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GLOBAL BIFURCATIONS OF PERIODIC ORBITS.

By J. C. ALEXANDER* and JaMEs A. YORKE*

1. Statement of results. The purpose of this paper is to prove global
versions of two results about bifurcation of periodic orbits from an equilibrium
point—the Hopf bifurcation theorem for autonomous differential systems and
the Liapunov center theorem for Hamiltonian systems. Our version of the first

theorem is sufficiently general that the second follows from it as a corollary.
For our version of the Hopf bifurcation theorem we consider a parame-
trized autonomous differential system

i=f(\x) (E\)

defined on an n-dimensional C' manifold M (n finite). Here A is a parameter
ranging over some interval A of real numbers, and the parametrized cross
section

f: A X M—tangent bundle of M

is continuous. Furthermore, we assume that for any A€ A and any initial value
x €M, the system (E,) has a unique solution for some future range of time. If x
is a member of the boundary of M, the solution is assumed to remain in the
boundary of M. We suppose for some x,, in the interior of M that f (A, x,)=0 for
all A, in a neighborhood A, of some A, so that x, is a stationary value of (E,) for
all \€A,,.

The x-derivative of f at x=x,,

LA)=D,f A k)| = x,= Dof (A7),

is a linear endomorphism of the tangent space of M at x, [once a basis of that
tangent space is fixed, L(A) may be considered an (n X n) matrix function of AJ;
we require that it exist and be continuous in AEA,,
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If L (M) has no eigenvalue with real part zero, it is well-known that x; has a
neighborhood containing no constant solutions or periodic solutions except
x=1x,. Hence bifurcation can occur at (Ay,x,) only if L(A,) has an eigenvalue
with real part zero. P. M. Rabinowitz [18], generalizing work of M. A.
Krasnosel’skii [13], investigated the case that zero is an eigenvalue of L(A.). (See
also [2], [17]). He assumed M=R" and A,=A=(— 00, 00) and showed that if
the zero eigenvalues of L(\,) have non-zero A-derivatives at A=0, and the
determinant changes sign, there is a non-empty connected subset 2, CAX(R"
—{x,}) with (Ag,x5) EN; such that f(A,x)=0 for all (A\,x) ERN, and either N,
is unbounded in A X R™ or there is some \, %X, with (A;,x,) ER,. That is, the
family of stationary solutions either “goes to infinity” or returns to x, again, but
for another value of the parameter. It is convenient to generalize this as follows
(see [2]): drop the condition about eigenvalues having non-zero derivative at
A=M; If the determinant changes sign as A goes through A, there exists global
bifurcation. It is thus convenient (and a precursor to what we do later) to define
a parity for L at Ay; the parity is odd or even as the determinant changes or
does not change sign at A;. Thus global bifurcation is guaranteed if the parity is
odd.

In the present paper, we consider the case that L(A,) is non-singular and
has a pair of purely imaginary conjugate eigenvalues *+i3. We assign a parity to
the function L and the eigenvalue i3 of L(A,); if the parity is odd, we obtain an
analogous global result about bifurcation of non-constant periodic orbits. In
previous papers, various researchers have imposed various additional technical
assumptions and have shown that in a neighborhood of the stationary solution
xo bifurcates into periodic orbits. That is, there exist non-constant periodic
solutions of (E,) for A sufficiently near A, of period approximately 27 !,
which collapse down to the stationary point x,. E. Hopf [9] (see also the
appendix of [15]) first considered the problem; since then results have been
obtained by A. A. Androvov [3], N. N. Brushinskaya [4], N. Chafee [6, 7], R.
Jost and E. Zehnder [10] and F. Takens [26]. All of these results are local; that
is, they determine what happens only in a neighborhood of (A, x,).

There are also a multitude of articles about the implications of bifurcation
vis-a-vis the various sciences. For general discussions of bifurcation, see [5], [12],
[15], [17], [19], [25] and their bibliographies.

In order to state our result precisely, we collect our assumptions.

Data 1.1.  Assume the following four hypdtheses:

(1) A differential system (E,) is given satisfying the conditions of the
first paragraph of this section.
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(2) There exists a linear endomorphism L(\) of the tangent space of M at
xo, defined and continuous for A€ A, such that for any A, € A,,

exp”'( f(\ expv)) = L(A)o=O(|o])
as (A, 0)>(\,,0).

Explanation: here v is a tangent vector to M at x,, with length |v| in some
Riemannian metric of M, and exp is the exponential map from a neighborhood
of the zero vector in the tangent space to M at x,. The condition is independent
of the choice of metric and uniquely defines L. It is certainly met if fis C' in a
neighborhood of (Ay,x,). If M is an open subset of R" and the metric is the
Euclidean metric, the condition reads:

FAv)=L(A)-v=0(jv])
as (A, 0)>(A,,0).

(3) The endomorphism L(\) is non-singular and has a conjugate pair of
purely imaginary eigenvalues *if3.

In this case let Mult(i3) be the ordered set {ik, B,ik, B,...,ik B} (with the
k positive integers, 1< k;<k,<--- <k) of eigenvalues of L(Ag) which are
positive integral multiples of i3, counted with multiplicity, and including if.
For A sufficiently close to A, there is a unique set Mult, (i8) of eigenvalues
close to the set Mult(if3).

(4) For A near but not equal to A, none of the eigenvalues in Mult, (i)
has zero real part.

Under these conditions, we can define the parity of iB. Let r* (r~) be the
number of elements in Mult, (i8) with positive real part for A>A, (A <A). Let
r=r*—r". Thus r is the net number of changes of sign of the real parts of
elements of Mult, (i8) as A passes through Ay, and is called the index of i with
respect to the function L. The parity of i3 with respect to L is the parity (even
or odd) of r.

Before proceeding, let us consider this definition in the important special
case that if is a simple eigenvalue and no other eigenvalue of L(A,) is a positive
integral multiple of i8. Then Mult(iB)={if} and Mult, (i8)={a, +iB)} with
ay, By real continuous functions of A with a, =0. We see that the parity of i
with respect to L is odd precisely when a, changes sign at A,.

We now recall some standard terminology. Let G (A, t,x) be the solution of
(E,) at time ¢ >0, given the initial condition x(0)=x. That is, G(A,0,x)=x. We
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say x is stationary for (E,), or simply (x,A) is stationary, if G (A, t,x)=x for all
t>0. If (x,A) is not stationary and there exists ¢ >0 such that g(A,t,x)=1x, we
say that (x,A) is periodic. If (x,A) is periodic, all positive ¢ for which g(A,¢,x)=x
we call periods. The periods are a discrete set of positive numbers; the smallest
positive period is called the least period. Let

N={(\t,x) EAX(0,00) X M|G (A, t,x) =x and (x,]) is periodic}.

Thus N catalogues the parameter, period and initial condition of all non-
stationary periodic solutions of (E,). We consider % to be a topological
subspace of A X[0,00)X M. Let t,=2m "

THEOREM A. Assume Data 1.1. Further suppose that the parity of if3 is
odd.

(1) Then there exists a connected subset I, of WU {(A, 1y, %,)} containing
(Apstorxg) and at least one periodic solution. Moreover for some
neighborhood M of (A, ty,xy) in AX[0,00) XM, if (A, t,x)EMNN,
then for some positive integer k=k(A,t,x) such that ikf3 € Mult(i3),
the least period of G(\, -,x) is k™ 't.

(2) In addition one or both of the following are satisfied:

L. R, is not contained in any compact subset of AX[0,00)X M,
II. There exists a point (A, £,x) in N,— Ny,

(3) Furthermore, for any ()—\, f,x) eN—N, the solution ¥ is stationary for
(Ex). Also for any € >0, there is a neighborhood U, of (A, £,%) such
that for any (A, t,x) E U,NN, all points of the orbit G(A, -,x) are of
distance less than € from the point x.

Thus Theorem A(2.I) states that this connected family of orbits contains
elements for A arbitrarily close to the boundary of A, or contains elements of
arbitrarily large period, or contains elements the orbits of which do not lie in
any preassigned compact subset of M. As a caveat, we point out that saying the
period is arbitrarily large is weaker than saying the least period is arbitrarily
large, because all integral multiples of the least period are also periods, and the
integral multiplier does not have to be continuous on 9t,. The point is that 9, is
connected so that t “becomes large” continuously. Conclusion (3) states that
the entire orbits of the periodic solutions G (A, -,x) converge to a stationary
solution, and so the diameters of these orbits go to zero as (A, #,%) is approached.

Note that although our assumptions are essentially local, our conclusions
are global. Indeed, our assumptions are somewhat less stringent than those of
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the previously mentioned local results, in that we do not require as much
differentiability; neither do we require the remaining eigenvalues of L(A,) to
have non-zero real part. (On the other hand, we do not get regularity results.)
Furthermore, so far as we know, all previous results have guaranteed bifurca-
tion only for much more special sets Mult(i3). Thus even as a local result, our
theorem is new.

If we impose other reasonable local conditions on f, we can determine
more precisely what happens near (\,,%). Such is the purpose of our next
results. For Proposition 1.2, we suppose that M is an open subset  of R". Note
however that the last part of Proposition 1.2 is valid for a general manifold.

ProposiTION 1.2. Let MEX)ER-N with xED. Suppose in some
neighborhood U of (A\,x) in R X that f is Lipschitz in x with Lipschitz
constant L. That is, for some norm || on R",

[f(Ax)—f(\y)|<Llx—yl

whenever x,y € U. Then

t>4L7 1

If the norm is the standard Euclidean norm, then in fact,

i>27L" L.

Suppose furthermore D, f(A,x) exists and is continuous for all (A,x) in some
neighborhood of (A,%). Then D, f (A, x) has a pair of purely imaginary eigenval-
ues *+ i3 with B=2mwki~! for some integer k > 1.

ProposITION 1.3.  Suppose (}—\, {, O)Eﬁ~92 with 0, and suppose condi-
tion (2) of Data 1.1 is satisfied in some neighborhood of X. Then L(\)=
D,f(\,0) has a purely imaginary eigenvalue iB, where B=2nki~' for some
integer k > 0.

We turn now to our global version of the Liapunov center theorem for a
Hamiltonian system. For a general discussion of the classical theorem, see [24,
Section 16]. We will work with a Hamiltonian system in Euclidean space,
leaving the general formulation for a system on a symplectic manifold to the
reader. Let O € R*™ be open and contain the origin, and let H: O—R be a C*
function (the Hamiltonian). The Hamiltonian system associated with H is

x=JgradH (x), (H)



268 J. C. ALEXANDER AND JAMES A. YORKE.

where
_(0 —1)
=95
with I the identity m Xm matrix. We want to investigate periodic solutions

near a constant solution 0, so we assume grad H (0)=0. Let Hess denote the
Hessian matrix:
}Zm
x=0J4,j=1

THEOREM B. Assume the above data. Suppose in addition that Hess is
non-singular and has a conjugate pair of purely imaginary eigenvalues *ip.
Suppose the number of eigenvalues of Hess (counted with multiplicity) that are
positive integral multiples of i is odd.

Then there is a connected subset B C R X with (278 ~',0) €W such that
for each (v,x)ER other than (27 ~',0), the solution of (H) through x is
non-constant and periodic with a period of y. There is a neighborhood I of
@7B~",0) in R XD such that if (y,x) EMNDP, then for some positive integer
k=k(y,x) such that ikB is an eigenvalue of Hess, the least period of the
solution through x is k™ 'y.

Furthermore B satisfies at least one of the following properties:

02H (x)

=D
Hess=DH (x)| i ox

x=0

Note that Hess is symmetric.

Iy. B is unbounded in R XO; that is, B does not lie in any compact
subset of R X%,

IIy. There exists some (v,x) with x a statzonary solutzon Also (y,x)#
@nB~ 10) and y#0. If x=0, then y= 27Tk,8 ! for some integer
k>0 and some purely imaginary eigenvalue if} of Hess.

This result is actually a corollary of Theorem A. We consider the one-
parameter system

=(J+A) gradH () (Hy)

and show it satisfies the hypotheses of Theorem A for A, =0. Furthermore there
are no non-constant periodic solutions of (H,) if A0, so any results about the
non-constant periodic solutions of (H,) apply directly to (H). As a result, we do
not repeat the full statements of Propositions 1.2, 1.3 for the present case. In
particular, however, the smoothness assumptions of the propositions are satis-
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fied for (H,). We might point out that the bifurcating solution is extended
globally for some cases by a classical argument in [24, pp. 150-151].

2. Examples. In this section, we construct a number of examples to
illustrate aspects of the theorems.

Example 2.1. Let
Y(A1):R X[0,00)>R

be a continuous function. Consider the two-dimensional parametrized system
which in polar coordinates is written

b=1,
r=ry(A1).

In rectangular coordinates (x,,x,), it may be written

H=y(A, ')xl — X,
X=x;+ (A, 7)x,.

Here M = R*. The origin is a stationary point for all A, and if ¢/(\,,7,) =0 there
is a periodic orbit for the parameter value A, which is the circle of radius r, and
center (. In this case the period is 27. From the polar representation, it is easy
to see that these are the only periodic orbits.

It is straightforward to calculate

[vn0) -1
Lw_( 1 w,m)’

and so L(Ag) has a pair of purely imaginary eigenvalues if and only if (A, 0)=0
(whence B=1). In this case Mult, (i8) = a + i, with By =1, ay =¢/(A,0) for all
A. Accordingly, this system satisfies condition 4 of the data if and only if {/(},0)
is non-zero for A near but not equal to A,. In this case, the parity is odd if and
only if y/(A,0) changes sign at A,. Condition 3 is satisfied trivially, and condition
2 is easily checked. -

Thus we have a large number of examples, one for each such function ¢. In
Figure 1, a number of possibilities are illustrated. We have exhibited the zeros
of ¢, i.e., the periodic solutions. Thus from the point (A,0), bifurcates a family
of periodic solutions which contain orbits of arbitrarily large r. From (A,,0)
bifurcates a family of periodic solutions which converges back to the stationary
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¥ <0
y>0
¥<0 ¥>0
¥>0
N
M 0 A XN A3 A As Ao
Ficure 1.

point =0 for another value of A, viz. A;. From A,, there is a family which
contains elements defined for arbitrarily large A. By choosing i complicated,
the bifurcating family can be made complicated, as at A,. At A, the bifurcation
is multiple, as described in [6]. Finally, we note that if the parity is even, there
need not be any bifurcation, for we could define ¥ positive except at one point,
as at A5, and then there is no bifurcation. Another possibility is Ag, where a,
does not change sign. There is bifurcation, but part (2) of Theorem A is not
fulfilled.

Example 2.2. In this example the family of periodic orbits is bounded in
A t,x and closes up to a stationary solution different from x=0. For such an
example, it is necessary that n > 3.

Consider the system

X =Ax; — X,
Xy =1x; +Axg,
fy= a2+ ad+ (x—1)2 -1,

defined on all of R®. First we show that non-stationary periodic solutions can
occur only when A=0. For any solution x(t), let

p0) =[x, (O + [x ()]
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By direct calculation, we find that p(t) =2Ap(). Hence p is monotone for any A.
Thus if x(t) is a periodic solution, it must be that Ap=0; i.e., either A=0 or
p(t)=0. In the latter case, we have the stationary solutions (x;,x,,x3) =(0,0,0)
or (0,0,2). Hence non-stationary periodic solutions occur only when A=0.

We now determine these non-stationary periodic solutions. We claim all
the orbits are circles lying on the sphere x7+ x5+ (x3—1)?=1 as illustrated in
Figure 2. At any point (x,%,,%3) on the sphere, the system reduces to

X = —%,
X=Xy,
%3=0,

and so the circles of intersection of the sphere with planes perpendicular to the
x-axis are periodic orbits. On the other hand, inside the sphere %; <0, so x; is
strictly decreasing and there cannot be any periodic orbits inside the sphere.
Similarly, outside the sphere %;>0, and there are no periodic orbits in that
region. Thus we have determined all periodic solutions.

0,0,0]

FIGURE 2.
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By routine calculation, we find that

A =1 0
L()\)=[1 A 0}
0 0 -2

and that Mult, (iB)={a, +iB}, where a) =A for all A. Also, condition (2) is
satisfied. Thus we indeed have an example as claimed. The reader might also
find it instructive to check the content of Proposition 1.2 for this example.

Example 2.3. In both of the previous examples, the period of all non-
stationary periodic solutions is 277. This example shows that it is possible to have
the periods on R, unbounded while A and x are bounded. Furthermore, there
are no stationary solutions except x=0.

The system is defined on R*. Let S® denote the sphere {u € R*|u|=1}.
For some irrational real v, let

go(u) = (ug, —uy, yuy, — Yuy).

The equation

u=gy(u)

defines a dynamical system for which S is an invariant set, since {u,gy(u)> =0.
Also it is easily seen that this equation has precisely two periodic orbits, to wit,

{u[uf+u§=l, u3=u4=0} and {u|u1=u2=0, u§+uf=1}.

P. A. Schweitzer [23] has developed a method of construction which leads
to a one-parameter family of differential equations

u=g,(u) (2.1)

on S3. This family is defined for r £[0, 1] with g, as above; it is continuous in r,
is C' in u, and is never 0. Furthermore (2.1) has exactly two periodic solutions
for each r €[0, 1) which depend continuously on r, and has no periodic solutions
for r=1. Extend g, for r>1 by letting g, =g, if r > 1. We will also assume that
g,=g, for r close to 0.

Define

f(Ax)= { 3“ |%] gjag(x/]]) i zjg,
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and consider the system
x=f(Ax). (2.2)

Then L(A)-x is defined and equals Ax + g(x). Thus L(A) has the four eigenval-
ues A*xi, Ax yi.
For any solution x(t) of (2.2),

d
Lix(t)p=2alx (1),

where |-| is the Euclidean norm. Hence for A0, x0, the absolute value x(t)
is strictly monotone and the solution cannot be periodic. If A=0 and x(t)#0,
then x(t) satisfies (2.2) if and only if u(¢)=x(t)/|x(¢t)| satisties (2.1) with
r=|x(t)|. Hence N, cataloguing the periodic orbits, is a union of disjoint
components which we denote by 9, , and % ,. These are labeled so that
(0,27k,0)0ERN, , and (0,27ky~",0)EN, . In particular, N, is the N, of
Theorem A. Note that the ¢ component of a point in 9, | is the period of the
orbit. Since the A and x components are bounded on %, ,, the ¢t component
must be unbounded. This fact is also evident from the details of the construc-
tion.

Remark 2.4. One type of example which we do not have, and which
would be very interesting, would satisfy conclusion (2.IT) of Theorem A with
(A1, %)= (A, 8y, x,) where ¢, ¢,

Example 2.5. We give an example for Theorem B.

Consider the Hamiltonian system for a pendulum whose bob has unit mass
and is allowed to swing freely in a unit circle in the plane. Let x; denote the
angle of the bob from the center of the circle. Suppose x, is a multiple of 27
when the bob is at the lowest point, i.e., at minimum potential energy. Let
x, =%, denote the angular momentum. The total energy is H(x;,x,) = — gcosx;
+ 3 x3, where g>0. The associated Hamiltonian system is

X=Xy,
Xy= - gsinx,. (2.3)

This system satisfies the hypotheses of Theorem B, since the eigenvalues of
D,f(0) are *+ ig!/2. It is easy to see that the solution of (2.3) through (x,,x,) is
periodic and nonstationary if and only if |H (x,x,)| < g. As H—g from below,
the top of the arc of the pendulum approaches the vertical and the period
t—c0.
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Example 2.6. C. L. Siegel [24, pp. 109-110] exhibits an example of a
Hamiltonian system with +i, +2i the (simple) eigenvalues of Hess, and lacking
any periodic solutions of period 27. It is defined on (x,x,,Y,,y,)-space with
(x1,y,) and (x,,y,) the pairs of conjugate coordinates. The Hamiltonian is

H=1(x3+y?)—x—y2+x y,+3(23—y}) yo,
so that

=y, + X%~ Y Y,
Xp=—2y,+ %(xlz_ ylz)’
Y= — X~ Y1 Xg— X Yy,

Yo=2%,— X, Y.

Clearly the origin is stationary and Hess has eigenvalues +i, *2i. The
solutions

x,=y,=0,
X =acos2t — Bsin2t, (24)
yo=asin2t + Bcos2t

are a bifurcating system with period 7. Note that since a,f8 are arbitrary,
conclusion I; of Theorem B obtains. On the other hand, if p=x?+y} and
q=x3+ y2, then p=4pq + p* Thus there are no periodic solutions if pZ0, and
(2.4) are the only periodic solutions.

Example 2.7.  Using the previous example, it is easy to construct examples
illustrating phenomena for more complicated Mult(i3). We exhibit one such.
Let (E;), defined on R*, be (H,) where H (x) is as in Example 2.6. Let (E{) be
defined on R? by the equations

6=2,
3 r=1A

in polar coordinates (compare Example 2.1). Let (E,), defined on R® be the
direct sum of (E;) and (EY). The origin is stationary for all A, and L(0) has
eigenvalues * i, +2i, +2i. If =1, the parity of i with respect to L is odd.
However the period of all non-constant periodic solutions is 7. Thus the period
of the bifurcating family is a proper divisor of 273 ~".
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3. Initial Reductions. In this section we show that without loss of gener-
ality we may consider the manifold M to be an open subset O of Euclidean
space. In that case, the domain of G will be an open subset of A X [0, 00)XO.
We also compute in this section the x-derivative of G (A, ¢,x) at x=0 for A€EA,,

To effect the first reduction, we embed M in some Euclidean space and
extend the vector field f to some tubular neighborhood. Recall that M is C' of
dimension n. First we must handle the boundary of M. We do this by attaching
an external collar to M. Let B be the boundary of M; the collar is the space
BX[0,1). Let M*=MUz(BX[0,1)); that is, bEBCM is identified with
(b,0)€ B X[0,1). The space M* can be given the structure of a C' manifold.
(Compare [16, p. 56].) The tangent space of B X[0,1) at a point (b,r) is V, @YV,
where V,, is the tangent space of B at b and V, is one-dimensional. Because of
the hypothesis that solutions of (E,) starting on B never leave B, we have that
f(\,b)EV, for all b€ B. Extend f defined on AX M to f* defined on AXM™*
by

frAx)=f(Ax) for xEM,
frNB,n))=fAb)+reV,®V, for (b,r)EBX]0,1).

That is, on the collar, the vector field f* is given an outward component.
Although f* is not C, it is still the case that (E;) has unique solutions. There
are no periodic or stationary solutions of (Ey) on the collar, and any statement
about such solutions on M * applies directly to M. In sum, we may assume
without loss of generality that M has no boundary.

A C' manifold M without boundary may be embedded in some Euclidean
space R" as a C' submanifold with x, at the origin [16, 2.10]. Furthermore, it
admits a C! tubular neighborhood [16, 5.5]. That is, there is an open neighbor-
hood £ of M in RY and a C! retraction p: O— M. Moreover, p: O—M admits
the structure of a C! fiber bundle with disks as fibers. That is, for any x €M,
the fiber D, =p ~!(x) is C* diffeomorphic to a disk of dimension N —n and there
is a local product structure on . We may suppose that the bundle p: O—M is
endowed with a C' metric so that each disk D, has radius one. We may give O
polar “coordinates.” That is, we may represent vED as v=(x,7,0) with
x=p(v)EM, with r=|v| the radia] coordinate (0<r<1), and with @ the
“angular” coordinate in the associated sphere bundle. Define a system f;(A,v)
on £ by

i=f(A,pv),

r

0

>

0.
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That is, on each disk, the vector field f; is given an outward component. Again
it is clear there are no periodic or stationary solutions of the extended system
except for r=0, i.e., on M itself.

Moreover, at x,EM C DO, the matrix

() )

(compare the calculations in Example 2.1), where I is the identity N —n matrix.
Thus Lg(A) has the same pure imaginary eigenvalue as L()\,), and the index
and parity of i3 with respect to L, are the same as with respect to L. Thus we
may suppose without loss of generality that our original system (E,) is defined
on the open subset £ of Euclidean space with x,=0.

Finally on this point, since condition (2) of Data 1.1 is independent of the
metric, we may suppose the metric on © is the standard Euclidean metric. This
is convenient when we calculate the derivative of G.

For any x €5, let T'(A,x) be the least upper bound (possibly + o) of the
times ¢ for which G (A,¢,x) can be defined. Recall that a function T is lower
semi-continuous if liminf T'(A,, %) > T(A,x) for any (A, x) is its domain and any
sequence (A, x,)—(A,x). Theorem V.2.1 (p. 94) of [8] states in part that T is
lower semi-continuous. From this it is immediate that the set

A={(Atx)A€A, x€D,0<t<T(Ax)}

is an open subset of R"*2=R X R X R". The same theorem of [8] also states
that on U, the function G (A,t,x): A —-R" is continuous.

We fix a vector-space basis of R" and identify the tangent bundle of R" at
any point with R". Thus we may consider the x-derivative D,G(A,t,0) a
matrix-valued function. We prove the following about it.

LemMa 3.1.  The matrix D,G (A, t,0) exists in the sense of Condition (2) of
Data 1.1 and is continuous in (A, t), and for each §ER" and A in a neighbor-
hood of A, the orbit y(t)=D,G (A, t,0)-£ satisfies

g=LQA)y,  y(0)=¢&

-

Hence
D,G (A £,0)-£=[exp(tL(\) £

Proof. The last equation is immediate, since the differential equation for
y is linear with constant coefficients [8, Chapter IV, Section 5]. We remark that
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if f(A,x) is C" in a neighborhood of the x-axis, the result is a classical theorem of
G. Peano. (See [8, Theorem V.3.1].)
We define an auxilliary system with an extra parameter 8. Let

f(A\8y)/8 if 80

8A\y)= .
PEAD=\ Loyy i 8=0

Note ¢ is defined on an open subset of R X R X R". Condition (2) of Data 1.1
guarantees that g(A,y)=L()-y—f(A,y) satisfies g(A,0y)/8—0 uniformly for
bounded y. For 60,

?(8.Ay)=L\)y+gA.8y)/5,
and thus ¢(8,A,y)—>L(A,)-y, as (8,A,y)—(0,A,,y,). Hence ¢ is continuous.
Consider the differential equation
g=o(8.Ay), y(0)=¢ (*)
Define
G(\t,68)/0 if 850

¥(8,A,t,£) =1 the unique solution of
g=L(\)y, §(0)=¢ if 8=0.

We claim that ¢/(8,A,t,£) is a solution of (*). For § =0, the claim is trivial. For
80, we have

LyEA08=4C 168/
=f(\L,G(\t,8¢)/8
—F(\SU(8.A.1,8))/5
—o(BAU(8ALE).

Also §(8,A,0,£)=¢. Thus the claim is established.

Also note that (*) has unique solutions—for § =0 because it is linear, and
for §#0 because (E,) has unique solutions. Hence the solution y/(§,A,¢,§) is
continuous in its four variables [8, Theorem V.2.1]. Thus

gi_xan(A,t,8£)/8=DxG(}\,t,O)'g

exists and is the solution of (*) for § =0. This proves (3.1). []
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Now define
F\t,x)=G(\t,x)—x: U—->R".

The zeros of F are thus precisely the stationary and periodic orbits of the
solutions of (E,). In particular, for A€ A, we have F(),¢,0)=0. Moreover, by
the previous lemma, for A€ A, the derivative D_F(\,t,0) exists and equals
exp(tL(\))—I. Recall that L(\,) has a conjugate pair of purely imaginary
non-zero eigenvalues =+ if3 and that t,=278 ~'. Also recall condition 4 of Data
1.1. Let k be a positive integer. Let

gk (A, 1) =exp(ktL(A)) - L.

LemMa 3.2.  There exists a neighborhood U of (A, t,) in AyX(0,00)C R X
R such that if (A\,t)E U is not (A, t,), then q(A,t) is non-singular.

Proof. 1f 8),,...,0,, are the eigenvalues of L()), then
e —1,... ek —1

are the eigenvalues of gy (A,t). One of these eigenvalues is zero if and only if
either one of the 6, is zero (which cannot happen near A, by hypothesis) or one
of the eigenvalues 8, is a pure imaginary iB; ( 8;>0) and kB,t=0 mod 2. Since
to=278 "', we need worry only about elements of Mult, (i8). By condition (4)
of Data 1.1, for ¢ near but not equal to ¢,, none of the eigenvalues eMih—1 is
zero. Thus (3.2) is proved. []

We are now in a position to quote Theorem 1.1 of [2] for the case of a
two-dimensional parameter. The two variables in our parameter are A and ¢.
The origin in [2] has clearly been translated to (A, #,). We need to consider a
small circle S' in U—{(Ag,%,)} and consider its image under ¢ in the general
linear group GL(n). This determines an element y of the fundamental group of
GL(n), which is a copy of the integers Z if n=2, and Z/2Z if n>2. If y is a
generator, [2, Theorem 1.1] guarantees bifurcation of zeros of F. The next
section is devoted to showing that if the parity of i8 with respect to L is odd,
the element vy is a generator.

Remark 3.3. In the original version of the present paper, a full proof was
presented of the special case of [2, Theorem 1.1] that is needed. Subsequently,
that particular portion of the present proof was generalized and isolated, since
it seems to be useful in other contexts. Quoting [2] has led to a considerable
shortening and rearrangement of the present paper, and published references to
specific sections of earlier versions may be in error.
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4. The Element of the Fundamental Group. We have established the
existence of a good neighborhood U (which we may suppose is a disk) of (A, #,)
in the two-dimensional (A, ¢) plane. We want to show that if the parity of i8 is
odd, the generator of the fundamental group of U—{(A,,t,)} is mapped by
gx(A\,t)=exp(ktL(A))—1I to a generator of the fundamental group of GL(n).
Conversely, if the parity is even, the generator is mapped to zero. We proceed
through three steps. First we take on the case n=2. Then we handle the case
when n is arbitrary, but Mult(i8) has only the one element i8. This we do by
finite-dimensional perturbation theory. Finally we handle the general case by a
general position argument.

Case I. n=2. Let the unique element of Mult,(i8) be a, +iB) with
ay, B\ real continuous functions of A. Note that a, is not zero if As=A,,.
We first observe that there is a basis e,;,e, of R? such that L()\,) has the

form
0 b
-b, O
with b;b, = B2 and b;,b, >0. Let e],¢e; be any basis, and with respect to this
basis let L(A,) have the form
( 4, Gy )
Gy Ay )

Since the eigenvalues of L(\,) are *+if, the trace a,;+ ay, must be zero. If
a;; #0, we may suppose a;; >0. In that case ay, <0. The component of Le] in
the e; direction is a;, >0. The component of Le; in the e; direction is ay, <O.
By continuity, there is a vector in the first quadrant—call it e,—such that the
component of Le, in the e, direction is 0. Similarly, there is a vector e, in the
second quadrant such that the component of Le, in the e, direction is 0. With
respect to the e, e, basis, L(A;) has the desired form except possibly b, b, <O0.
In that case, we interchange e, e,.

We choose a particular representative for a generator of the fundamental
group of U—{(Ay,%y)}. As a set, it is a rectangle Q with vertical sides

[A—=2Aol =15 [t—to| <my
and horizontal sides

A—=Ao| <y, [t —to| =g
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The positive numbers 7,7, are chosen small enough so that Q lies in U—
{(Ao,tp)}. We suppose that the point p=(A,t) traces out Q counterclockwise.

For notational convenience, let E (),) denote the matrix exp(ktL(\))—I.
Note that

E (N t)-e1=( o)) )
-B b, sin(ktf )

Therefore for ¢t < ¢, (t> t,), the vector E (A, ¢)-e, is above (below) the horizon-

tal (= e,) axis. We may suppose that 7, is chosen small enough that E (A, t)-e, is

above (below) the horizontal axis when p is on the horizontal side t=¢,—7,,

A=Al <my (E=t+mg, [A=Ag| < my) of Q.

The eigenvalues of E (\,t) are e*(*»*%») — 1. Therefore the only points on
the vertical sides of Q for which the eigenvalues of E(A,t) are real are the
points p. =, 1,27/ By ., ) If the eigenvalues are not real, there is no
one-dimensional invariant subspace, and in particular E (A, ¢)-e, is not horizon-
tal. Therefore the points p, divide Q into two pieces; for p € Q below these
points, E(A,t)-e; is above the horizontal, and for p € Q above these points,
below the horizontal.

Now consider E (A, t)-¢, for (A,t)=p.. It is evident that the eigenvalues of
E (A, t) have the opposite (the same) sign if the parity of if is odd (even), i.e., if
a, changes sign (does not) at A,. Therefore, as p traces out Q, the curve
E(\,t)-e, winds around the origin +1 times if the parity of i is odd. This is
precisely the property that characterizes the generator of the fundamental
group of GL(2). Conversely, if the parity is even, E (A, t)-e, has winding number
0. Thus case I is done.

Case II: Mult(iB)={iB}. Choose a basis for R" so that the eigenspace of
+if8 is spanned by the first two basis vectors and so that the sum of the other
eigenspaces is spanned by the rest of the basis vectors. Recall that GL(n) is
open in the space of all matrices. Accordingly, a fundamental system of
neighborhoods of a matrix may be taken to be open balls. We claim there is
such a neighborhood V; of L(A,) and a map m: V;—GL(n) such that mL(Aj) =1
and for all L € V,, the matrix (mL)L(m:)~" is of the form

0 B)

where B, is a 2X2 matrix.
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To establish this, we use the following basic fact from perturbation theory.
(See for example [11, II, Section 5.1 and II, Section 5.8]. In the finite-dimen-
sional case, a direct proof is not difficult.) For L in some neighborhood V; of
L()), there are unique (because if is a simple eigenvalue) subspaces PZ, P} 2
invariant under the action of L, which are near the L(A.)-invariant subspaces
R%Xx0, 0X R"~2. Moreover the assignments L > P?, L i }~2 are continuous
on V. Let mL be the linear map which on P? is the orthogonal projection to
R2X0, and on P?~2 is the orthogonal projection to 0X R"~2. If V| is small
enough, mL is an isomorphism for all L€ V;. Clearly (mL)L(mL)™" is as
claimed. We suppose U is small enough that if (A,#)E U, then LA)E V.

Let u,:V;X[0,1]-V, be the linear retraction of V; to L()\,). That is,
uy(L,m)=(1—7)L+7L(Ag). Let V, be an open-ball neighborhood of B/ , in
GL(n—2). We may suppose V, is small enough that if L € V), then B; € V,. Let
uy: V3 X[0,1]—V;, be the linear retraction of Vj to By, ). Let E‘(A, ) denote the
(n—2)X(n—2) matrix exp(ktB;,,—I). Since no eigenvalue of B;,, is an
integral multiple of i8, the matrix E’(A,f,) is non-singular. Let V; be an
open-ball neighborhood of E’(A,t,) in GL(n—2). We may suppose that V; is
small enough that E'(V,) C V.

Let Q be the generator for the fundamental group of U—{(A,%,)} used in
case L. Let £,=¢q|Q: Q—>GL(n); i.e., (A, ¢)=E (A, t). We define a homotopy of
£, in GL(n) in four stages. At the end of the fourth, we will have reduced case
II to case I. Define Z,: Q X [0, 1]->GL(n) by

(A tT) =exp{ kt[ mul(L()\),'r)]'L()\)' [mul(L()‘)’T) ] _l} - L

The eigenvalues of [mu;(L(\),7]- L(A)-[mu,(L(A),7)] " are the same as those of
L(M); hence Z,(A,t,7) is never singular. The map Z, is a homotopy between £,

and §; where
B 0
o 0]
0 L)

_ exp(ktBy ) — 1 0
0 - exp(kB{py)—1)

£ (A t,7)=exp

Define =,: Q X[0,1]->GL(n) by

(At T)=

exp( ktBL()\)) -1 0
0 exp[ ktuy (B 1) | =1
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This is a homotopy between £, and §,, where

ktB, ) — 1 0
£2 (A, t’ T) = exp( L(A)) , .
0 exp(ktB/ ) — 1
Define Z;: Q X[0,1]>GL(n) by
exp(ktB, o) — I 0
E\tr)= xp(ktBy, ) , _
0 exp(k[ 7to+(1—1)t] B/ ) —1

This is a homotopy between &, and §;, where

0 exp(ktoB ) — I

Finally, let p:[0,1]-GL(n) be a path from exp(kt,B; ) —I to

LNt T)= [

+ In—3 0
I*=
0 detE(A,t,) )
where I,_; is the identity (n—3) X (n —3) matrix. Define =, by

exp( ktBL(l\)) -1 0 )

A tT)= ( 0 o(r) .

This is a homotopy between £; and §,, where

& (’\,t)=(e"P(ktBL<x))-I 0 )
0 I*

It is well known that the inclusion of GL(2) in GL(n) induces a surjection on
the fundamental groups. Therefore if exp(ktBy )— I represents a generator
(represents 0) of the fundamental group of GL(2), then £,, and hence &,
represents a generator of the fundamental group of GL(n) (represents 0). By
case I, we are done.

Case III: General case. Choose a basis of R" so that the eigenspaces of
the elements of Mult(i8) are spanned by the first 2r basis vectors, where r is
the cardinality of Mult(i8) and so the sum of the other eigenspaces is spanned
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by the remaining basis vectors. As in case II, we can find a neighborhood V, of
L(Ao) in GL(n) and a map m:V,—>GL(n) such that mL(Aj)=1 and for all
L E€ V,, the matrix (mL)L(mL) ™" is of the form

0 B/
where now B, is a 2rX2r matrix. Fix Q as before. As in case II, we can
homotop £,: Q—GL(n) to £;: Q—GL(n), where

_ exp(ktBL(A)) —1I 0
= ( 0 exp(ktB ) — I ) .

Note that E’(A, t) =exp(ktB; »)) — I is non-singular throughout U.

Next we alter the map B;:(Ag—n,,Ag+1,)>GL(2r). Let M denote the
space of all real 2r X 2r matrices. Consider the subsets C; and C, of M, where
C, is the set of matrices with at least one purely imaginary eigenvalue and C, is
the set of matrices with at least two pairs of conjugate pure imaginary
eigenvalues. According to the “M-structure lemma” of [1, p. 99], the set C, is
closed and is a finite union of submanifolds of codimension at least one. (We
thank Alberto Verjovsky for suggesting we go this route.) By the same proof, C,
can be shown to be closed and a finite union of submanifolds of codimension at
least two. The map B :(Ag—n;,Ag+n,)>GL(2r) can be approximated by a
smooth map B, : (\y—n;,Ag+1;)—>GL(2r) with B;(A,* M) =By, +n, Then by
successive applications of the Thom transversality theorem, the map B, can be
approximated by a map B, : (Ag—;,Ag+ 1,)—>GL(27) with By\g = 71,) = B;(Ag*
n,), and which is transversal to the manifolds that make up C, and C,. Taking
into account the codimensions of these manifolds, we see that there are only a
finite number of A (i=1,...,K) of points in (\g—n,,Ay+n,) for which B,()
has a purely imaginary eigenvalue, and each such By(\,) has precisely one pair
of conjugate purely imaginary eigenvalues, which are denoted + if,.

We require that the approximation B, be close enough to B, that:

(i) there exists a homotopy H:(Ay— 1;,Ay+ 1) X[0,1]->GL(27) [relative
to (\g£n,)] between B, and B, such that exp(ktH (\,7))—I is non-
singular for all (A,f) € Q and all €[0,1],

(i) for eachi=1,...,K there is a positive integer k; with | 8, — k,| < B8—n,
(note that n, < B).
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By (i), the map £, : Q—GL(n) is homotopic to £ = E,|Q, where

E (1) = exp(ktBy(\)) — I 0
= 0 exp(ktB' ) — 1|

Choose 1, ...,lIx €(A\g—m1,Ag+ ;) so that
)\0—111=lo<>\1<l1< et <lK—l<>\K<lK=A0+nl’
and let Q; (i=1,...,K) be the rectangle in the (A,#) plane with horizontal sides

L_, <A<, [t—to|=mq

1

and vertical sides

>\=li—l’ A=l'-, |t_tol<n2.

By (ii) above, there is exactly one point in the interior of Q; in the plane for
which E, is singular. Hence by case II, Ey|Q,: Q,—>GL(n) represents a generator
of the fundamental group if and only if 7,, the index of i3 with respect to B, has
odd parity. By adding homotopy classes, we find that E,|Q: Q—>GL(n) repre-
sents a generator of the fundamental group if and only if Z¥_, 7, is odd. Let 7,*
denote the number of eigenvalues of By(l) with positive real part. Then
r=r"—1%, and T, n,=rd — 1§ is the index of i with respect to L. Thus
we are done.

5. Finish of the Proof. Using the notation from the end of Section 3, we
have from Section 4 that if the parity of i is odd, there is a connected set of
zeros of F(\,t,x)=G(\,t,x)—x: U->M bifurcating from the point (A, ¢y, x,).
To show that these are periodic solutions, we must eliminate the possibility they
are stationary. The remainder of Theorem A and the propositions concerns
accumulation points of M. We establish these results through a series of
lemmas. We continue with the assumption that M is an open set ® in Euclidean
space, and x,=0.

LemMa 5.1. There exists a neighborhood V of (A,,0) in AXD such that if
(A\x)EV, x50, then x is not stationary for (E,).

With this and some point-set topology, it is straightforward to establish
part (2) of Theorem A.

Proof.  Suppose there exists a sequence (A, x;)—(Ao, 0) with x,540 such that
(A, x;) is stationary. Note that v;=x,/|x,| € S™ 1. We can assume, by choosing a
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subsequence if necessary, that the v, converge to v € S™~!. Also choose ¢ t, so
that (A, ¢) is in the neighborhood U of Lemma 3.2. Then

F(N,t,x;
D,F (Ag, t,0)-v =1lim —_O\l_'x_l—l =
Thus D, F (A, ¢,0) is singular. This contradicts Lemma 3.2. []

Let (x,_f,f)eﬁ—i)? with x€D. Let {(A,,t,,x,)} CR be a sequence con-
verging to (A, £,x).

Lemma 5.2.  The solution x is stationary for (Ex).

Proof. 'The solution G satisfies G (A, t,,x,)— x,=0. Hence G (\,f,%) — i=
0, since G is continuous. Suppose first £ >0. Since (}—\, f,x) is not in N, it cannot
be a non-stationary periodic solution, and so it must be a stationary solution.
Now suppose =0. Of course ¢, >0 by the definition of N. Let ¢' >0, and let k,
be the smallest integer such that ¢,k,>t. Then ¢ k,—¢t as n—>co. Also
G A, t,k,,x,) — x, =0, so by continuity, G (M, t',%)—x=0. Since this is true for
all #'>0, the result is proved. []

Define the diameter of the orbit through x for A, when (A,x) €N, by
diam (A, x) =max{|G (A, t,,x) — G (A, t,%)| }.

We now show that the orbit diameter tends to 0 as we approach (A, ). Thus the
orbits tend uniformly to x as n tends to oo.

LemMma 5.3. As n— o0, we have diam (A, x,,)—0.

Proof. Choose t(™,t{™ such that
diam (A,,x,) = IC A\ ti™,x,)— G (}\n,té”),xn)l.

However, note that G (A,,, ¢,x,)—x uniformly for ¢t €[0,¢+ 1], since G (X t, f) x.
Also, for n sufficiently large, t{"),#{"” are in [0,f+1]. Hence G (\,,t{™,x,)—>% as
n—o0 for i=1,2. Hence diam(\,,x,)—0. []

Lemma 54.  Suppose, in some neighborhood U of (\,%) in R XD, that f is
Lipschitz with Lipschitz constant L. That is, for some norm || on R",

| f2) —F )| < Lix—y]

whenever x,y C U. Then

I>4L7%
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If the norm is the standard Euclidean norm, then in fact
t>2nL" L
Proof. Lemma 5.3 implies, for n greater than some N, that the orbit
through x,, lies entirely in U. It is shown in [14] that the period of this orbit is at
least 4L "', In [28] it is shown if || is the Euclidean norm that the period is at

least 277L.~'. By continuity, the limiting period  also satisfies these inequalities.
a

LemMA 5.5.  Suppose (X, {, f)_= (X, 1,0) and that_conditiorl (2) of Data 1.1 is
satisfied in a neighborhood of A in R. Then L(A\)=D,f(\,0) has a purely
imaginary eigenvalue if3, where B=2wki~! for some integer k > 0.

Note that this lemma establishes Proposition 1.3.

Proof. To prove this lemma, it is sufficient to prove that the linearized
system

g=L(N)y (51)
has a non-zero periodic solution with # a multiple of its period. Define
gAy)=f(Ay)=Df \x)y.
Let r, =max,|G (A,.t,x,)| and y, (t)=r, 'G (A\,.¢,x,). Then y, satisfies

U (1) =1 F N1t (8)) = LN,) y, + G, (2),

where g, (t) =1, "g(A,,7,y,(t)). From condition (2) of Data 1.1 and the fact that
| y.(t)| <1 for all n and ¢, we have

|92 (O] < 77| g (s (1))
<[y (O] g (s 7aya (1)) -0
since by Lemma 5.3, the diameters of the orbits tend uniformly to 0 as n—oo.
By choosing an appropriate x, on the orbit {G (A,,t,,%,)}, we may assume
1.=|G(A,,0,%,)| =|x,|, which tends to 0 as n—oc0. Furthermore, by replacing

{(As,t,,x,)} with a subsequence if necessary, we may assume 7, 'x, converges to
a point y, of norm 1. Now y,(0)—y, and

L) y+g.()=>L(A)y
as n—o0, uniformly on bounded y sets and uniformly in ¢. Thus letting y,() be
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the unique solution of (5.1) having y(0)=y, we have y,(t)—>y,(t) as n—o0
uniformly for ¢ in each compact ¢ set [8, Theorem I1.3.2]. Also, y, (t,)—yo(?), so,
as in the proof of Lemma 5.2, the solution y,(-) is periodic (possibly stationary)
and 7 is a multiple of its period. Notice that y,(-) is non-zero, since y#0. []

Lemma 5.6. Suppose D,f (A, %) exists. Define

g\ x)=f(Ax)—Df(A,%)[x—%]. (5.2)
Suppose that for each 8 >0 there exists a neighborhood U of (A,%) in R XD
such that

lgAx)—ghy)|<djx—y|  for (Ax),(Ay)ET, (53)

Then L has a non-zero pair of eigenvalues *if for B=2mnkt ', where k is an
integer > 1.

Note that (5.3) is satisfied if f is C! is a neighborhood of (, %), since

lg(hx)—g(A.y)|
=[f(Ax) = f(\y) = Df Ax)[x—y]|
<|fAx)=fAy)=D.Ay)[x=y]|+|D: Ay) = D,(A.7)| [r—y].
Thus Lemma 5.6 establishes the last part of Proposition 1.2.

Proof. As in the proof of Lemma 5.5, we will show that the linearized
system

y=Ly (5.4)

has a periodic solution with  a multiple of its period. We must also show that
this solution is not stationary.

For any periodic function ¢ on R with ¢(0)=¢(p), we denote its average
by

<@y=p* [ "pls)ds
In particular, for x,(t)=G(A,,t,x,) define {x,>=<x,(f)> and {g,>=

<g(Anx,(¢)) and let r, =max]|x, (£) —{x,>|. As in the proof of Lemma 5.5, we
assume 7, = |x, (0) — (x,>|. We study how x, oscillates around {x, ). Let

Yo () =1, [, (8) =) ]-
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Again as in the proof of Lemma 5.5, we may assume that y,(0) converges to
some y, with | yo|=1. Now let g, (t)=1,"[g(A,..x,(t) — (g, so that

G (8) =1 [ L, () + g (A, (1)) ]
=Ly, () +r, [ g(Ax,(2) +<{Lx,>]. (55)
However, by definition  y,»=0 and by periodicity { ¢, =0, so averaging (5.5),
0= Ly, () + 1, Cg(Ax,(£)) + <L)
= Ly (D + 1 (g () + (L))
=0+1, g+, 'L{x,).

Thus L<{x,»=—{g,>. Replacing L{x,> by —{g,> in (5.5), we see that y,

satisfies
=Ly +q,(1)-

The proof can be completed following the final procedures of the proof of
Lemma 5.5, once we have shown that |g,|—0 uniformly. Our limiting periodic
solution y,(¢) cannot be stationary, since y, (¢)>—><{y,(t)), but {y,(¢)>=0, so
(yy(t)) =0, while of course y,(0)=y,70.

Let

| (A %0(2)) — g (A %, ()]
lxn(t) - xn(s)l

Since the orbits of x, converge to 0 as n—o0, the hypothesis (5.2) assures that
8,—0. Notice also that |x,(¢) — x,(s)| < 2r,. Hence

G (8) =1 8N %, (1) =gl
=t [ Mg ()~ s (5))lds

<t! fo "98,ds=28,-0.  [J

8, =sup x, ()% x,(s) ¢

There is one last fact to prove.

Lemma 5.7.  There exists a neighborhood M, of (A, t,,0) such that for
(A t,x) ENNMy, the period of G(N, -,x) is k™", where k=k(\,t,x) is a positive
integer such that ikf3 € Mult(if3).
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Proof. Define functions 7:'—R * (the positive reals) and p: NR—Z * (the
positive integers) by (A, ,x) =the period of G(A, -,x) and p(A, t,x)=1¢/7(A,t,x).
We claim that y is bounded in a neighborhood of (A, ¢,,0). For suppose there
exists a sequence (A;,%,x;) in N converging to (A, ,,0) with p, = (A, t;, x;)—00.
Let 7,=7(A;,t,x;). Choose K greater than any x with ik8 €Mult(i3). Then
N [K 7 'm] 7, x)—>(Ag, K ~',0), where [K ~'w] denotes the largest integer in
K ~';. Applying Proposition 1.3, we find that L(),) has an eigenvalue iKS. This
is a contradiction.

Choose a sequence (A, t;,x;) in i converging to (A, t,,0) with K= u(A,t,x)
constant. We find that L(A;) has an eigenvalue ikB. Thus ik EMult(iB). [

QuEesTioN 5.8. Is k=k(\A, t,x) independent of (A, ¢,x) in a neighborhood of
(A 10, 0)?

6. Bifurcation of Hamiltonian Systems. In this section we derive Theo-
rem B as a corollary of Theorem A. We consider the one-parameter system

x=(J+A)gradH (x) (H,)
and prove the following two lemmas about (H,).

Lemma 6.1, If A0, the system (H,) has no stationary periodic solutions.

LemMma 6.2.  The parity of a purely imaginary eigenvalue i3 of M defined
from (6.1) below is the same as the parity of the number of eigenvalues of M
that are positive integral multiples of if3.

The rest of the data required for the application of Theorem A can be
easily checked. We leave the details to the reader. We also leave to the reader
the interpretation of the conclusions of Theorem A in the language of Theorem
B. Note since

f(Ax)=(J+A)gradH (x)=(J+A)Mx + O (|x]),
that

L(\)=D,f(\,0)=(J+A\)M. (6.1)

Proof of Lemma 6.1. Let x(t) be any solution of (H,) in R X for A5<0.
Then

%H (x(t))=<gradH (x),(J+A)grad H (x)).
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But {y,Jy)>=0 for all y and in particular for y=grad H. Therefore

L H (x (1)) = Ngrad H (x)P".

Hence A ~'H(x(t)) must be monotonic increasing, so x(t) cannot be a periodic
trajectory unless grad H(x(¢))=0. But if grad H(x(0)) =0, then obviously x(0) is
a stationary point for (H,) and x(t)=x(0). [

It is well known in the study of Hamiltonian systems that if ¢ is an
eigenvalue of JM, then so is —o. The following lemma extends this fact to
(J+A)M. We write ¢* for the complex conjugate of o.

LemMa 6.3. Let o and o* be eigenvalues of (J+A)M. Then — o and —o*
are eigenvalues of (J—A\)M.

This result allows o and o* to be the same real eigenvalue.

Proof. Let Det(0) denote the nXn matrices with zero determinant. By
definition, o is an eigenvalue of (f+A)M if and only if

(J+A)M — ol €Det(0).
This implies
[(J+AN)M—o]M~'=]+\—oM ~'E€Det(0),
which implies
[J+A—oM~]"=—]J+N oM ~' €Det(0),
which implies
—[—J+M~oM ™M= (J—A\)M+ ol EDet(0).

Hence — o is an eigenvalue of (J—A)M. Similarly, so is —¢*. []

Proof of Lemma 6.2. Let Mult(i) with respect to (6.1) have « elements.
Choose A>0, and let Mult,(if)={a;+if,as+ify,...,a, +iB,}. We first
claim that no o is zero. If so, the linear system

x=(J+A)Mx

must have a non-stationary periodic solution. By letting H (x)=x"Mx and
O=R?", we have by Lemma 6.1 that A=0.
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So we assume that a,ay,...,, >0 and a, , y,...,a, <0. By Lemma 6.3, we
have that Mult_, (iB)= —a, +iB;, — ag+iB,,..., — a,+iB,. Hence the signa-
ture of if is r— (k — r)=2r— k. This has the same parity as . []

Remark 6.4. If there are eigenvalues of Hess of the form ik§ with k an
integer larger than one, the Hamiltonian system is said to be in resonance.
Recently, local results have been proved which sometimes guarantee bifurca-
tion with period approximately 278 " when i, ik are simple and no other
eigenvalue is an integral multiple of iB. See [20], [22] and their bibliographies.
Perhaps the methods of the present paper can be applied to this problem. Also
A. Weinstein has proved bifurcation occurs if Hess is positive definite [27].

Our proof of Theorem B shows there is a strong connection between the
Hopf theorem and the Liapunov theorem. D. Schmidt has recently given a
more classical proof of the local Hopf theorem that is general enough to imply
the local Liapunov theorem [21].
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