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The chemotactic response of unicellular microscopic organisms is viewed 
as analogous to Brownian motion. Local assessments of chemical con- 
centrations made by individual cells give rise to fluctuations in path. 
When averaged over many cells, or a long time interval, a macroscopic 
flux is derived which is proportional to the chemical gradient. By way of 
illustration, the coefficients appearing in the macroscopic flux equations 
are calculated for a particular microscopic model. 

1. Introduction 

The chemotactic sensitivity of such one-celled organisms as Escherichia coli 
(Adler, 1966a,b) and myxamebae (see, e.g. Bonner, 1967) has been well 
documented, but the ability of an organism of microscopic dimensions to 
sense and respond to macroscopic chemical gradients has often been con- 
sidered a mysterious phenomenon. How can a cell determine either the mag- 
nitude or direction of a concentration difference across its body when this 
difference is so small? A principal purpose of this article is to remove some of 
the mystery by presenting a description of the chemotactic response which 
transfers the burden from the detailed behavior of a given cell to its average 
behavior. In our description, just as in Brownian motion, even though a cell 
may not be capable of making an accurate assessment of the gradient to 
which it is exposed at a given time, its average behavior can nevertheless reflect 
the gradient with arbitrary accuracy. 
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In Brownian motion, a particle moves in response to the instantaneous 
difference in impact made by bombarding molecules on different sides of the 
particle. This difference can be interpreted as a pressure gradient only when 
averaged over many particles or over a long time interval. The path of the 
individual particle appears quite erratic, while the average particle flux is 
proportional to the gradient in pressure. The pressure gradient, in turn, is 
proportional to the gradient in concentration of the fluid in which the particle 
is immersed. 

In chemotaxis the motion of a cell is influenced by the molecules of the 
critical substrate through a chemical interaction rather than by the direct 
impact characteristic of Brownian motion. Our basic premise is that the cell 
responds to fluctuations in estimates made of the concentration of the critical 
substrate, rather than to the average concentration. This premise becomes 
plausible, in fact seems necessary, when one considers the extremely small 
dimensions that a chemical receptor of a microscopic organism must have. 
The number of molecules in the vicinity of the receptor at any given time 
would inevitably exhibit a great deal of fluctuation? (although fluctuations 
would be diminished if the receptor effectively averages its reading of con- 
centration over some time interval). 

If the chemotactic event (e.g. pseudopod formation or flagellum activity) is 
initiated by the local concentration in the vicinity of a chemical receptor, 
then the path of the individual cell would reflect the fluctuations characteristic 
of the samples assayed by the chemical receptors. We shall show how such 
individual cell paths can result in an average cell flux which is proportional 
to the macroscopic chemical gradient. 

2. Formalism 

For the sake of simplicity we shall consider here organisms which can 
take steps of length A to the left or right only. (The extension to three- 
dimensional motion is straightforward.) Receptors are assumed to exist at 
the extremal portions of the cell. Let CI denote the ratio of effective body 
length (i.e. distance between receptors) to step size, so that the effective length 
of the organism is ad. 

We assume that the average frequency of steps in a given direction is in- 
fluenced only by the mean concentration at the propeling edge. For organisms 
such as amebae which are propeled by a “pulling” motion, the propeling 
edge would be the leading edge. For organisms such as flagellated cells which 

t In the experiments of Adler (1966a), for example, typical concentrations of the critical 
substrate O2 are of the order of lo-* M. At this concentration, the average number of sub- 
strate molecules in a volume element equivalent to the effective volume of a macromolecule 
of molecular weight lo5 would be N zz 7. A rough estimate of the fluctuation is N’!‘. 
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are propeled by a “pushing” motion, the propeling edge would be the 
lagging edge. In the formulas which follow, we assume we are dealing with 
motion of the pulling kind. Formulae which describe motion of the pushing 
kind are obtained simply by reversing the sign of CI. 

Letf(c) denote the average frequency of steps in a given direction, where c 
is the mean concentration of the critical substrate and is itself a function of 
position x. The exact function f will be determined by the particular model 
one assumes. For cells (propeled by pulling) which are centered at x, the 
average frequency of steps to the right and left will be given byf[c(x+$aA)] 
and f[c(x-&A)], respectively. (We do not indicate dependence on time t 
explicitly.) Letting b(x) denote the density of cells centered at x, we now wish 
to find J(x), the net flux of cells per unit time in the direction of increasing x. 
This is done by multiplying the number of cells [b(s)ds] in the length element 
between s and s + ds by the frequency of steps to the right, integrating over the 
interval (x-A, x), and then subtracting the corresponding term describing 
the motion to the left. Explicitly, we have 

J(x) = ildf[c(S+frA)]~(s)ds- xjAf[c(s-&A)]b(s)ds. (1) x 
Using an approximation which is often employed in theoretical studies of 
Brownian motion (Chandrasekhar, 1943), we keep only the lowest order 
terms in A, so that equation (1) becomes 

J(x) rz A’( -f[c(x)]b’(x) +(a- l)f’[c(x)]b(x)c’(x)}. (2) 
The first term is the usual “diffusion” term describing the non-chemotactic, 
random motion of the cells, and the second term describes the chemotactic 
response’. That is 

J = -p(db/dx) +Xb(dc/dx). (3) 
The “diffusion” or n?otiZity coefficient, p, is given by 

y(c) ZG A’/(At) =f(c)A”, (4) 
where At G l/f(c) is the average time interval between steps. Similarly, 
x, the chemotactic coeJficient, is given by 

x(c) = (a - l)f’(c)A’, (5) 
so that 

x(c) = @ - W(c)* (6) 

It is worth noting that while the motility coefficient, p, is always positive, 
the chemotactic coefficient x may be positive or negative, depending on the 
signs of (a - 1) and f’(c). For example, even if the step frequency increases 
with concentration, df’ > 0), a net flux in the direction of lower concentration 
may exist if the effective body length is smaller than the step length (a < 1). 
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The reason for this may be seen from equation (1) by noticing that the 
average cell in the interval (x-A, x) is centered at X- )A. The first term may 
therefore be approximated by 

f[c(x -t-$A(cc - t))]b(x -$A)A. 
For a > 1 the net frequency of steps to the right is thus governed by the 
concentration to the right of X. For M < 1, on the other hand, this frequency 
is governed by the concentration to the left of X. From this and the corres- 
ponding remarks concerning the frequency of steps to the left, the derived 
dependence on the sign of (a- 1) follows easily. 

Of special interest (as we were reminded by S. Corrsin) is the case a = 0. 
Here the distance between receptors is zero; chemotaxis occurs because of an 
undirected effect on activity due to the presence of a chemical sensed by a 
single receptor. From equation (6), x = -,u’ and average cell movement is 
towards (away from) relatively high concentrations of chemical if motility 
decreases (increases) with concentration. 

The dependence of cell density b(x, t) on position and time is described by 
the differential equation 

abjat = -w (7) 
where the vector flux J would be given by 

J = - j.Nb +xbVc. (8) 
(See Keller & Segel, 1970.) Appropriate initial and boundary conditions must 
also be prescribed. It we limit ourselves, as above, to consideration of flux 
in the x direction only, (7) becomes 

ab aJ a -=-- 
at’ -ax ax ( 

-pa;*+xb; . 
> 

(9) 

By a slight change of viewpoint, b can be regarded as a probability w. 
Equation (9) can then be used to describe the probability of finding a cell 
at x and t, given a distribution c of critical substrate. In particular, if the 
initial condition is taken to be 

u(x, 0) = 6(x-x,) (10) 
the solution of equation (9) is the conditional probability function o (x, x0, t). 
Here 6 is the Dirac delta function and o (x, x,,, t) gives the probability that 
the cell is located at point x at time t, given that the cell was at point x0 at 
time zero. The boundary condition to be imposed must be determined by the 
experimental configuration.t Once the conditional probability function has 

i See Chandrasekhar (1943) for interesting special solutions of equations (9) and (10). 
In particular, the solution for the case in which motion of the cells is blocked at one end 
(e.g. by the bottom of a test tube) and in which .IJ and x (dc/dx) can be taken to be constant 
can be readily adapted from Chandrasekhar’s treatment of the problem of gravitational 
sedimentation. 
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been found, the average path of the individual cell can be calculated according 
to 

ii@ = J xc+, x0, t)dx (11) 
(where integration is over the entire range of x). Similarly, the mean square 
deviation is 

< [x(t) -i@j” > = j [x-x~-J20(x, x0, t)dx. (12) 

3. Prototypic Model 
To make further use of the general description given in section 2, we 

must specify f(c), the dependence of step frequency on mean concentration. 
In the absence of detailed microscopic pbservations or of adequate informa- 
tion about biochemical mechanisms, such specification is largely speculative. 
Nevertheless, in order to clarify and add concreteness to our general descrip- 
tion we shall now briefly discuss one specific model. Even if the details of this 
model should prove inapplicable, the exercise retains its illustrative value. 

Let us suppose that the frequency of steps initiated at a given site has one 
value when the local concentration at that site exceeds a critical value Q, and 
another value when it is less than Q. That is, let 

k = frequency of steps initiated at x when t(x) > Q, and (13) 
k(1 - E) = frequency of steps initiated at x when t(x) < Q, 

O<Erl; (14) 
where r(x) is the estimated or local concentration at x. Then the average 
frequency of steps taken by a cell at x is 

fCc(x>l = k{l -hmb 564 < Ql>. (15) 
We regard the local concentration at x as a random variable 5 distributed 
around C(X), the concentration at x, according to the probability distribution 
function F(t, c). Thus 

bob t(x) < Ql = ofFCE, cb)ldt, (16) 

so that, using (4) and (15) 

p = A’f[c(x)] = A2k { 1 - E b[C, c(x)]d& (17) 

It is possible to see certain qualitative features of this formalism before 
doing any calculations. For example, as C(X) -+ co, it is clear that the local 
concentration will almost certainly exceed Q, and consequently 

,u -+ A’k. (18) 
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Similarly, as c(x) --f 0, the local concentration will almost certainly be less 
than Q, and we have 

p + A%(1 - E). (19) 
At high concentrations the motion is thus more vigorous than at low con- 
centrations. 

We now assume that the level- of substrate is governed by the Poisson 
distribution, so that the probability of finding N molecules at any given time 
in the effective volume of the receptor is 

P(N, N) = (N)Ne-N/N!, (20) 
where R is the mean value of N. Let V be the effective volume of the receptor. 
With N = <V, w  = cV, equation (20) yields 

(dN/d<)-rF(& c) = P(<V, cV) = (cv)rve-cY/(5V)!. (21) 
From equations (4), (17) and (21) we obtain the following expression for the 
motilitv coefficient: 

p(c) = kAz 1-k 5 (cV)Ne-cV/N !] , 
N=O 

(22) 

where N* = QV is the threshold number of molecules in the receptor. As 
anticipated, when considered as a function of c, p increases monotonically 
from the value kA’(1 -E) when c = 0 to the value kA2 as c + co. Con- 
sidered as a function of N * for fixed c, p decreases monotonically from the 
value kA2[1 - k exp (- cV)] to the value kA*(l - k) as N * increases from 
zero to infinity. 

Since x(c) = (ol- 1)$(c), we have 

x(c) = - kliA*(a - l)Ve-“” N;, (cV”- %N-- I>! - Nfo (cVjN/N !] (23) 

or 
x(c) = - kEA*(cl- l)Ve-cv(cV)N”/(N*)!. (24) 

Approximating (N*) ! by Stirling’s formula, we can write 

x(c) z kEA2(a- 1)V(cV/N*)N*eN’-cV(2~N*)-1/2. (25) 

In this paragraph we suppose, for definiteness, that CI > 1. Considered 
as a function of c, x then increases from zero when c = 0 to a maximum 
z kEA*(a- l)V(2nN*)- 1’2 when Vc = N*, and then decreases to zero as 
c + co. To determine the behavior of x considered as a function of N*, we 
note from equation (23) that x increases as N* increases from zero, attains 
a maximum when N * = cV, and then decreases. Using equation (25), we 
thus see that x increases from kEA2(or-- 1)V exp (- cV) to a maximum 
NN kEA2(a - 1)(2nc V) - 1/2 and then decreases to zero as the threshold value 
N* increases from zero to infinity. 
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In particular, in this model 2 > 0 and chemotactic response is in the 
direction of increasing concentration if and only if a > 1, i.e. if and only if 
the “step size” is smaller than the effective body length. The smaller is the 
threshold N*, the larger is the maximum chemotactic response. Not sur- 
prisingly, the maximum response occurs when the average number of 
molecules in the receptor equals the threshold number. 

4. Discussion 
A general prescription has been given for the derivation of the macro- 

scopic equation for the flux of cells whose motion is affected by variations 
in the ambient concentration of certain chemicals. The theory is based on a 
Brownian motion model of chemotaxis. 

On the basis of general macroscopic arguments, we have previously formu- 
lated an equation for the macroscopic flux of cellular slime mold amebae and 
have used it to describe the initiation of aggregation in that system (Keller & 
Segel, 1970). Although the essence of the argument was independent of the 
dependence of the motility ,u and the chemotactic coefficient x on concen- 
tration, precise quantitative predictions did depend on such detail. Here we 
provide a framework for viewing the motion of the amebae which immediately 
yields the macroscopic flux equation, and which can ultimately be used to 
obtain the specific form of the motility and chemotactic coefficients. 

In describing the motion of an individual slime mold ameba, it is natural 
to associate the step in the random walk model with the displacement of the 
organism due to the formation of a single pseudopod. The critical substrate 
here is acrasin. The degree of wobble in the path of an ameba would then, in 
our view, reflect the fluctuations in estimates of acrasin density. 

It should perhaps be mentioned here that attempts made in the past to 
characterize the path of a single ameba by such quantities as the ‘“chemo- 
tactic index” (Samuel, 1961) are inadequate in that they depend critically 
on the accuracy of measurement. Only if all movement is recorded in measure- 
ment of the total path length is it meaningful to introduce the ratio of 
forward motion to overall motion as a characteristic parameter. Omission 
of any motion at all, however slight, leads to an overestimate of the chemo- 
tactic index. Since the ameba is not a rigid particle, and since its boundaries 
are always in a state of flux, the prospect of such complete measurement 
seems unrealistic. It is not possible to circumvent the difficulty by tracing the 
succession of a sequence of steps for the result then depends on the definition 
of “step”. 

A more adequate characterization of the motion would be provided by 
examining the progress of a number of amebae and measuring their mean 
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position as a function of time, and their mean square departure from this 
mean position. This is a point average, not a path average, and therefore 
only requires a precise measurement of the position of an ameba at a given 
time t. Analytically, the average position and the mean square deviation are 
given by equations (11) and (12) in the one-dimensional case. In general, 
these are functions of time and cannot be characterized by a single parameter. 
However, comparison between equations (11) and (12) and the corresponding 
experimental curves permits one to estimate the parameters p and x, for a 
given c. These, in turn, do provide a parametric characterization of the 
motion. 

Returning to the question of whether the model of section 3 provides a 
suitable description of the motion of a slime mold ameba, we recall that 
in this model we have assumed a constant step size and a step frequency 
determined solely by the mean concentration at the propeling edge. There 
is some suggestion, however, that the chemotactic response may result from 
the effect of acrasin concentration on step size, or more specifically, on the 
length of a pseudopod. Shaffer (1965) has observed that some proportion of 
pseudopods formed at high acrasin levels appear longer than normal. 

A simple model which is based on these considerations assumes that steps 
of length A are taken at one frequency f,(c), while longer steps of length aA 
are taken at a second frequency f,(c). The total frequency of steps of either 
kind can be made concentration-independent by requiring that fi +fi = F, 
a constant. It is quite easy to see that this varying step model leads to equations 
of exactly the same form as equation (2). In this case one obtains 

or 

so (usingf, +f2 = constant) 

x = [c4(a +1)-r - 11~‘. 

The first model assumes that pseudopods have a constant length but 
their frequency is determined by acrasin concentration while the second 
assumes that pseudopods are formed at a constant frequency, but that their 
length is governed by acrasin concentration. Although rather different 
biochemical machinery would presumably be required to regulate step length 
or step frequency, both models give rise to the same flux equation (3) with 
the same simple proportionality between x and /.L’. This insensitivity of 
macroscopic description to microscopic detail can be of great use in under- 
standing complicated biological phenomena such as aggregation. As in 
Keller & Segel (1970) one can adopt a phenomenological approach and 
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proceed without waiting for the unfolding of microscopic detail, particularly 
as much of this detail does not affect the macroscopic phenomenon. 

If both step size and total step frequency were permitted to vary with 
concentration then x would no longer be simple proportional to p’ although 
the basic flux equation would remain. The specific assumptions one should 
employ can only be decided by direct experimental observation of the in- 
fluence of concentration on cellular motion. A purpose of our analysis is to 
demonstrate how such simple assumptions lead to a flux equation in which 
the motility and chemotactic coefficients have a definite prescribed relation- 
ship to each other. Once these coefficients have been assessed experimentally, 
such relationships are subject to test. 

Bacterial chemotaxis can also be viewed in this general framework if 
the path of the individual bacterium is described as a sequence of steps in 
which each step corresponds to some unit of flagellar activity. In a study of 
traveling bands in E. co& (Keller & Segel, 1971) based on a flux equation in 
the form of equation (3), the authors were able to find solutions which seem 
to be in reasonable accord with observation under the assumptions p = con- 
stant and x = 6c-l, 6 constant. These assumptions are obviously incom- 
patible with a proportionality between x and p’. They therefore cannot be 
deduced from our general model under the assumptions of constant step size 
or constant step frequency which were used in our illustrative calculations. 
[There need be no inconsistency if both step size and step frequency are per- 
mitted to vary with concentration, as experimental observation indicates is 
the case (Weibull, 1960).] On the other hand, the fact that the phenomeno- 
logical analysis of Keller & Segel (1971) seems to capture the principal 
features of travelling bands does not demonstrate the validity of the particular 
assumptions they made concerning the functions p and x. 

In fact there is no adequate basis at the present time for reaching any 
conclusions about the dependence of the motility and chemotactic co- 
efficients on concentration. This paper may be considered an exposition of 
the ways in which such information is useful, and a request for more experi- 
mental information on the subject. 
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