu(},0,0) ,B()) = (A, 0,0),
C(A) = gu(A,0,0), and D(X) = gv(A,0,0).
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Hopf bifurcations

We assume that for some A\g € R, the following condition holds:

(H1): There exists a neighborhood O of Ag such that for A € O, L(\) has a pair of
complex, simple, conjugate eigenvalues a(\) £ iw(\), continuously differentiable in A,
with a(Ag) = 0,w(Xo) = wo > 0, and &’(Ag) # 0; all other eigenvalues of L(X) have
non-zero real parts for A € O.

. Suppose that the assumption (H1) holds. Then there is a family of periodic
orbits S = {(A(s), T(s), u(s,x, t), v(s,x,t)): 0 <s < &} with
A(s), T(s), u(s,",-), v(s, -, ) differentiable in s,
(u(s,x, t+ T(s)),v(s,x,t+ T(s))) = (u(s,x,t), v(s,x,t)), and

2
lim A(s) = Xo, lim T(s) = ==, lim |u(s, x, t)| + |v(s, x, t)] = O,
s—0 s— 00 wop s—0
uniformly for x € [0, ¢x] and t € R. All periodic orbits of the system are time phase

shifts of the ones on S.

Normal form calculations: [Yi-Wei-Shi, 2009, JDE]
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Remarks

@ The result for (semilinear) reaction-diffusion systems can be extended to
quasilinear systems with cross-diffusion, self-diffusion, chemotaxis.
[Liu-Shi-Wang, 2013, preprint]

[Amann, 1991, book chapter] [Da Prado-Lunardi, 1985, AIHP] [Simonett, 1995,
DIE]

The Hopf bifurcation from non-constant equilibria are much difficult to obtain
since the linearized operator cannot be decomposed with Fourier series.

The stability of the bifurcating periodic orbits are difficult to analyze except near
the Hopf bifurcation points.

The Hopf bifurcation theorem is also extended to delay differential equations
(see next lecture), and delayed reaction-diffusion equations (see last lecture).

© ©6 0 ©

The uniqueness of limit cycle is difficult in general.
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