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RANDOM DISPERSAL IN THEORETICAL POPULATIONS 

BY J. G. SKELLAM 
The Nature Conservancy, London 

SYNOPSIS 

The random-walk problem is adopted as a starting point for the analytical study of dispersal 
in living organisms. The solution is used as a basis for the study of the expansion of a growing 
population, and illustrative examples are given. The law of diffusion is deduced and applied 
to the understanding of the spatial distribution of population density in both linear and 
two-dimensional habitats on various assumptions as to the mode of population growth or 
decline. For the numerical solution of certain cases an iterative process is described and 
a short table of a new function is given. The equilibrium states of the various analytical 
models are considered in relation to the size of the habitat, and questions of stability are 
investigated. A mode of population growth resulting from the random scattering of the re- 
productive units in a population discrete in time, is deduced and used as a basis for a study on 
interspecific competition. The extent to which the present analytical formulation is applicable 
to biological situations, and some of the more important biological implications are briefly 
considered. 

1. INTRODUCTION 

1 1. It is now fifty years since the publication of The Origin of the British Flora by Clement 
Reid (1899). In it is suggested an interesting numerical problem on the rate of dispersal of 
plants. Reid states: 'Though the post-glacial period counts its thousands of years, it was not 
indefinitely long, and few plants that merely scatter their seed could advance more than 
a yard in a year, for though the seed might be thrown further, it would be several seasons 
before an oak for instance, would be sufficiently grown to form a fresh starting point. The 
oak, to gain its present most northerly position in North Britain after being driven out by 
the cold, probably had to travel fully six hundred miles, and this without external aid would 
take something like a million years.' 

1-2. At the end of the last century, biologists, unlike physicists, rarely formulated such 
problems in terms of simplified abstract models, due no doubt to the comparatively greater 
complexity of biological systems. A beginning might have been made on the subject of 
dispersal, for much of the necessary mathematical technique had been developed already, 
and, in fact, had been utilized by Maxwell (1860) in developing a kinetic theory of gases 
based on the behaviour of an infinity of perfectly elastic spheres moving at random. The 
present century has witnessed the great success of the analytical method to quote only the 
work of Fisher (1930), Haldane (1932) and Wright (1931) in evolutionary genetics, and 
of Volterra (1931), Lotka (1925, 1939) and Kostitzin (1939) in ecology. Nevertheless, 
biologists as a whole have been reluctant to develop the analytical as distinct from the 
purely statistical approach, and apart from the pioneer work of Karl Pearson (1906) and of 
Brownlee (1911), the mathematical aspects of the problem of dispersal have not received the 
attention they deserve. 
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J. G. SKELLAM 197 

2. RANDOM DISPERSAL AND DIFFUSION 

2. 1. Random displacement. The mathematical methods employed in the present treatment 
are largely the natural outcome of the solution of the well-known random-walk problem 
associated with Pearson (1906), Rayleigh (1919) and Kluyver (1905), and reviewed more 
recently by Chandrasekhar (1943). In the simplest form of this problem, a particle on a line 
jumps one place to the right or one to the left, both being equally likely. It is easily seen that 
the probability distribution is: 

Position 3 2 1 0 1 2 3 
After I jump I 

I ~ ~~~~~22 
After 2 jumps 1 2 4 4; -I 4; 

After 3 jumps 3 83 1 

and so on, with the general result that after n jumps the distribution is binomial with 
variance equal to n. As n becomes large the distribution 'tends to' normality. 

A natural extension of the problem to N dimensions, in which the particle moves on a 
rectangular lattice, yields 'in the limit' an N-variate normal distribution which is the 
product of N independent distributions. 

An alternative model for the two- or three-dimensional analogue consists of a randomly 
kinked chain with rotatable links. If one end is fixed, the probability distribution of the 
position of the free end tends to norinality when the number of links is large (see Uspensky, 
1937). In the two-dimensional case with only seven links it has been shown by actual 
calculation by Pearson (1906) that the normal distribution provides a remnarkably good 
approximation. 

The model considered by Pearson is, however, somewhat artificial when applied to 
migration in that the links (or flights) are taken as being equal in size. In practice they will 
vary. The important special case where the probability distribution of the end-point of 
a flight is bivariate-normal (with the starting point of the flight as the centre) has been 
considered by Brownlee (1911). A solution of the more general case is outlined below. 

2*2. A spreading population. Consider a surface of unlimited extent approximating to 
a Euclidean plane with co-ordinate axes OX and 0 Y, and in the immediate neighbourhood 
of the origin let there be to start with a single self-reproducing particle of a species not 
otherwise represented. The probability distribution of the position of a particular descendant 
after n generations may be deduced once the characteristic function of the probability 
distribution of offspring about their parent is given. For a parent located at (g, ), let this 
function be ((t, U 6, y) = exp {i6t + ii'U + >(KrstrUsir+8/1r! s!)}.* 

The Krs are assumed independent of 6 and y, for it is reasonable to suppose that the location 
of the parent does not affect the form of the distribution of the offspring. Let the cumulative 
distribution function for the position of a particle in the nth generation be n(y, t) with 

q0 (t, u) as the corresponding characteristic function. Assuming that the generations do not 
overlap in time, we then have 

- 0n+1(t, U) H q0(t, I 6u, y) dF(65, y) = 0(t, u 0, 0) jeit+inu dFn(6, 5) = 0q(t, u 0, 0) 0 u(t 5). 

* Here and below in this paper the customary parentheses surrounding terms in the denominator, 
to the right of the solid-Lis, have been omitted. Thus ... Ir! !} should be printed ... /(r!s !)} in 
accordance with the common convention. It is considered, however, that no confusion will result 
here from such omissions. 
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198 Random dispersal in theoretical populations 

Clearly 0. = [O(t, U j 0, O)]n. It is apparent that all cumulants increase n-fold (as in the 
summation of independent variables). Standardization of the scale is effected by changing 
nKr, to nK ,/n1(r+8). The approach to normality is obviously very rapid when the distribution 
of offspring about their parent is roughly normal to begin with. In the present treatment 
we assume that Ko' = Klo = 0 so that there is no drift. Nevertheless, it should be noted that 
a slight systematic drift, no matter how small, is ultinately the most important cause of 
displacement, that is, when n is chosen sufficiently large. 

The distribution of the position of a particle of the nth generation will henceforth be 
taken as dFn(x, y) = r-la-2n-1 exp { -[X2 + y2]/na2} dx dy. (1) 

Since we shall be concerned mainly with absolute distances from the origin, it is convenient 
to make the polar transformation x = r cos 0, y = r sin 0. From (1) we then obtain 

d F = r-la-2n-l exp {- r2/na2} rdrd0 (0 < 0< 2n 0 < r < oo). (2) 

If ro is the distance from the origin of an individual value chosen at random, then the 
probability that r- jdr r< r<+jdr is obtained by integrating over 0, giving the radial 
probability density f(r I n, a2) = exp {-r2/na2} 2r/na2 (O < r < co). (3) 

The parameter a2 is to be interpreted as the mean-square dispersion per generation, analogous 
with the mean-square velocity in Maxwell's distribution. The maximum likelihood estimate 
of a2 based on v observed values of r is simply a2 = lr2/nv. 

Of the population spread out after n generations, that proportion lying outside a circle 
of radius R is 00 

p = fexp [-r2/na2] 2rdr/na2= exp {- R2/na2}. (4) 

In a subsequent argument it is essential to make p very small indeed. By choosing p = l/Nn, 
where Nn is the final population after n generations, it follows that only one particle can be 
expected outside a circle of radius Rn = (na2 log Ni. If during this period the population 
has increased geometrically in accordance with the relation N = eny2 (where c = y2 may be 
termed the Malthusian parameter, as in Fisher (1930)), we obtain immediately the relation 

Rn/n = ay. (5) 

If a circular contour is drawn in the X Y plane through all points having an arbitrarily 
chosen constant areal population density, then as time passes, the contour expands outwards. 
From the condition, y2n-log n-r2/na2 = constant, it is easily seen that 

rn+1 -rn- ay. (5a) 
The ultimate velocity of propagation of this 'wave-front' (D. G. Kendall, 1948) is therefore 
the same as the constant velocity of expansion of the circle within which all but one of the 
population can be 'expected' to lie. 

2-3. A numerical illustration. Let us consider the application of equation (4) to Reid's 
problem. We can clearly establish a rigorous conclusion in the form of an inequality provided 
that we can fix appropriate bounds to the various parameters. 

The oak does not produce acorns until it is sixty or seventy years old, and even then it is 
not mature. It then produces acorns over a period of several hundred years. The rate of 
population expansion is obviously very much less than it would be if all the immediate 
offspring of a single individual could come into existence in the sixtieth year of its life. We 
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are certainly safe in taking the generation time as not less than sixty years. Now according 
to De Geer (1910) the final recession of the ice started at about 18,000 B.C., and yet in Roman 
Britain (Tansley, 1939, p. 171) oak forests were apparently well established throughout the 
country. It appears safe to take n < 300. 

The number of acorns produced by an oak in the course of its life must be prodigious. 
Nevertheless, under typical present-day conditions almost every acorn which falls to the 
ground in autumn is consumed by birds and mammals (Watt, 1919). Of those remaining, some 
decay and many fail to germinate. Mortality among the young seedlings is very high, and 
even when not overshadowed it seems that only about 1 % of the seedlings are likely to 
survive the next three years. Though there has been much speculation, little is really known 
about the biological conditions following the last glaciation. Even so, it seems perfectly 
safe to assuine that the average number of mature daughter oaks produced by a single parent 
oak did not exceed 9 million. To most biologists such a figure must appear unnecessarily 
high, but we must remember that it is the rate of population growth at the periphery of the 
advancing 'wave' which matters most, and here there will be least competition. 

The fact that the British Isles are of finite extent with irregular coastline does not detract 
from the power of the argument, for it is obvious that such a shape in no way encourages the 
advancing 'wave-front'. 

We then have R/a < 300 4(log 9,000,000) = 1200. 
In the original form of the problem as stated by Reid, R is given as 600 miles. It then 

follows that a (the root mean square distance of daughter oaks about their parent) > I mile. 
On these premises the conclusion which Reid reached appears inescapable-namely, that 
animals such as rooks must have played a major role as agents of dispersal. 

If, however, we regard the upper bounds of a, n, y (given above) as collectively excessive, 
we are driven to accept the view that the last glaciation was not as extensive as was previously 
believed (W. B. Wright, 1937), and to suppose that the oak population regenerated from 
scattered pockets which survived in favourable valleys. 

At this point it is interesting to consider the actual succession of forest trees sinice glacial 
times as revealed by pollen analysis (Godwin, 1934). In late sub-arctic and pre-boreal times, 
birches with their small, winged fruits, willows with their plumed seeds, and pine with its 
winged seeds, were able to spread quickly and were plentiful. Hazel, however, did not reach 
its maximum until Boreal times, and oak with still larger fruits not until much later. It is 
quite possible that the relatively different rates of dispersal were not unimportant in 
determining the order of succession. 

2*4. The dispersal of small animals. The results already deduced can be applied equally 
well to the dispersal of small animals such as earthworms and snails. For example, if the 
mean square 'dispersion' per minute of a wingless ground beetle wandering at random is 
1 yard2, then after a season of 6 months, say, without rest, the R.M.S.D. of the resulting 
probability distribution is only 500 yards. The probability that after 6 months the beetle 
wanders more than a mile from the starting point is less than 8 in a million. Without 
external aid a period of time equivalent to 1,000,000 seasons would be required to raise the 
R.M.S.D. to 290 miles. The figures, however, are slightly deceptive, for the final position 
arrived at is in general a great deal nearer the origin than the farthermost position previously 
reached. Nevertheless, calculations of this kind clearly indicate in these cases the importance 
in the long run of rare accidental displacements due to external agencies such as high gales, 
floating plant material, the muddy feet of birds and mammals. 
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200 Random dispersal in theoretical populations 

2*5. Empirical confirmation. In practice there is rarely sufficient information to construct 
the contours of population density with accuracy. One contour, however, can sometimes 
be drawn-that for the low 'threshold' density (depending on the thoroughness of the survey) 
at which the population begins to escape notice altogether. 

Equation (4), derived initially on theoretical grounds, is well illustrated by the spread of 
the muskrat, Ondatra zibethica L., in central Europe since its introduction in 1905. Fig. 1, 
based on Ulbrich (1930), shows the apparent boundaries for certain years. If we are prepared 
to accept such a boundary as being representative of a theoretical contour, then we must 
regard the area enclosed by that boundary as an estimate of irr2. The relation between the 
time and Varea is shown graphically in Fig. 2. 

1910 1920 1930 

Fig. 1 Fig. 2 

2*6. The analogy with diffusion. If a random particle suffers a displacement e in any 
direction at regular intervals of time (t, t + w, t + 2o, ...), and if the probability density is 
denoted by 3fi, it is clear that 3f (x, y, t + w) is the mean value of 3b (y, , t) for all (g, ) on a circle 
of radius e around (x, y). That is, 

~r(x, y, t + ) =2 J of (x + e cos a, y + e sin a, t) dO. 

Expanding by Taylor's theorem and noting that 

f:cos dO = f sin 6 dO = f sin 0 cos 0 dO = 0, 

Lcos2Odo = : sin2Odo = 7T, 

we obtain for infinitesimally small e and wi the relation 

at 4 V2b (6) 

where V2 = la2+ a 
aX2 ~yV 
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The partial differential equation (6) is of course well known in connexion with the con- 
duction of heat and related problems in mathematical physics (Jeans, 1921). The one- 
dimensional form has been applied by R. A. Fisher (1922) to the problem of the distribution 
of gene differences, and the three-dimensional form by Rashevsky (1948) to problems 
arising from the diffusion of materials from and into living cells. 

It should be noted that the fundamental differential equation (6) is satisfied by the 
distribution #f = r'-la-2t-1 exp {- (X2 + y2)/ta2}, 

already considered (see equation (1)), with the unit of time as one generation and a2 = c2/w. 

It is apparent that many ecological problems have a physical analogue, and that the 
solution of these problems will require treatments and the use of functions with which we 
are already very familiar. Unlike most of the particles considered by physicists, however, 
living organisms reproduce, and members of the same and of different species interact. As 
a result the equations of mathematical ecology are often of a new and unusual kind (see, far 
example, Volterra (1931)), and require special treatment. 

3. DISPERSAL AND POPULATION DENSITY 

3 1. Modes of population growth. Many problems on dispersal cannot be formulated unless 
some law of population growth (in the absence of dispersal) is assumed. As long as the 
population is small or shows a natural tendency to decrease, the Malthusian law dN/dt = cN 
is usually satisfactory. If the population is not small the Pearl-Verhulst logistic law is more 
appropriate. 

This law may be written in the form 

dt = cN-1N2, (7) 

where, following Kostitzin (1939), c may be termed the coefficient of increase and 1 the 
limiting coefficient. Since a stable population level exists at M c/l, the law is often written 
in the forn dN 

dt = cN(M-N)/M. (7a) 

For our present purpose it is convenient to use the concept of population density denoted 
by T, a function of time and place. In general, the vital coefficients will also vary. The 
logistic law may then be written 

-'T(x, y, t) = cl(x, y) _- c2(x,y) T2. (8) at 
In the simplest cases where the vital coefficients remain constant throughout the habitat 
under consideration, the unit of population density may be chosen for convenience as that 
prevailing when t -? oo, and the law then takes the very simple form 

d = cT( 1- T). 
dt 

When conditions become extremely unfavourable and ultimate survival not possible, the 
logistic law (7) may still be applied with c negative (= - g2). The population declines rapidly 
unless maintained by immigration. Such a population may be termed negative-logistic. 
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202 Random dispersal in theoretical populations 

A convenient change of scale then gives 

dTf = 2T(I + Tf). 
dt 

Two further laws of population growth applicable to populations which are discrete in 
time are deduced in ??4.1 and 4 3. 

3*2. Centres of multiplication and extinction. We now consider the distribution in space of 
the density of a population which by reason of random dispersal, tends to flow from regions 
in which conditions are favourable to regions in which they are unfavourable. Whether 
a steady state can exist or not depends on the ability of the population in the favourable 
regions to make good the decline in the unfavourable ones. 

Mathematically it is simpler to consider a linear habitat such as a coastal zonie (Fisher, 
1937) or the bank of a river. In these cases we are justified in assuming that an adjustment 
has been made in the vital coefficients to allow for diffusion inland, for this danger may be 
regarded as one of the many hazards associated with the habitat. Moreover, as will be 
apparent later, the mathematical form of the Malthusian law and of the logistic law (7) 
persists almost unchanged when the rate of diffusion inland is deducted from the rate of 
population growth. 

The two-dimensional problems which most re4dily lend themselves to mathematical 
treatment are those with radial symmetry. Rough approximations to circles are sometimes 
afforded by islands, hill tops, marshes, patches of woodland, and approximations to annuli 
are provided at the margins of lakes, by the zones on hills of a conical or hemispherical shape, 
or even by the zonation created by rabbits around their individual burrows or around such 
patches of woodland as they infest (see, for example, Tansley, 1939, pp. 587, 505, 138, 141). 

3 3. Malthusian populations in linear habitats. The one-dimensional form of (6) expressing 
the effect of random dispersal is a- = 1 e a ( 

at 2 7aX2 

In terms of population density, with a2 = 62/w, we then have as the combined effect of 

dispersal and population growth a _ 2a2ai -+ c (11) 

atm !~Ax 

The condition for a steady state, assuming it to exist, is 

d2TF 2c 
d2v+-T = 0 (12) dxtm a2 

Case (i). Bordering on a suitable habitat is an unfavourable zone extending indefinitely in 
one direction: c= 2 in Xb 

< x < Jo, T(Xb) = B, 'T(oo) = 0. 

Solution: TF= Be-mn(x-xb), where m = g <2/a. 

Case (ii). An unfavourable interval is flanked at both ends by a suitable habitat: 

C = _g2 in -xb ZX Xb, T(- xb)= T(xb)=B_ 

Solution: T = B cosh mx/cosh mXb. 
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Case (iii). An apparently suitable habitat is flanked on either side by conditions which are 
extremely unfavourable. (It is assumed, for simplicity, that the organisms show no marked 
negative tactic response to the changed conditions, so that there is no appreciable reflexion 
at the boundary): 2 

C = 2 in -xb < X<'.Xb, T( Xb) =T(Xb) O. 

Solutions that are non-negative but not zero everywhere in the interval are possible only 
when xb = jira/y 12, and we then have 

v = C cos (xy >2/a). (13) 

When xb is greater than the critical value given above, the population increases indefinitely, 
and when Xb is less than this value the population declines to extinction. For consider the 
partial differential equation (11) with c = y2 subject to the boundary conditions 

N(xb,t) =T(-xb, t) = O (O < t<oo), 

and an arbitrary initial state developed as a Fourier half-range sine series 

F(x, O) E As sin( 87T[X + Xblxb) 
s=1 

The solution is Y(x, t) = E As Cksl sin (1s77[x + xb]lxb), 

where k _= y2-_a2(,87rIxb)2. The first of the k8 is obviously the greatest, so that in the course 
of time the solution is dominated by its first term, which tends to oo, (13), or 0 as Xb -Z jra2y<2. 

3 4. Logistic populations in linear habitats. From (10) and (9) we obtain the fundamental 
equation a2T 

_=12 _+ y2T(1 - ).(4 t -ffa ~~~~~~~~~~~~(14) 

Mathematically this is the same as an equation of R. A. Fisher (1937) given as 

at = k 2P + mpq 

in connexion with the problem of gene flow in a linear population. Gene frequency p corre- 
sponds to population density and the term in pq-=(I -p) expressing the effect of natural 
selection corresponds to the term in {( 1- T) expressing logistic growth. The results deduced 
here in connexion with ecological problems automatically apply to the genetic analogues 
where they exist. Whereas, however, 'F may exceed unity, p is restricted to 0 < p < 1. Negative 
solutions are inadmissible in both types of problem. 

The condition for a steady state is 

d2 +MT (I -'T) = 0, where z = xy /2/a, (15) 

or in the case of a negative-logistic population (see (3 1)) 

d211J 
d 2-( + T) = 0, where z = xg 42/a. (16) 

The substitution u= (To-'F)/TO(1 4O), where T'=-T(x) l,-o, 

converts (15) into u" = 1=+Au-(1 -A2)u2, where A = 2TF-1. (17) 
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Case (i). c=y2, o <1l, d' =F 

d 2u du d Idu\ 
Since-d2 d d (d) we find on integrating (17), subject to the condition du/dz = 0 when 

u = 0, that 2(dz) 2A21(1A2)3 

Hence i z I J2 =f{T(1 -a2T) (1 +fl2TW)k- dr, 

where 4ot,2= (Lj_) -A and +A 

In terms of Legendre's elliptic integrals, of which there are tables (1825), we then have the 
solution 

zp2- =F(k, l1T) - F(k, arc cos a xu), 

where p2 = a2 +/32 and k2 = 2 i2/(3-) 

The inversion of this result leads to a simpler expression in terms of the Jacobian elliptic 
function sd (y) denoting sin am y/L\ am y. We thereby write 

lu = sd(2-ipz,k)/p. (18) 

In practice, however, it is no more troublesome to compute a particular solution by iteration. 

For under the condition d = 0 we may write equation (15) in the form 

dz z~~~~~zO 

T(z) = T(0) - dr{J [1- 'fR)]d 

Approximate values of F are substituted on the right and the integrations performed 
numerically as in ? 39. 

If we make T0 vanishingly small and proceed to determine Zb such that F(Zb) = 0, we find 
that u(zb) -+1 and p-? 2-A. Equation (18) passes formally into 2- = sin 2Zb, confirming the 
result Xb = 2Ira/y 12 given in ?3 3 (iii). 

Case (ii). C =y2 1 < < 3 dx 'F 

Following the same procedure as before we find 

ru 
IzI 72 = J{{r(l+ 2T)(1+/32T)IAi dT, 

where 4x2 = A- (L-) and 4fl2 = A+ (43 )y 

Hence 2-z = F(k,arctan,8/ u), where ic = (8 V3i)//J 72. (19) 

Alternatively 7u = tn (2-A/z, k)//J. 

This content downloaded  on Sun, 10 Mar 2013 01:45:14 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


J. G. SKELLAM 205 

Since F(k,O) j {( 1-t2) (1-k2t)}A- dt, 

F(1, 0) = argtanh (sin 0) = gd-10. 

In the important case when T0 is close to 1, so that /32 is near I and k near 1, we find that 
(19) passes into z =gd-1(arctan V(iu)) or sinhJz =(1u), 

with the result that coshz = 1 +u =(T-)/(o-1), 
a conclusion which may be conjectured directly from the differential equation itself. 

Other cases. Solutions in terms of elliptic functions are obtained in a similar manner after 
making appropriate substitutions. No special treatment is required in the case of a negative 
logistic population maintained by immigration in a region of extinction. We merely write 
v + 1 instead of T in the corresponding solution for the positive logistic case. 

3*5. Malthusian populations in two-dimensional habitats. The fundamental equation 
expressing the combined effect of diffusion and geometric increase in a habitat throughout 
which conditions are constant is 

aT = 4a2V2Y + cW(x, y, t). (20) 

In radially symmetrical cases we may write 

--a2 a ?-- + c'E(r,t), (21) 
3t 4 ar2 r3rj 

where r2 = x2 +y2. 

Case (i). A circular region of multiplication enclosed in a zone of absolute extinction: 

C = y2 in Or<rb, O<t<oo; T(rb,t) = 0. 

To ensure that the solution is finite at the origin we impose the further condition a vF = 0. ar r 0 

The arbitrary initial state may be expressed as a Bessel series 

T(r, 0) E AsJO(rjs/rb), 

where js is the sth zero of J0 and As is determined in the usual Fourier manner by reason of 
the orthogonality relation I 

F yJo(yjs) JO(yj) dy = 0 (s ( o). 

The solution is T(r, t) = E As eks t JO(rjS/rb), 

where ks 2_= 2iaj2/rb. 

Clearly Tv A1 eklt JO(rjllrb), tending to 0 or oo as rb <jla/2y. It appears again that habitats 
below a certain critical size, depending on the conditions, are insufficient to maintain a species 
undergoing unrestricted random dispersal. 

Case (ii). Let (6, y) be the co-ordinates of the place of origin of an individual of the parental 
generation for which the density function in space is F(g,y). Let the probability that 
a particular one of its offspring originates in the interval (x + ldx; y ? ldy) be 

ac(x-6,y-- I a2)dxdy. 
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206 Random dispersal in theoretical populations 

Let the probability that such an offspring reaches maturity be P(x, y). For most simple, 
small populations P may be taken independent of T. Then if on the average the number of 
original offspring per parent is v we may define a viability function V(x, y) -vP(x, y). The 
condition for a steady state from generation to generation is the integral equation 

T(x, y) = V(x, y)f TF(6,) a(x - 6, y - yI a2) d dy. (22) 

For the purpose of the present simplified model we take ac to be the function 

17-1a-2 exp { -[(x - 6)2 + (y -)2]/a2}, 

a choice justified by previous arguments. The function V(x, y) needs to be positive for all 
values of the variable, and preferably continuous. It will then be seen that the choice 
V(x, y) = exp {(b2 - X2- y2)/v} not only gives a reasonable spatial distribution of viability, 
but also renders the integral equation tractable. Viability is greatest at the origin, 

VO = exp {b2/v}. The circle x2 + y2 -2 divides the plane into two parts, and in the absence 
of dispersal, the population inside the circle would increase and the population outside would 
decline. 

The integral equation (22) then has a solution of the form 

T(6, y) = A7T-10-1 exp { - (62 + y2)/6}. (23) 

Since the double integral is the product of independent integrals and since 

00 
{ X( I 01) 6(X-(6 | 02) dE = a(x I 1 + 02), 

where a is a normal function, we find on substituting (23) into (22) and equating coefficients 
that 1 1 1 1 v0 /V t v+6+a2 and = +? 2' where logV- b2= v 

From these it follows that b= a2J ogV0/(V0-1)2. 

In the sense indicated earlier, b is the radius of the region of multiplication. Unless this value 
is attained the population must decline to extinction. 

Case (iii). An infinite zone of extinction around a single circular area of multiplication: 

C - g2 in rb<r< f3, T(rb) = B, T(oo) = 0. 

The steady state is given by 

d2T F ldT 
dr2 + dr-m2T = 0 where m = 2g/a. (24) 

The solution is T(r) = A e-rm cosh du = AKO(rm), 

where Ko is the modified Bessel function of the second kind of order zero, and A = BIKO(rbm). 
It may be noted that KO(z) e-z(7T/2z)i for large z. When rb is very large the problem reduces 
to a linear one (? 33 (i)), the radial component of the R.M.S.D./generation being a/12. 

As a numerical illustration suppose that in the outer zone the population shows a natural 
tendency to decline at a rate of very nearly 4 % per generation (g = 0-2). If the radius of the 
reservoir is 1000 yards and the R.M.S.D./generation 100 yards, then the population density 
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at a point 1000 yards outside the boundary compared with that at the boundary will be 
approximately e-2000m2000-1/(e-l100 LOOO-i) = 0'01295, in close agreement with the more 
accurate value 0-01312 based on the tables of Ko given in Watson (1944). 

Case (iv). A circular region of extinction: 

c__92 in O<r@rb, T'(0) = 0, T(rb) = B. 

Solution: 'Y(r) = BIO(rm)/IO(rbm), 

where Io is the modified Bessel function of the first kind of order zero. 

Case (v). An annulus of multiplication in a region of absolute extinction: 

C = y2 in ra.r(rb, L(ra) = I(rb) = O. 

A stationary non-negative solution exists for every fixed value ra provided that the value of 
rb is made to depend on ra. If A denotes 2y/a the required solution is 

If(r) = A[JO(1tr) YO(Itra) - JO(ltra) YO(itr)] 

where Y0 is the Bessel function of the second kind (of Weber's type) of order zero. 
If h - rblra, it may be seen that aura is the first root (xo) of the equation 

Jo(hx) YO(x) - Jo(x) YO(hx) = 0. (25) 

The relation between rbl,ra and /,trb - /tra is that between h and (h - 1) xo, the form in which 
the zeros of (25) are tabulated in Jahnke & Emde (1945). As ra increases from zero, ,t(rb - ra) 
moves from jOl to or, and the problem rapidly degenerates to the linear case. 

3 6. Logistic populations in two-dimensional habitats. The combined effect of diffusion and 
logistic growth in radially symmetrical habitats may be expressed by 

at=72 I3a'Y az+'Fi-'F'\ (26) 

where z - 2ry/a. In order to describe stationary states we shall require solutions of the 
non-linear differential equation 

d2F(z) ldF+r(iT) = o, (27) 

especially those that are finite at the origin, in which case 

( ) dz s -= 0. (28) 
dz z=O 

The equation, not being reducible to a Painleve transcendent, is not free from movable 
critical points (Valiron, 1945, pp. 293-4). The general march of solutions finite at the origin 
is shown in Fig. 3. Since T(1 -'T) is positive if and only if 0 < F < 1, it follows from the 
differential equation that the turning points of all solutions in the strip 0 < T < l are maxima. 
Similarly, the only turning points for which T > 1 or T < 0 are minima. 

The spatial distribution of population density is illustrated by AB in the case of a region of 
extinction, by CD in a circular region of multiplication, and by EF in the case of an annular 
region of multiplication. 

Particular solutions of (27) subject to stated boundary conditions may be computed 
without much labour by the iterative method outlined in ? 3X9. 
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3 7. The function Q(z; q) is defined as the solution of equation (27) subject to condition (28) 
and the relation Q(O; q) = q. We are concerned here with the real variable only. 

If U(z) (q - Q(z; q))/q( 1- q), the differential equation satisfied by U is 

zU"+U'=z[l+AU-4(1-A2)U2], where A=2q-1. (29) 

0*5 

-0 A q=E 
joiD 

t. _lI I I I 
1 2 3 4 5 6 

Fig. 3 

Hence U tends to 1- JO(z) as q 0 0 and to Io(z) - 1 as q 1. For computational purposes we 
may therefore seek an approximation to U in the immediate neighbourhood of z = 0 in the 
form U = S(z)-4q( 1-q) W(z), 

where S(z) = An-lz2n/2242 ... (2n)2, 

may be regarded as a rough approximation 

= [Io(z7VA)-1]/A when A>O0 

=[1-Jo(zVlAI)]IIAI when A<0 

=4Z2 when A=O, 

and where ')= E (2 z2'/2242 ... (2n)2 
fl 

is a series of correction terms whose coefficients C2n are to be determined. Only even powers 
are required, as may be seen either by differentiating (29) an even number of times or by 
considering the function 0&(z)= U( - z) which is a solution of (29) with the same initial 
conditions. By differentiating 2n + 1 times by Leibnitz's theorem, making z = 0, and noting 

that U, _=dzn U(z) = 0 if n is o( ld, we obtain 

(2n + 2) U2n+2 = (2n + 1) [AU216( -A2)T ( U2j U2,n-2j . 
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By substituting 

A2 /22...(2j)2 for U21/(2j)!, where A222{Ai..2(1-A2)C2j}, 

in-i1~ 2 
we find C2n+2 AC2n +_ j j A 21 A2jn-2j 

Thereby we obtain in succession: 

C2 = C4 = 0, C6 =1, C8 = 1lA/2 C10 = (61A2 -16)/2, 

C12 = A(847A2 - 507)/4, C14 = (3820A4 - 3677A2 + 488)/2, 

C16 = A(176,245A4 - 234,718A2 + 67,857)/8, 

C18 = (2,536,967A6 - 4,317,594A4 + 1,978,563A2 - 162,816)/8. 

Computed values of U/z2 are given in Table 1 for equidistant values of q and of z2. With this 
arrangement interpolation can be carried out reasonably safely. 

Table 1. [q - Q(z; q)]/z2q(1 - q) 

0.0 0.1 0.2 0.3 0*4 0.5 0*6 0*7 O1 8 009 1.0 
z2 

0 0.2500 02500 02500 02500 02500 02500 02500 02500 0 2500 0 2500 0 2500 
1 0.2348 0.2376 0*2405 0-2435 0*2466 0*2496 0*2528 0*2559 0*2592 0*2626 0*2661 
2 0-2204 0-2255 0.2309 0-2364 0*2423 0*2483 0*2546 0*2613 0*2682 0*2754 0*2831 
3 0*2068 0.2138 0*2211 0-2289 0-2373 0*2461 0*2556 0*2658 0*2767 0*2884 0*3010 
4 041940 0-2023 0*2113 0*2211 0.2317 0-2432 0*2558 0*2696 0*2847 0*3014 0*3199 
5 0.1819 0*1913 0*2016 0*2130 0*2255 0.2395 0*2551 0*2725 0.2922 0.3145 0.3399 
6 041705 0*1806 0*1919 0*2046 0*2189 0.2351 0*2535 0*2746 0*2990 0.3275 0*3609 
7 041597 0*1704 0-1824 0*1961 0*2118 0.2300 0*2511 0*2758 0.3052 0.3404 0.3831 
8 0*1496 -0*1605 0*1731 0-1876 0.2044 0*2243 0*2479 0*2761 0*3105 0i3530 0*4065 
9 0-1400 0-1511 001639 0.1790 0*1969 0*2181 0*2439 0*2759 0*3150 0*3654 0*4312 

3 8. The stability of stationary states. In the case of Malthusian populations with positive 
parameter (??3 3 (iii), 3 5 (i)), it was apparent that the stationary state was an unstable one. 
Though we were able to draw valid conclusions with regard to the critical size of a habitat for 
a population on the point of extinction, the model is inadequate in that it does not provide 
a stable stationary state for a population which is safely established. The assumption of 
logistic growth is free from this objection. 

For let Q be a solution of (27) subject to 

? (Za) = A, Q (zb) = B (O<Za<Zb), 

and let T(z, t) satisfy (26) subject to 

I(Za, t) = A, 'P(zb,it) = B. 

(The proof for the special case where the conditions at Za = 0 are Q= - v = 0 differs only 
az 

in trivial details and is omitted.) 
Then from our knowledge of the physical situation we should expect TF -+ as t -+ Co. 

Provided that the necessary biological condition holds, that Q(z) > 0 in Za I Z < Zb (though 
not zero everywhere), it can at least be shown that Q describes a stable equilibrium. 

Biometrika 38 I4 
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210 Random di.spersal in theoretical populations 

The function A(z, t) =_ T(z, t) - Q(z) satisfies 

1 aA _ 2A I1aA 

y 2 at 2 +l+A(l-2Q-A). (30) 

In dealing with questions of stability we need only consider such A(z, 0) as are infinitesimal 
variations of Q. So long as A remains small, equation (30) remains effectively 

1 E)A a2A I1aA 

- /28t = -- ? + A(I-2Q), (31) 

with the conditions A/(Za, t) = A(Zb, t) = 0 (0 < t < oo)- 

We are therefore led to consider solutions of 

1 df+ ( + 1-2Q)f = 0 (32) 

which satisfy f(Za) = f(zb) = 0, with Q(z) as given. The Sturm-Liouville theorems are 
immediately applicable. Reduction to the standard form adopted by Titchmarsh (1946) 
may be brought about by the substitution v = fjz, though in this case there are advantages 
in following Ince (1927) and expressing (32) as 

d 
-- (zf )+z(A+1--2Q)f = 0. (33) 
dz 

The values of A for which solutions are possible will be denoted by Ai (i = 0, 1, 2, ...) and the 
corresponding solutions by fi(z), the suffix being the number of zeros between Za and Zb. We 
now prove that A0 is positive. 

By multiplying (33) by Q, substitutingfo forf, and integrating we find 

Zb rZb (Zb 

-Jb z-Q'fodz + (A0 + 1)J zfo Qdz- 2J zfo Q2dz = 0. za za za 
By subtracting from this a similar relationship obtained in the corresponding manner from 
(27) with Q as the dependent variable, we then have 

Zb Zb 

A O zf2 Q 22dz - [Qzfa] . (34) za za 
The sign offo(za) = minus sign offO(zb) = sign of both integrands, provided that Q is positive 
throughout (Za, Zb). Hence z/ 

AO) X> ZfQ2dzl zfo Qdz 

and is positive. By Sturm's oscillation theorems, A0 < A1 < A2 ... so that all characteristic 
numbers are positive. 

From (33) we have fj 
d (zfi') + z(Ai + 1 -2Q)fjfi = 0 

and a similar relation with i and ] interchanged. On integrating (the first term by parts) 
and subtracting, we find Zb 

(Ai -A1)J zfi f dz = 0. (35) 
za 

The fundamental set of solutions constitute an orthogonal system, and systems of the above 
kind are known to be closed (Ince, 1927). Any arbitrary function such as A(z, 0) has the 
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formal development A = Aifi(z), where the coefficients are given in the usual Fourier 
manner by / 

Zb / Zb 

Ai zA(z)fi(z) dz /|zfi2 (z) dz- 
Za Jza 

If A(z) is integrable over (Za, Zb) and of bounded variation in the neighbourhood of z = , it 
may be shown that the Sturm-Liouville development given above converges to 

2[A(+ O) + ?A( -O)] at z = 

In problems of the type being discussed at present it is, however, permissible to assume the 
less general condition that A(z) has a continuous second derivative, and in this case the 
series is absolutely and uniformly convergent in (Za, Zb) (Ince, 1927). 

It now follows that the solution of (31) is 
00 

A(z, t) = E Ai itfs(z). 
i=o 

As t-oo, A 0, since all Ai> 0. 

3-9. An iterative method. Consider, for example, the equation 

dz dz (t')+ z(z) -ZC(Z)t2- 0. 

This may be written 

XF (Z) = ' (b) + b'Y'(b) log (Z/b) - X d f (ZC1 - ZC2T2) dz. (36) 

The limiting form of this equation as b - 0 provided that T'(b) remains finite is 

F(Z) = T(0) - 3 X3 (zclT - zC2 2) dz. (37) 

If approximate values of T(z) are substituted on the right-hand side of (36) or (37) and the 
integration performed numerically, we obtain greatly improved values on the left. It is an 
easy matter to continue the solution step by step obtaining rough values as required by 
simple graphical extrapolation. Because of the remarkable rapidity of convergence it is soon 
found unnecessary to repeat the calculations for the earlier values (which automatically 
reproduce themselves). 

For numerical illustration let b = 0 T'(0) = 0, T(0) = 0 5, cl(z) = c2(z) = 1, so that the 
equation is Z'ZdX RX 

055-F(Z) = J XJoZT( 1-) dz. 

The initial rough values are arranged in column (ii) of Table 2. Using intervals of z no smaller 
than -, and only the elementary integration formulae: 

rh 
3 f(x) dx = I12h[5f(0) + 8f(h)-f(2h)], 

Ra+h 

f?f(x) dx = lh[f(a - h) + 4f(a) +f(a + h)], 
a-h 

we find that a single application of the process reduces the sum of the squares of the errors 
to less than 1/800 its original value. 

14-2 
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The method can be applied even if the c's are variable with finite discontinuities at a finite 
number of points in (b1, b2) provided that the interval of argument employed is not un- 
reasonably large. Given T(b1) and T'(b1) new values of TI(z) can be established progressively 
along (bl, b2). Given T(b1) and T(b2), however, it appears necessary to plot several integral 
curves radiating from the point (bl, 'F(bl)) each with an assumed value of T'(bl). After each 
trial this value is systematically adjusted until the condition at z = b2 is satisfied. 

Table 2 

(i) (i,) (iii) (iv) (v) (vi) (vii) (viii) 
z approx. z(l -) C |Xol. (iii) c Col. (iv) ()ol 05 - (vi) eribeYs 

0.0 0 50 0.00000 0*000000 0*000000 0-000000 050000 050000 
0O5 0*48 012480 0031333 0062666 0015711 048429 0.48438 
1.0 0-44 024640 0124267 0124267 0062489 043751 0.43761 
1.5 036 034560 0274000 0182667 0139445 0-36056 036060 
20 026 038480 0459867 0229935 0243301 025670 025681 
2*5 013 028275 0635258 0254103 0365530 013447 0413462 
3*0 0*01 0-02970 0*717450 0.239150 O*490884 0.00912 0 00924 

3 10. A more general problem. When the vital coefficients vary from place to place in an 
entirely arbitrary manner the equation we have to consider is 

at 
Orthodox analytical methods appear inadequate, even in one-dimensional or radially 
symmetrical cases. In these cases an easy extension of the argument of ?3-8 shows that 
a sufficient but not necessary condition for the stability of solutions is that c2 > 0 in the 
habitat considered. Because of this, simple methods or numerical solution akin to 'relaxation' 
were tried out for such cases, but, because of the ultimate slowness of convergence, were 
abandoned in favour of the method of ? 3-9. 

3-11. Conditions at a common boundary. In the present treatment T is regarded as con- 
tinuous, and the c's as continuous except at certain points. But this is only a convenient 
abstraction. In nature there are discontinuities almost everywhere (see Denjoy, 1937, p. 8), 
and it might be thought theoretically more desirable to construct our analytical model with 
functions of a more general nature. The scientist, however, is not so much concerned with the 
behaviour of 'F and c at a particular point as in their mean value in a small neighbourhood 
of that point. 

Consider the situation at the point x = b in a linear habitat where the 'diffusivity' is 
uniform throughout but where the vital coefficients in b' < x < b differ from those in b < x < b". 
(The case where one subinterval is a region of absolute extinction is excluded, and this is 
best treated as a limiting case with cl tending to - ox.) An appeal to our fundamental 
assumptions will show that unless 'F is the same at b-0 and b + 0, the rate of population 
flow across the boundary would be infinitely great, proceeding in such a direction as to restore 
the continuity of T. Similarly, unless aTlax is the same at b -0 as at b + 0 the rate of change 
of density in an infinitesimally small neighbourhood of b would be infinitely great, proceeding 
in such a way as to equalize the derivatives at b -0 and b + 0. A similar argument holds in 
a radially symmetrical habitat or the more general two-dimensional one. 
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When employing the iterative method of ?3-9 it is not necessary to define the vital 
coefficients at x = b unless b coincides with a tabular value of the argument. In such a case 
it is desirable to define c(b) = [c(b + 0) + c(b - 0)]. The continuity of c is tacitly implied in the 
use of formulae of numerical integration. 

4. REPRODUCTIVE CAPACITY AND POPULATION DENSITY 

4-1. A law of population growth. Strictly the logistic law is applicable only to populations 
which are continuous in time. It will be shown that where competition is most marked 
among seedlings distributed at random, a somewhat different law holds for annual plants 
with the analogue of the logistic law as a limiting case. 

The following symbols are used: 
H is a coefficient denoting the suitability of the habitat as a whole, and is resolvable into 

separate components. For example, H = Wsp/., where 
W is the number of spots of ground suitable in nature and size to support one plant of the 

species concerned to maturity. Such a spot will be termed a cell. Cells may be isolated or 
adjacent in groups of two or more. In the present simplified treatment, all cells are regarded 
as of the saie surface area, namely, one unit. 

~ is an arbitrary area constructed to include all the cells. It is assumed that this area is 
insulated in the sense that it receives no seeds from without. 

p denotes the proportion of seeds which actually fall in E.. It is assumed that the probability 
distribution of the seeds is even throughout E. 

s is the probability that a 'seeded cell' rears a seedling to maturity. 
r denotes reproductive capacity, the number of fertile seeds produced on the average 

per plant. 

X denotes relative density, defined here as the ratio of actual population density to the 
hypothetical maximum that the habitat could support, were every cell seeded. That is, 
X = N/ Ws, where N is the actual population number. 

In the interests of completeness it might be thought desirable to introduce more ecological 
factors than are considered here. In most cases it will be found that the mathematical form 
of the final result is unchanged, particularly when the appropriate modifications are 
incorporated into the definitions. 

The probability distribution of the number of seeds per cell will be Poissonian with 
parameter NPp/6 = NPH/ Ws = rHX. The proportion of cells with at least one seed is 
then 1 -e-re1X (neglecting minor irregularities due to sampling). By reason of the definition 
of X this expression is the relative density of the resulting population. Using suffixes to 
distinguish between the values of X in successive generations, we then have the law 

= 1 - e-rHx. (39) 

The ultimate stable value XOO satisfies the equation 

log (1-X) + HX = O. (40) 

Typical growth 'curves' are illustrated in Fig. 4. From (40) it will be seen that as X -? 1 from 
1 

lower values PH ' log 1- - 0o, so that when X is large a very considerable increase in 

reproductive capacity is required to bring about a perceptible increase in the population. 
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4*2. Further applications. The relation between the area 'covered' by a randomly moving 
insect and the distance traversed by that insect (Nicholson & Bailey, 1935) is closely analogous 
with the relation between area 'seeded' and the number of seeds produced by an annual 
plant. In many species of insect the population one year depends on the number of places 
suitable for oviposition encountered by the adult population of the previous year. In the 
simplest cases of this type, it is to be expected that relation (39) will be applicable. 

1.0 a a 
]H=5 

. * * *H= * 

02 

-. 0-5 
> 

co 

0* * * I. 
0 5 10 15 

Generations 

Fig. 4 

Somewhat similar but more elaborate relationships have been deduced (see Jordan 
& Burrows, 1945; Zinsser & Wilson, 1932) in connexion with the dissemination of infectious 
diseases. 

4*3. Discrete logistic growth. The recurrence relationship (39) also arises in the solution of 
a problem in evolutionary genetics (Skellam, 1948). Provided that L'HX is small we have as 
a good approximation Il - I-rHX( 

%nfl 1+2rHx,' 

Since x - = 2(PH- 1)/rH we may express this approximation as 

Xn+1l-Xn = -fXn+l(Xo - Xn), 

corresponding to the differential equation (7 a). The finite difference equation is of the 
Ricatti type (Milne-Thomson, 1933) and has the solution 

Xo + (Xo - Xo) (17H)-n (42) 

This expression is in fact the logistic law for a discrete variable. For writing Nn|Noo = %n/%X 
c = log rH, and denoting the independent variable by t with its origin at the centre of 
symmetry, we obtain the standard form N(t) = N( oo)/( l + e-ct). 

A simple guide to the values of PH for which (41) is a fair approximation to (39) is afforded 
by the comparison of the upper asymptotes in the two cases for the same fixed values of PH, 
as shown in Table 3. 

It will be seen that X,, is an increasing function of H and therefore of W, the number of 
suitable spots in . It therefore appears, other things being equal, that in the richer habitats 
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a greater proportion of the available cells are actually utilized. The inference may well be 
extended to perennial populations. 

Table 3 

FH-= 10258 1.0536 1.1157 1 277 2.0 

By (40) 0*0500 041000 0 2000 0 400 0 797 

By (41) 0-0504 0-1017 0 2074 0-433 F1000 

4.4. Two species in competition. The classical case of two closely similar logistic species 
competing for the same food has been studied by Gause (1935) and Volterra (1931). The case 
we shall consider here is that of two closely related species of annual plant, S and S', com- 
peting in the same habitat. In order to investigate the extent to which a disadvantage in 
direct competition may be offset by a superiority in reproductive capacity, we shall assume 
the extreme condition that individual S' seedlings always fail to establish themselves in 
immediate competition with S seedlings (for example, the S seed may germinate earlier). 
All other ecological factors will be regarded as the same for both populations. 

Under these conditions the S population is not adversely affected by the presence of S', 
and we may write rHX + log (1 - X) = 0. (43) 

The number of cells unoccupied by S in the seedling stage is then W( 1- X), and these are the 
only ones available to S'. 

It follows as in (4.2) that for an equilibrium 

N' = sW(1-X) [l e-N'T'Ppl]. (44) 

In order that the unit in terms of which we express the relative population density of S' is 
independent of X, we shall denote N'/sW by Xo. Equation (44) then becomes 

Xo= (IX)e[1er"XH]. (45) 
Hence, from (43) and (45), 

r,/r-xi%og (1--O _' lxx log (I - X) (46) 

If now we allow xo->0 we find that r'/r->--/(l-X)log(l-X). This will be termed the 
critical value of rF'/. Unless it is exceeded S' cannot coexist with S. When S is not dense it 

Table 4a 

X o.o+ 032 0.4 i 06 0.8 0 9 0.99 

Critical F'/P 1.0 1*12 1 31 1 64 2 49 3 91 21 5 

Table 4b 

0+ 0.1 0.2 0.3 0.4 0 5 0.6 

0.1 1.055 1.118 1-193 1-283 1-395 1-539 1P738 
0.5 1.443 1.610 1-842 2 20 2 90 OO 
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is possible for S' to survive (despite its extreme inferiority in direct competition) with only 
a slightly superior reproductive capacity, but when S is very dense, it is impossible for S' to 
survive unless its reproductive capacity is many times greater than that of S. In the case of 
very small populations the 'safety level' of r'/r will be somewhat greater than the critical 
value, because of the danger of random extinction. Table 4a gives the critical values of 
r'/r for various values of X. Table 4b gives the values of r'/r required to maintain the S' 
population at various levels in the two cases X = 0 1 and 0 5. 

4-5. Two species and two habitats. As a simple illustration of the application of these 
relations consider two habitats with coefficients H1 = 0 001 and H2- 0-01, the same for both 
species, and let F = 400 and F' = 2000. The seeds of S', being more numerous, might well 
have smaller food reserves. Whatever the cause it is assumed as before that S' seedlings do 
not establish themselves in immediate competition with S seedlings. 

Since rPH = 0 4 < 1, S cannot survive in the first habitat but does so in the second with 
X = 0-9803. Hence -X/( -X) log (1 -X) = 12-7 > r'/r = 5. As a result S' cannot compete 
successfully in the second habitat though in the first it appears safely established with 
x'= 0*797. 

In ecological terms we could say that though the requirements of both species are the same, 
the species with the greater reproductive capacity is better suited to the poorer habitat, and 
the species with the greater ability to establish itself against competition at the seedling 
stage is better adapted to life in the richer habitat. 

5. BiOLOGICAL. DISCUSSION 

1. The analytical model developed here assumes that dispersal is effectively at random. 
This is at least approximately true for large numbers of terrestrial plants and animals. The 
behaviour patterns of certain animals may be such, however, as to tend to lead them to more 
favourable conditions. To deal adequately with these cases it will be necessary to introduce 
a further complication into the theoretical model somewhat analogous to gravitational 
attraction. Nevertheless, in most instances the range of an animal's perception is small 
compared with its powers of dispersal, and even the more intelligent may not discriminate 
between two parts of a habitat differing considerably in their effect on survival. Local 
irregularities in the character of the environment act as stimuli initiating repeated tactic 
displacements, the ultimate cumulative effect of which is scarcely distinguishable from 
a blind randomness. 

2. If a population is initially located at a centre, spreads as with a Brownian motion, and 
undergoes unrestricted growth, the rate of radial expansion of its contours is approximately 
constant (see equations 5, 5 a). A similar law applies to the flow of a gene, but here it should 
be noted that y2 for a new advantageous mutation wil almost always be very small. The 
oft-repeated statement that a new advantageous gene spreads through the population 
replacing the former wild-type allelomorph is probably true (if no more than a reasonable 
period of time is allotted) only in those cases where the powers of dispersal are considerable 
in relation to the area occupied. In assessing the roles played by various processes in bringing 
about speciation, it might be borne in mind that fragmentation of the distribution area is by 
no means a necessary condition for different accumulations of genetic diversity to arise in 
the same species in different parts of a comparatively uniform habitat, and ecological 
adaptation can always occur when the rates of gene flow are insufficient to dissipate the 
genetic advances being made. 
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3. Just as the area/volume ratio is an important concept in connexion with continuance of 
metabolic processes in small organisms, so is the perimeter/area concept (or some equivalent 
relationship) important in connexion with the survival of a community of mobile individuals. 
Though little is known from the study of field data concerning the laws which connect the 
distribution in space of the density of an annual population with its powers of dispersal, 
rates of growth and the habitat conditions, it is possible to conjecture the nature of this 
relationship in simple cases. The treatment of ? 3 shows that if an isolated terrestrial habitat 
is less than a certain critical size the population cannot survive. If the habitat is slightly 
greater than this the surface which expresses the density at all points is roughly dome-shaped, 
and for very large habitats this surface has the form of a plateau. 

4. The logistic law of population growth is often compared with that of autocatalysis 
(D'Arcy Thompson, 1942) and the inference made that population size is limited by the 
available food supply. In the present paper it is shown from spatial considerations alone that 
many populations which are discrete in time can be expected to satisfy the logistic law-at 
least as a close approximation. 

5. The problem of the relationship between the reproductive capacity of plants and their 
habitat conditions has been studied very thoroughly by Salisbury (1942), but it is by no 
means certain that the thesis he adopts (pp. 159, 160, 231) is entirely tenable. The analytical 
approach of ??4 3-4 5, though no doubt over-simplified, provides us immediately with 
a possible explanation of the well-known paradox that certain species flourish only in 
unpromising situations, and might be developed and applied with advantage to throw light 
on related problems in this confused and bewildering subject. 
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