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The distributional pattern formation of the populations of two competitive 
species in heterogeneous environments is analyzed. In the mathematical 
formulation, a non-linear dispersive force due to mutual interferences of 
individuals and an environmental potential function are introduced 
as a behavioral version of Morisita’s phenomenological theory of 
“Environmental density”. Mathematical analyses of effects of these forces 
give the result that the heterogeneity of the environment and the non-linear 
dispersive movements raise a spatial segregation of the populations of two 
similar and competing species and there is a possibility that this spatial 
segregation acts to stabilize the coexistence of two similar species, relaxing 
the interspecific competition. 

1. Introduction 

The spatial distribution pattern of an animal population in its natural 
environment may be realized as a result of various kinds of biological effects. 
For example, heterogeneity of environmental conditions, mutually attractive 
or repulsive interactions of individuals and localization of egg-laying 
processes may be principal causes of spatial pattern formation. The spatial 
pattern structure of biological community is a fundamental subject in the 
mathematical ecology as is the trophic level structure. Although the spatial 
patterns of living populations have been widely studied by statistical 
treatments as “statistical ecology”, mathematical analysis of the process of 
spatial pattern formation has not been so much developed as “population 
dynamics”, which has been developed since the pioneer work of Volterra and 
deals with temporal changes in the sizes of interacting populations in terms 
of ordinary differential equations. 

However, several authors (Keller & Segel, 1970; Segel & Jackson, 1972; 
Montroll & West, 1973; Comins & Blatt, 1974; Levin, 1974, 1976, 1978; 
Gurney & Nisbet, 1975, 1976; Okubo, 1975; Rosen, 1977; Fife, 1978) have 
presented interesting works on the spatial distribution pattern formed by 
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dispersive motions of populations with intra- and inter-specific interactions. 
They are mainly interested in the possibility that the formation of spatial 
distribution pattern due to emigration or dispersion may play an important 
role in the regulation of the population of some species. Gurney and Nisbet 
have shown that the introduction of a suitable non-linearity into the 
dispersive behavior has the effect of stabilization under a wide range of 
conditions. In this paper we also discuss a similar problem and show that in 
heterogeneous environment two similar and competing species raise a spatial 
segregation through a non-linear dispersive force and this segregation of 
habitat really stabilizes the populations by relaxing the interspecific 
competitions. In the present discussion the non-linear dispersive force is 
deduced as a generalization of Morisita’s phenomenological theory of 
“environmental density”. Therefore we shall present here a brief survey of 
the idea of Morisita’s environmental density (Morisita, 1952, 1971). 

Observations on an ant-lion Glenuroides japonicus (Morisita, 1952) and 
aphids Rhoparosiphum prunifoliae, Aphis maidis, Macrosiphum granarium 
(Ito, 1952) showed that the individuals are found only in the most favorable 
spots when the mean population density in the whole area is low, but the 
distribution area of the population expands with increase of mean density, 
and at high density the density in less favorable regions also reaches the same 
high level as that in the favorable region. After a series of experimental 
studies using the ant-lion, Morisita presented an idea of “environmental 
density” by which the degree of preference for habitats can be quantitatively 
measured. The experiments were done using a box, just one half of which is 
filled with fine sand and the other half is filled with coarse sand. The ant-lions 
were put one by one on the border line of the two sands and the number of 
individuals settled in each sand was counted after their pit formation. He 
found that the ant lions have strong tendency to prefer fine sand to coarse 
sand for pit formation when the population density is low, but this tendency 
gradually falls with increasing density until an almost equal number of 
individuals settles in both sands, showing the existence of repulsive 
interference among the individuals. In order to explain quantitatively this 
experimental result, he assumed that the probability of settlement of an 
individual in fine sand area A (or coarse sand area B) is inversely 
proportional to the degree of “unfavorableness” of that habitat, and the 
degree of unfavorableness is given by the sum of the quantity EA(EB) named 
“Environmental density” which is a measure of the intrinsic unfavorableness 
of the habitat itself and the number of individuals n,(n,) already settled in the 
fine sand (coarse sand) area. 

Then the probabilities that an individual settles its residence and forms a 
pit in fine sand area A or coarse sand area B when nA and nB individuals have 
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already settled in areas A and B respectively are given by 

pA = tE, + hJ)/tE, + E,+ nA + $J) 

PB = (EA + ~A)/(EA +E, + n,$ + n,). 
(1) 

Analyzing this Markov process, the average number of individuals found in 
fine sand area, after n individuals are introduced into the box, is obtained as 

‘+A) ‘%+h- 1)/2 __ = -- 

n E,4+E,+n-< 
(2) 

and it is seen that this ratio approaches a value, l/2, as n increases. The 
experimental results were satisfactorily interpreted by this theoretical 
formula not only for the ant-lion but also for the populations of other animal 
species (Kosaka, 1956; Kubo, 1957). 

In order to deduce the non-linear dispersive force, we shall present a 
behavioral interpretation of Morisita’s theory in the next section. 

2. Behavioral Version of Morisita’s Idea 

Here we shall assume that the movement of an individual searching its 
residence is under influence of the following forces: (i) the dispersive force 
which is associated with random movement of individuals, (ii) the 
population pressure due to mutual interferences between individuals, (iii) the 
attractive force which induces directed movements of individuals toward 
favorable places. 

The population pressure due to the mutual interferences among the 
individuals may be taken into account by considering that the dispersive 
force will be increased by repulsive interference with the increase of 
population density. Then we can assume the isotropic dispersive force to be 
given by a dispersion coefficient expressed as 

a + Bn(x), (3) 

where n(x) is the population density at the position x. As will be seen later, 
the linear dependence leads to a result consistent with that of Morisita’s 
theory. Generally the intrinsic dispersion coefficient a and the coefficient of 
population pressure /I may be also functions of position co-ordinate x. 

Secondly, we shall introduce a quantity - U(x) which represents the value 
or “favorableness” of habitat at the position x, where the negative sign is 
attached so as to regard the function U(x) as an environmental potential. 
Each individual tends to move toward lower potential area where the 
environmental conditions are more favorable. Thus it may be plausible to 
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assume that the mean velocity of the movement caused by the favorableness 
of habitat is proportional to the force produced by the potential function 
U(x), that is: -grad, U(x). 

Now we shall consider again the experiment of ant-lions. When a new 
individual is put in and is searching the residence in the box in which nA and 
n, individuals have already settled in A and B areas respectively, the 
transition probability rate at which the added individual transfers from B area 
to A area is considered to be given by a,+jIBn,+ K/2, where K is 
proportional to the potential difference U,- U, which is positive in this case 
since the value of potential in the fine sand area A is lower than that of the 
coarse sand area B. Similarly, the transition probability rate from A to B is 
given by aA+BAnA-- rc/2. Then the probability that the newly-added 
individual will be settled in A area, P,, becomes proportional to the 
transition probability rate from B to A. An analogous relation also holds for 
P,. So we have 

PA = h + Bsns + 4Wh + aB + BA nA + Pdd 

PB = (aA + BAnA - ~/2)/h + aB + Bang + &b). 
(4) 

Comparing this expression with equations (1) and if PA = flB = /3, it is seen 
that the expression (4) becomes equivalent to the equation (1) by equating 
the environmental densities as 

This expression can be regarded as a behavioral interpretation of Morisita’s 
environmental density. Thus, by the equation (2) and putting aA = as = a, 
the average numbers of individuals found in A and B area, after n individuals 
are introduced into the box become, 

(nA) (a+W/B+(n--1)/z 
n 2a//?+n-1 ’ 

(42 (a--/W+(n-lM2 -= 
n 2a//?+n-1 ’ 

16) 

In the experiment on the ant-lion discussed above, the individuals are 
introduced successively one by one into the experimental box and the 
positions of the residents already settled in the box are fixed and not 
influenced by a newcomer. Now, we shall consider the case that n individuals 
of some animal species are simultaneously put in the box which similarly 
consists of two different areas A and B of the same size and they do not settle 
their nest at fixed positions but frequently change their positions due to the 
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transition probability rates described above. In this case the change of 
population in each area is given by, assuming aA = aB = a and PA = flB = b, 

$n~=- a+&,-1)-i n,+ 
i I 1 

a+fi(n,-I)+: n,, 
I (7) 

$n~=- a+P(n,--l)+: n,+ 
i I i 

a+j?(n,-1)-F nA, 
I 

where the population pressures for an individual in A and 23 area are exerted 
from remaining nA - 1 and nB- 1 individuals respectively. The solution of 
equation (7), with the initial conditions n,(O) = ni and n,(O) = n”, = n-n”,, 
is obtained as 

n,(t) = 
n{a+B(n-l)+rc/2} 

2a+2fi(n-1) 

+ (nS:--nS){a+/?(n-1)+~/2}-fcn$ 

2a+2/3(n-1) 
exp[-{2a+2/?(n-l)}t], 

(8) 

4) = 
n(a + fi(n - l)- ~/2) 

2a+2fi(n-1) 

_ (& - $${a + /?(n - 1) - ~/2} - Kni 

2a+2/?(n-1) 
exp [-{2a+2/?(n-l))t], 

which approach stationary values, as r tends to infinity, 

nA (a + ~/2)/2/I + (n - 1)/2 -= 
n a//I+@- 1) ’ 

nB (a - rc/2)/2/? + (n - 1)/2 -= 
n a//?+@- 1) 

(9) 

If we compare the result (9) with that of the previous case (6), it is seen that /? 
in the expression (6) is just replaced by 28 in (9). This fact may be 
understood, if we consider the fact that in the previous case individuals 
settled already in the box are not affected by newcomers but in the latter case 
all individuals are always under the influence of population pressure. 

3. Continuously Varied Environment 

We have discussed the motion of individuals due to the dispersive force 
including the population pressure and also the environmental potential 
force, based on which the distributions in a spatially discrete model are 
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analyzed. Here if we take the continuous limit of the discrete model, it can be 
easily shown that the flow of population at the position x is given by 
(Appendix) 

J = -grad, {(a +Bn(x, t))n(x, t)} - n(x, t) grad, (U), (10) 

where n(x, t) is the population density at the position x and time t. Then the 
change of the population is described by the equation of continuity 

Now let us consider a one-dimensional space with boundaries at which 
J = 0. A stationary distribution n*(x) can be obtained as a solution of the 
equation .I = 0, that is 

(12) 

The solution of this equation is given by 

2j?{n*(x)- n(0)) + a In {n*(x)/n(O)) = - {U(x)- U(O)], (13) 

where n(O) and U(0) are the values at an arbitrary chosen fixed point in the 
habitat area, where we can set the origin of co-ordinate. 

Here we can show that the stationary solution (13) which satisfies the 
equation (12) is really a globally stable stationary solution of the equation 
(ll), and if the solution n(x, t) of equation (11) starting from an initial 
condition n(x, 0) (> 0 for all x) is a smooth function of x and t, it approaches 
this stationary solution n*(x). Let us consider a function defined by 

H = J {an In (n/n*)-a(n-n*)+j?(n-n*)2} dx >, 0, (14) 

where the equality holds only when n(x, t) = n*(x) for all x. The time 
derivative of this function (14) is calculated as, using the equation (1 l), 

$! = f (a In (n/n*)+2&n-n*)) gdx 

= -Jg {a In (n/n*)+2B(n-n*)} dx 

and by partial integration with the boundary condition J = 0 we have 

=-f;dxGO, (15) 
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where equations (10) and (12) have been used. The equality of equation (15) 
holds again only when J = 0, that is, n = n*. Therefore we can see that the 
solution of (ll), n(x, t), always approaches the stationary solution n*(x) 
given by the equation (13). The stationary solution (13) has a simple form 

n*(x) = n(0) exp [ - {U(x)- U(O)}/a] 

if fi = 0. When there is the population pressure effect (j? # 0), the stationary 
distribution shows such a tendency that the population density at areas with 
relatively low potential becomes lower than that of the case fl= 0 and 
contrarily the population density at areas with relatively high potential 
becomes higher compared with the case fi = 0. The population pressure has 
an effect to make even the population density and it is also seen from Fig. 1 
that the distribution becomes flatter as the total number of individuals 
increases. 

Here we shall present a method to determine the values of parameters c( 
and /3 and also the potential function U(x) from experimental data on 
laboratory systems. Since significant quantities are not their absolute values 
but their relative values, here we shall consider the value of a//l and the 
function U(x)//?. We use the data of two experiments in which the total 
number of individuals are N and N’. When we have observational data for 
stationary distributions n(x) and n’(x) achieved after sufficiently long time in 

6.0- (a) 

;; 4.0- 

3 
2.0 - 

I (bt 

6-O - 
N=6 
p=o 

FIG. 1. (a) Environmental potential function U(x) = 15(x-l)‘. (b) Stational population 
densities. N is the total number of individuals. 
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these two experiments, we can expect from equation (13) that the relation 

2{n’(x)-n(x)+n(O)-n’(O)} = a 

In {n(x)n’(O)/n’(x)n(O)} B 
(16) 

will be satisfied. This relation can be also used for the purpose to check the 
validity of the present theory, since the expression (16) should give a constant 
value independent of x for any pair of observational data n(x) and n’(x). 
Using this value of a//l and observational data n(x) in the equation (13), we 
can determine the environmental potential function V(x)//? where we can 
choose the standard value as U(0) = 0. 

4. Populations of Two Similar Species 

Now let us consider the populations of two animal species which have 
almost the same favorableness for the environment and are under the 
influence of the population pressure due to intra- and inter-specific 
interferences. The changes of the population densities n,(x, t) and n,(x, t) are 
given by 

and we assume again that J, = J2 = 0 at the boundaries. The stationary 
distributions are obtained from J, = J2 = 0, then we have the differential 
equations 

where 

In order to look for qualitative properties of the solution of equation (18), 
we shall consider their isoclines as in the case of dynamical systems. The 
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isoclines given by dn:/dx = 0 and dnt/dx = 0 are 

n: = 0 nr 
B 

= 
7 MJI 22 2822 + WY1 n:, (19) 

- 
i: 

- 
2822 

nz = 0 7 n* 2 = El I ~llY2)B2l-w11 

B 12 P 12 

n: ’ 
(20) 

respectively, and the signs of gradients of the lines (19) and (20) are 
determined by those of the quantities 

4 = (Y2/Y1M42-W22r D2 = (Yl/YZ)B21 -WI,? (21) 

respectively, as shown in Fig. 2. Therefore we must consider four cases 

(4,4)= (+, +), t+, -L (-2 +), (-* -1. 

Furthermore, in the case (+ , + ) it can be easily shown that the gradients of 
two rsoclines satisfy the relation /$JD1 > D2/fi12, therefore two lines never 
intersect in the first quadrant. 

The spatial change of the stationary population densities n:(x) and n:(x) 
in these four cases are schematically shown in Fig. 3, where dU/dx > 0 is 
assumed. Where dU/dx -C 0, the directions of the vectors are just reversed. 

(a) (b) 

FIG. 2. Isoclines of dnt/dx = 0 in the cases (a) D, > 0 and (b)D, < 0, and those of dn:/dx = 0 
in the cases (c) D, > 0 and (d) D2 < 0. Gradients are given by tan & = /&JO1 and 
tan e2 = DJ/?, 2. 
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FIG. 3. Vector field in @I*‘, n:) space in the cases (i) (D,, D,) = (+, + ), (ii) (+, - ), 
(iii) (-. +)and (iv) (-, -). 

P 0 R x 
(ii) 

I 

x 
(iv) 

FIG. 4. Typical behavior of trajectories of population densities n: and n: with respect to an 
assumed time x in the cases of (i), (ii) and (iv) of Fig. 3. Here the condition diJ/d.x > 0 is 
assumed. The small arrows indicate the direction of the trajectories when x increases. 
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As we can see from these figures, the origin is always a unique stable 
stationary point in terms of dynamical systems and all trajectories approach 
the origin as x tends to infinity. It will be also obvious that: (1) at the point of 
intersection of the trajectory with the isocline dn:/dx = 0, n:(x) becomes 
maximum and similarly at the point of intersection with the isoline 
dnf/dx = 0, n:(x) becomes maximum; and (2) at the point where the 
trajectory crosses the line n: = nr, the population density curve n:(x) and 
n:(x) as functions of x cross one another. Taking into account these 
properties of x dependence of n: and n$, we have typical patterns of 
population densities in the cases (i), (ii) and (iv) as shown in Fig. 4. The case 
(iii) becomes equivalent to the case (ii), if we exchange the assignments of 1 
and 2 to the species. It should be again noticed that in Fig. 4 dCJ/dx > 0 is 
assumed. Where dU/dx < 0, the x dependence is just reversed and the 
patterns become those of Fig. 4 with opposite direction of x co-ordinate. 
Here we take an interest especially in the pattern of Fig. 4-(ii) in which the 
gradients of two population density curves have opposite signs at the 
intersecting point. This type of pattern shows the possibility of the 
segregation of two species in the habitat or the allopatric distribution. It will 
be easily seen from Fig. 4 that this type of distribution is also possible in the 
case (i), but any way in order to have this type of pattern we need the 
condition 

or 

0 < tan 19, = B 
wYIi:-% < l 

(22) 

tan e = (lll/Y2)B21-%I > 1 

2 
B 12 

to be satisfied, where 8, and 8, are the angles of the isoclines with the 
abscissa. 

As an illustrative example of allopatric distribution, we shall consider 
populations of two species in which only the population pressure of the 
species 1 is exerted on the species 2 and raises its dispersive force, i.e. 
PII = PI2 = 822 = 0 and Bzl Z 0. 

In this case the differential equations (18) become much simplified as 

d YI dU -ny=---nT 
dx u, dx 

(23) I  I  

d ~2 dU -nz=---n: 
dx a1 dx 

c(, -~/121n: (a2+BZln3 
Y2 
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FIG. 5. Isoclines for the special case jI1 = &, = Iyz2 = 0. 

6.0 
t 

&,=I0 * ? 
v \ 

::I’\ 
0 I.0 2.0 

x 
1 

FIG. Stational population densities of two species. Potential function and parameters chosen 
are u,(x) = U,(x) = 13(x- 1)‘; total numbers of individuals N, = N, = 6; a, = a, = 1, 
811 = b22 = bi2 = 0, &, = 0.1,0.5 and 10. 
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and the solution is given by 

n! = Gh+B21nl) *  -1 -al~2/a2Yln~(“,Yll~,Y,) (24) 7 
where C, and C2 are constants which are determined by the total population 
sizes N, and N,. Here if we consider the product (dn:/dx)(dnz/dx), it is seen 
from equation (23) that the gradients of n: and nz have opposite signs when 
n:(x) > aly,/~,,yI. This may be also obvious from Fig. 5. Therefore, when 
the value of aIy2/&yI is sufficiently small, for instance, the population 
pressure of the species 1 on the species 2 is very high or the population size of 
species 1 is sufficiently large, we can expect the allopatric distribution will 
appear. We show such examples in Fig. 6 and Fig. 7. 

N,= 0.3 

c 

N,=i.5 

6-O- 

FIG. 7. Stational population densities of two species. Potential function and parameters 
chosen are U,(x) = U,(x) = 15(x-l)‘; a, = a2 = I; pII = pz2 = PI2 = 0, pzl = 10: 
N, = 6, N, = O-3, 15 and 6.0. 
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5. Coexistence by Segregation of Habitat 

Finally, based on the discussions given in the previous sections, we shall 
study the possibility that the spatial segregation of habitat which results from 
the mutual interferences and the heterogeneity of the environment has an 
effect to relax the interspecific competition, resulting in stabilization of the 
populations as a whole. 

In order to study this problem, let us consider firstly spatially uniform 
populations of two competitive species. The Volterra type equations for this 
system are written as 

d 
dt n1 = (~,-Pll~,--P,2~2h~ 

(25) 
d 
zn2 = (E2-~21nl-fi22n2)n2, 

where E~ and c2 are the intrinsic growth rates of the populations of two 
species, pl 1 and cl22 are the coefficients of intraspecific competitions and p12 
and p21 are those of interspecific competitions. It is well known that the 
coexistence of these two species becomes possible only when the conditions 

P,Ih ’ lJ2llE2 and p22f~2 > ~~~~~~ 

are satisfied, otherwise only one of the species can survive and another 
species is led to extinction (Gause’s competitive exclusion principle). 

Now we shall take into account the heterogeneity of the environment and 
the non-linear dispersive movements of the individuals of these populations, 
then the equations of our system can be given by 

a a 
p = -axJ’+(&‘-~llnl-~,,n,)n,, 

a a 
%n2 =-~32+(~2-~21nl-~22n2)n29 

where J, and J2 are the population flows given by the equations (17). The 
effect of the dispersive motion on the competitive species has been already 
investigated by Levin (1974, 1978). He showed that, in a patchy 
environment, linear diffusional flows have stabilizing effect on the 
coexistence of competitive species. However, it remained yet open to 
question whether or not such effects are realized also in the case of a 
continuous environment. The non-linear system (26) is actually difficult to 
deal with analytically. However, we can show by computer calculations that 
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the spatial segregation caused by the non-linear flows by (17) actually 
stabilizes the coexistence of two competitive species. For the numerical 
calculations, we assumed the conditions 

hh ’ PI II% and P& > I*~~/~~. 
Under these conditions, the spatially uniform system (25) leads to the stable 
critical state (EJECT, 0) when it starts from a state in which the population 
density n, is relatively larger than n2, conversely the system approaches the 
state (0, c2/pz2) if it starts from a state in which n2 is relatively larger than n, 
In any way either of the species is destined to ruin. 

As for the parameters of the dispersive forces and the environmental 
potential functions we used the same values and functions as those used in 
the previous section (Fig. 6), for which the system has shown a typical 
allopatric distribution. Figure 8 shows numerical results of the stationary 
distributions n,(x, co) and n&x, co) which are established after a sufficiently 
long time starting from an initially uniform distribution. 

Further computer simulations for this system with the parameter values of 
Fig. 8 have shown that this non-uniform stationary distribution is locally 
stable for small perturbations of population densities and is established 
starting from a wide variety of initial distributions. However, there remains a 
possibility that this pattern can not be reached by starting from some special 
type of distributions. The establishment of such a stable segregation of 

6.0 

t 

(b) 

;:;B’\,,/ 
0 I,0 2.0 3.0 

x 

FIG. 8. Population densities of two similar and competing species. U,(x) = U*(x) = 
15(x-l)‘; ai =a2= 1; fill = /& = /?,* = 0, /&I = 10; E, = st = 6; /Q, =/A** = 1.4; 
1121 = P12 = 2.8. (a) Initial distributions, nl(x, 0) and n2(x, 0). (b) Finally attained stationary 
distributions, n,(x, 03) and n2(x, co). 

4 
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distribution pattern clearly depends also on the parameter values. For 
instance, the simulation has shown that such a pattern becomes unstable 
when 

F, = &2 = 18, k1 = p22 = 4.2, ~12 = ~21 = 8.4 

(just three times the values used in Fig. 8 with the remaining parameter 
values and the initial uniform distribution unchanged). 

Thus, from our computer simulations, it has been clarified that if we take 
into consideration the environmental heterogeneity and the non-linear 
dispersive forces, the coexistence of two similar and competing species can be 
realized at least under some conditions assumed in the present discussions, 
even if the two species have the same favorableness for the environment. 

The authors would like to express their sincere thanks to Professor M. Morisita for 
valuable informations and comments concerning his elaborate works. Thanks are 
also due to Dr H. Nakajima and Dr N. Yamamura for their valuable discussion. 
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APPENDIX 

We shall consider the individuals (random walkers) in linearly connected 
boxes, each of which has the same width A and has different environmental 
condition with one another. Between any adjacent boxes, walkers transfer 
due to the dispersive force including the population pressure and also the 
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environmental potential force as is explained in the text. Let us consider the 
flux at the boundary of the ith and i+ lth boxes. We denote the number of 
individuals in the ith box at time t by n, and the environmental potential of 
the ith box by Ui. According to the basic mechanisms of movement 
consrdered in the text, the numbers of individuals moving across the 
boundary from the ith to the i+ lth box during time interval r and those 
moving in the opposite direction are given, respectively, by the equations. 

i 
Q’ + Ftli + & (lJimui+ 1) 

I 
ni, 

i 
a’+pni+l + $C”i+l -“i) ni+lt 

I 

(Al) 

where the coefficients a‘, /I’ and y’ are dependent on 1 and r. Therefore the net 
flux at the boundary of the ith and i+ lth boxes is given by 

.I = f {(C(‘+B’ni)ni-(a’+B’ni+ 1 )ni+ 1) 

+~(Ui-Ui+,)(ni+ni+t). (‘42) 

Here if both J and t tend to zero, we obtain the following expression for the 
flux in continuously changing environment as the limit: 

J(x, t) = - & {(a+Bn(.x, t))n(x, t)} -n(x, f); U(x), (A3) 

where we put 

lim cr’l2 = c(, lim !T.C = B 9 
&r-+0 ? A.r+O 7 

>irno F = n(x, t), lirn ~‘2 ui+l-ui dU 
(A4) 

=-. 
, --t A,r-tO 5 1 dx 

By similar procedures, we can obtain the flux in two-dimensional space as 

J = -grad, ((a + /In)n} -n grad, U. (A51 


