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Bands of motile Escherichia coli have been observed to travel at constant 
speed when the bacteria are placed in one end of a capillary tube con- 
taining oxygen and an energy source. Such bands are a consequence of a 
chemotatic mechanism which permits the bacteria to seek an optimal 
environment: the bacteria avoid low concentrations and move preferen- 
tially toward higher concentrations of some critical substrate. In this 
paper we develop a phenomenological theory of traveling bands starting 
with partial differential equations which describe the consumption of the 
critical substrate and the change in bacterial density due to random 
motion and to chemotaxis. The analysis shows that a band will form only 
if chemotaxis is sufficiently strong. The predicted band speed is shown to 
be in satisfactory agreement with observation. The analysis also predicts 
the shapes of the graphs of bacterial density and substrate concentration 
in the traveling band and shows how, from these shapes, one can deter- 
mine a quantitative measure of the relative strength of chemotaxis. 

1. Introduction 

For almost a century, biologists have known that certain species of bacteria 
can move preferentially toward higher concentrations of oxygen, minerals 
and organic nutrients (see Weibull, 1960, for a review). A dramatic illustra- 
tion of this phenomenon, generally referred to as chemotaxis, is the appear- 
ance of sharp migrating bands of motile bacteria, first observed by Beyerinck 
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(1893) and more recently studied by J. Adler and his associates (Adler, 
1966a,b, 1970; Adler & Dahl, 1967; Adler & Templeton, 1967). 

In Adler’s experiments, motile cells of Escherichia coli were placed at one 
end of a closed capillary tube filled with a medium capable of supporting 
motility (although not necessarily growth). The medium contained varying 
amounts of oxygen and an energy source, typically galactose, glucose or 
serine. Shortly after the introduction of the bacteria, a sharp band of cells, 
easily visible to the naked eye, was seen moving away from the end at constant 
speed. Under certain conditions, a second band was seen following the first. 
Some cells always remained at the end of the tube. If the amount of oxygen 
present was insufficient to oxidize all of the energy source, the first band 
totally (i.e. > 99 %) depleted the oxygen. Under those circumstances, a 
second band appeared only when the energy source was such that it could be 
used anerobically by the cells. This energy source was then exhausted by the 
second band. The bacteria in the first band create a steep gradient in the 
concentration of oxygen (and a lesser gradient in the concentration of energy 
source), and evidently move toward higher concentrations of one or both. The 
bacteria in the second band create a gradient in the concentration of the energy 
source alone, again moving preferentially in the direction of higher concentra- 
tions. 

The purpose of this paper is to formulate a phenomenological model 
from which the existence and properties of migrating bands can be deduced. 
These properties can then be compared with the quantitative measurements of 
Adler and his associates. For simplicity we consider the motion of bacteria 
responding chemotactically to a single substrate, which we call the critical 
substrate. Since the same phenomena are observed in the absence of growth, 
we assume conditions in which no growth take place. The effects included in 
our description, then, are the chemotactic response of the bacteria, the non- 
chemotactic or “diffusive” motion of the bacteria, and the bacterial con- 
sumption of the substrate. Diffusion of the substrate is an effect which 
appears formally in our equations, but because it is a small effect compared to 
the “diffusive” random motion of the bacteria, it is ultimately ignored. 

2. Formulation 
We assume that the concentration s(x, t) of the critical substrate is governed 

by the equation 
&/dt = - k(s)b +D[~%/&?] (1) 

where k(s) is the rate of consumption of the substrate per cell, b(x, t) is the 
density of bacteria, D is the diffusion constant of the substrate, x is the distance 
along the tube, and t is the time. We assume that the concentration of substrate 
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is always sufficiently high so that its rate of depletion is limited by the ability 
of the bacteria to consume it, and not by the availability of substrate. This 
seems to be in accord with the kinetics of substrate consumption shown in 
Fig. 7 of Adler (1966a). The rate k will therefore be taken to be constant. 

The concentration of bacteria will be described by the equation 

(2) 

The first term on the right represents the motion of the bacteria in the absence 
of chemotaxis. The meaning of this term will perhaps be clearer if it is recog- 
nized that in the absence of a chemical gradient (&/ax = 0), equation (2) 
becomes identical to the diffusion equation. Just as the seemingly random 
motion of molecules in a fluid results in a particle flux proportional to the 
density gradient, so too the seemingly random motion of bacteria unaffected 
by chemotaxis is hypothesized to result in a bacterial flux proportional to the 
gradient in bacterial density. The motility parameter, ,u, takes the place of the 
diffusion coefficient as the proportionality factor. To allow for the possibility 
that p varies with substrate concentration, we represent p as a function of s. 
Although in principle p could also vary with bacterial concentration, we 
expect that this will be a secondary effect that can safely be ignored. 

Adler & Dahl (1967) have shown that under conditions in which the 
chemotactic response appears to be absent, the random motion of E. co& 
is similar to diffusion, and can roughly be characterized by a “motility” 
parameter such as that introduced in equation (2). The effect of substrate 
concentration on motility is not known at present. In the interests of simplicity, 
and in the absence of information to the contrary, we therefore take ,u to be 
constant.? The values of p obtained by Adler & Dahl are large compared to 
the diffusion constants of typical substrates. We therefore assume in looking 
for solutions to equations (1) and (2) that, to first approximation, D can be 
set equal to zero. (This approximation is discussed further in section 3.) 

The second term on the right side of equation (2) describes the chemotactic 
response of the bacteria. Here it is assumed that that part of the bacterial 
flux which is a result of chemotaxis is proportionai to the chemical gradient, 
by analogy with such physical laws as Fourier’s law of cooling. Using the 
same reasoning as that which underlies the postulation of these physical 
laws, it can be shown that a gradient-proportional response is inevitable 
for sufficiently weak gradients (threshold effects aside). Since (neglecting 

-1 As discussed elsewhere (Keller & &gel, 1971) the implications of this assumption may 
be of vital importance in the analysis of chemotactic effects. Measurement of the de- 
pendence of motility on substrate concentration would therefore be highly desirable for 
further theoretical considerations. 



238 E. F. KELLER AND L. A. SEGEL 

interference effects) the flux would necessarily be proportional to the density 
of bacteria, we write the flux due to chemotaxis as bx(s)[&/&] where x(s) is a 
measure of the strength of chemotaxis, and is hence termed the chemotactic 
coeficient. 

For further discussion of equation (2) the reader is referred to Keller & 
Segel(l970) where this equation is used in a macroscopic analysis of the onset 
of aggregation in cellular slime mold. Another paper by Keller & Segel(l971) 
shows how various individual cell behaviors will result in a collective behavior 
which is described by equation (2). 

The dependence of the chemotactic coefficient, x, on substrate density, s, is 
of considerable importance in this analysis. It can be demonstrated (see 
Appendix) that under the assumptions made thus far, x(s) must be sufficiently 
singular for equations (1) and (2) to yield traveling bands as a solution. In 
particular, if we denote the minimum value of s at which chemotaxis can 
take place by sr, and if, for small values of (S-L+), we represent x(s) by 
x(s) M &s-s,)“, then traveling wave solutions exist only if a < - 1. On the 
basis of this result we assume tentatively that the chemotactic coefficient 
is of the “least singular” form 

x(s) = 6(s--sp, (3) 
where 6 is a constant. Additional justification for this assumption comes from 
the pervasiveness of the Weber-Fechner law as an approximate description 
of biological response to stimulus. This law, whose formal expression is given 
by equation (3), states that the smallest change in an environmental factor 
or stimulus which is needed to cause a response is proportional to the intensity 
(in this case concentration) of the stimulus. Some confirmation that the 
Weber-Fechner law provides a valid description of bacterial chemotaxis 
already exists (see Weibull, 1960). 

If the variable s is reinterpreted as the difference between the observed 
concentrations and the threshold value (presumably small), equation (3) 
becomes 

x(s) = 6s-1. (4) 
The singularity is then at s = 0, and all other equations remain unchanged. 
Henceforth s will be so interpreted. 

For numerical comparison, the units of s will be given in mmol/cm3 and 
b in number/cm3. The time t will be measured in hours. Hence k will have the 
units mmoles/hr/cell, and D, ,U and 6 will have the units cm’/hr. 

3. Solution 

The non-linear parabolic system of differential equations (1) and (2) is a 
well defined mathematical problem only if appropriate initial and boundary 
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conditions are prescribed. It is convenient to choose co-ordinates so that the 
capillary tube lies along the x-axis from x = 0 to x = L. Then the initial 
conditions appropriate to this problem would be 

4x9 0) = so(x), b(x, 0) = b,(x). (5) 
If the solution is initially well mixed, S&X) = constant. The function b, 
describes the distribution of the initial inoculum of bacteria. The appropriate 
boundary conditions insure that neither bacteria nor critical substrate flow 
through the ends of the tube. They would be 

as/ax = 0, ah/ax = 0 at x = 0 and x = L. (6) 

We shall assume that D can be taken to be zero, keeping in mind the necessity 
of subsequent verification of the internal consistency of such an approxima- 
tion. A consequence of this approximation is that the order of the differential 
equation (1) is reduced, and one of the boundary conditions must therefore be 
dropped. 

The complete solution of the initial value problem described here, with or 
without the approximation D = 0, is a formidable task, and one not necessary 
for our present purposes. Instead we need only look for solutions in the form 
of a band moving without distortion in the direction of increasing x. (These 
are the “traveling waves” found in many physical contexts.) In doing so we 
make use of the fact that the capillary tube is long compared to the width of 
the band so that the tube may be assumed to be of infinite extent. We there- 
fore let x vary from x = - co to x = -I- co and look for solutions of the form 

b(x, 0 = b(t), s(x, 0 = s(O, 5 = X-CCt, (7) 

where c is the constant band speed. With equation (7) the partial differential 
equations (1) and (2) are reduced to the non-lineart system 

es’ = kb, (8) 
cb’ = (dbs%‘)‘-pb”, (9) 

where the prime denotes differentiation with respect to 5. Appropriate 
boundary conditions would now be 

b -0, b’+ 0, s -+ s, as t+co. (1% b, cl 

That is, we assume that far in advance of the wave the concentration of 
bacteria is zero, the bacterial flux is zero, and the critical substrate concentra- 
tion approaches the value s,, which is equal to its initial value sO. Equations 
(8) to (10) can now be solved with relative ease. 

$ The non-linearity of equation (9) is crucial to the existence of trave1in.g wave solutions. 
The importance of non-linearity for a variety of biological phenomena has often been 
stressed (see, e.g. Prigogine, 1969). 
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We first integrate equation (9) once, obtaining 

cb = 6bs-Is’--yb’+constant. 

According to equations (10) the constant of integration must be zero. We 
divide by b, integrate again, and find 

b = Qsse-t where F = S/p, % = dip, (11) 
and Q is a positive constant. Substituting into equation (8) and integrating a 
third time we obtain 

s = [Qkc-2(6-~)e-4+s~-,-8]-1/(8-1) (12) 

where equation (10~) has been used to determine a constant of integration. 
Specification of Q is equivalent to specification of the origin of co-ordinates 

since the change to <* co-ordinates via the axis translation 

g=g*+, 

multiplies the first bracketed term in equation (12) by the factor exp (4). 
In equation (12), as well as in the corresponding expression for b, the effect 
of this translation is equivalent to redefining Q. 

The simplest expressions for s(g) and b(c) are obtained if we set 

Qk~-~(&p) = s;-~ (13) 
with which equation (12) becomes 

2 = (1 +e-4)-llw)* (14) 
SCC 

The corresponding expression for b is 

b 1 
c2s,(pk)-1 = s-1 

,-?(I +,-y/@-1) (15) 

The maximum value of b, b,,,, is given by 

b max zz &&&jQ(~-1)]. (16) 

As E --, - co both s and b behave like constant multiples of exp [f/(8 - l)]. If 
solutions are to remain finite then we must have 

8>1 or 6>~. 07) 
If this requirement holds 

lim s = 0, lim b = 0. (1% b) 
;-+-a <-+-Lx2 

By integrating equation (15) for b with respect to e from - co to -t- co or, 
much more easily, by performing this integration on differential equation (8) 
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and using equations (18a) and (lOc), one obtains 
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where 
c = Nkj(as,) (19) 

N E a 7 b(t)dc 
-Co 

(20) 

is the total number of bacteria found in the band and a is the cross-sectional 
area of the capillary tube. It is worth noting that equation (19) holds exactly 
even if substrate diffusion is considered, for retention of the diffusion term in 
equation (8) adds Os’(co) - Os’( - co) = 0 after integration. 

We can see whether our neglect of substrate diffusion was consistent by 
using equations (14) and (15) to estimate (Dd2s/dt2)/kb. This ratio varies 
from (B/h)F/(Z-- 1) to O/p as 5 goes from - cc to 00. Neglect of substrate 
diffusion is therefore a consistent approximation if D is small compared to p. 
The fastest-diffusing critical substrate is oxygen. Its diffusion constant of 
about 5 x 10m2 cm2/hr is just about small enough compared to a typical value 
of p = l/4 cm2/hr (see below) to allow us to assert that substrate diffusion 
does not play an important role except perhaps when chemotaxis is very weak. 

Graphs of the right-hand-sides of equations (14) and (I 5) for s and b are 
given in Figs 1 and 2 for various values of 6. An interesting feature of these 
curves is that when F > 2 the graph of b decreases from its maximum more 
rapidly toward the front of the band than the rear, while the opposite is the 
case when 6 < 2. 

T 

FE. 1. Critical substrate concentration s divided by initial concentralion srn for S/p = 4/3 
(O), 2 (O), 3 (x), 5 (A). Here 6 is the proportionality factor relating the flux of the 
chemotactic cells to the relative concentration gradient and p is a motility coefficient. 
Distance along the abscissa is marked in units of ,LK-~, where c is the band speed. Typically, 
one unit is between l/8 cm and l/4 cm in length. 

T.B. 16 
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FIG. 2. Bacterial density b divided by the reference density QI E c2smlpk for 6 E 6/,u = 413 
( l ), 2 (O), 3 ( x ), 5 (A). As in Fig. 1, the various curves have been translated to facilitate 
comparison between them. The bacterial density curve is symmetric when S/,u = 2, and is 
steeper in the front (rear) if S/p > 2(6/p < 2). The band is narrower when chemotaxis is 
relatively weaker. 

4. Discussion 
A number of specific predictions of our model can be compared with 

experimental results. Perhaps the simplest comparison is between calculated 
and observed band speeds, which can be made using equation (8) alone. We 
make this comparison using equation (19), remembering that this equation 
can be obtained simply by integrating equation (8). Calculation of the speed 
of the migrating bands from equation (19) requires specification of the values 
of s,, the initial concentration of critical substrate; k, the rate of substrate 
consumption; a, the cross-sectional area of the tube; and JV, the total number 
of bacteria in the band. We have estimated these parameters from published 
data (Adler & Dahl, 1967; Adler, 1966~~) and from data provided by Adler 
(private communication). These estimates being ex post facto are necessarily 
crude. In particular, the number of bacteria, N, is subject to a great deal of 
uncertainty, partly because of the intrinsic uncertainty in the assay procedure, 
and partly because of the fact that at least in some experiments, a certain 
amount of growth did take place, an effect not included in our model. 

Nevertheless, the predicted band speed of our model is in rough agree- 
ment with the experimental findings. In one experiment described in Adler 
& Dahl(1967) a band is observed moving toward higher concentrations of 
oxygen at a speed of 0.9 cm/hr. Estimating k at 5 x 10-r’ mmol/cell hr, a 
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at 2.5 x 10V3 cm2 (Adler, private communication), N at 1.5 x lo5 (see Fig. 
10, Adler & Dahl, 1967) and s, at 2 x 10F4 mmol/cm3 (using the satur- 
ation concentration of oxygen in water), we obtain from equation (19) a band 
speed of 1*5 cm/hr. 

Using the data from a different experiment pertaining to a second band 
moving toward higher concentrations of serine (Adler, 1966a), comparison 
can again be made between observed and calculated band speeds. In this ex- 
periment k is estimated from a plot of the anerobic consumption of serine 
(see Fig. 7, Adler, 1966a) at k = 2 x lo-l1 mmol/cell hr, s, is given as 
2 x 10d3 mmol/cm3, and N is estimated from Fig. 3 of Adler (1966a) at 
3 x 105, half the total viable count after two hours. The observed speed at 
that time is approximately 2 cm/hr, and the speed calculated on the basis 
of these estimates is 1.2 cm/hr. In this case and that of the previous paragraph, 
agreement seems to be as close as could reasonably be expected. However, it 
is obvious that the parameter estimates made here are too crude to provide a 
definitive confirmation of equation (19). What is required is a repeat of these 
experiments, under conditions which do not permit growth, in which N is 
measured as accurately as possible. 

In the context of the present analysis, measurement of the width of the 
migrating bands provides a means for estimating 8 = S//J, the ratio of the 
chemotactic strength to motility. Again, given the measurements which 
exist, only an order of magnitude estimate can be made. Using the data in 
Figs 5 and 6 of Adler (1966u), the width of the oxygen band, W, is approx- 
imately 0.5 cm and its speed is 2 cm/hr. (The band width is here defined as 
the distance between the points at which s is one-tenth and nine-tenths of 
s,.) Using the average value of the motility quoted by Adler & Dahl(1967), 
,u = 0.25 cm’/hr, and noting that [ = cp-‘(x-ct), equation (14) enables us 
to find 8. Comparison with Table 1 shows that these estimates yield a value 
of 8 between 1 and 2. Similarly, the data from the same experiment on the 

TABLE 1 

The width of the band as measured from the substrate curve (W,) and the 
bacterial density curve (W,) for various ratios of strength of chemotactic 

response (6) to motility coejicient (p). 

6= s//A w* W* 

l-33 5.5 3.5 
2 7.5 4 
3 9.5 6 
5 12 9 

The widths are in units of .uc-I, where c is the band speed. 
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second band, in which the critical substrate is serine, shows a band width for 
serine of approximately 1.2 cm. The band speed is roughly 2 cm/hr as in the 
previous case. Using the same value for the motility as before, comparison 
with the Table 1 yields a value of 8 in the neighborhood of 3.7 

That different values of 5 are associated with the two bands is particularly 
interesting because, as is evident from Table 1 and Figs 1 and 2, when c and p 
are constant the bacterial band width is expected to increase with increasing 
8, and furthermore, when 8 > 2, the leading edge of the band is predicted to 
be steeper than the lagging edge, the relative steepness increasing with 8. 
(When 1 ~8 < 2, the back of the band is expected to be steeper.) It is clear 
from inspection of the densitometer tracings (Fig. 4, Adler, 1966a) that both 
of these predictions are borne out. The second band is clearly wider than the 
first, and in that band the front edge is considerably steeper than the rear. 
In contrast, the first band seems relatively symmetric, perhaps even somewhat 
steeper in back. Although the exact values of 5 calculated cannot be taken too 
seriously, the success of such qualitative predictions as these is encouraging. 

A possibly significant source of error in the computation of 8 arises from 
ambiguities in the measurement of p. In the observations of Adler & Dahl 
(1967) the bacterial motion deviates somewhat from ordinary diffusion. The 
estimate they quote is of the “fastest motility”, and may well be an over- 
estimate. (If so, our theoretical values of F are underestimates.) In particular, 
it is assumed that chemotactic motion is absent in these experiments since 
no bands are formed. According to our analysis, however, chemotaxis could 
be present, even though bands do not form, if 0 < 6 < p. The presence of 
some degree of chemotaxis could perhaps explain the difference Adler & Dahl 
found between their measurements of p and measurements to be expected 
from diffusion theory. 

5. Summary and Conclusions 

Precise characterizations of motility and chemotaxis are used in our 
mathematical analysis of traveling bands. Motility and chemotactic co- 
efficients are defined in terms of the flux of cells, i.e. the rate of passage of 
cells across a unit area. The motility coefficient p is the flux of cells per unit 
gradient in bacterial density, in the absence of chemotaxis. In a uniform 
distribution of bacteria, the chemotactic coefficient x is the flux of cells per 
unit gradient of the concentration of the critical substrate, divided by the 
local cell density. 

t Strictly, one should here use a value for the motility obtained for anerobic consumption 
of serine. Unfortunately such a measurement is unavailable. Since it is known that motility 
is somewhat less under such circumstances, the true value of p is somewhat lower than that 
used. The “true” value of 8 would hence be somewhat greater than 3. 
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The virtue of these definitions is that, once defined, p and x are subject to 
experimental measurement. Such measurements are essential for a more 
accurate theoretical analysis. In general, both p and x depend on the critical 
substrate concentration. Lacking experimental evidence, we have assumed 
that ,u is constant, and x(s) = &S--X,)-~ where 6 is a constant and sT is the 
threshold for chemotaxis. The latter assumption says, in accordance with 
the Weber-Fechner law, that the chemotactic flux is proportional to the 
relative concentration gradient. Our analysis shows that, given these assump- 
tions, steadily traveling bands cannot appear unless 6 exceeds p. In retrospect, 
a condition of this type might appear to be necessary. The ordering of motion 
caused by chemical gradients must be sufficient to outweigh the disordering 
diffusive consequences of random motion. The more vigorously an individual 
cell moves at random, the greater is the tendency of a collection of these cells 
to distribute themselves uniformly over the space available to them, and the 
more powerful must be any organizing tendency. 

In the present analysis we have taken as (experimentally) given that steadily 
traveling bands exist and have determined the consequences. It should be 
possible to predict the appearance of such bands from a study of the initial 
value problem given by equations (l), (2), (4), (5) and (6) (with L = co). The 
initial values would be those corresponding to the situation in which the sub- 
strate is at first evenly distributed throughout the tube and the bacteria are 
concentrated at one end. Study of the initial value problem has more than 
mathematical interest, for it should reveal the way in which it happens that 
some bacteria remain at the origin while others join the band. Such a study 
is in progress. 

We have shown how measurements of the widths of either the bacterial 
or substrate bands can be used to determine the ratio 8 = ~/CL, thus giving a 
numerical measure of the relative strength of chemotaxis. The value of 6 
also determines the shape of the bacterial bands, providing another means of 
comparison between theory and experiment. If 8 > 2 the band is steeper in 
front and if 1 < 8 < 2 the band is steeper behind. The predicted changes in 
shape with increasing 8 are found to be consistent with observation. 

The primary purpose of this paper is to present a theoretical framework 
for the description of chemotactic bands. The authors have previously shown 
that the same framework, in a different context, is capable of providing a 
description of the onset of aggregation in cellular slime mold (Keller & Segel, 
1970).? In both cases, in order to obtain an explicit solution, certain simplify- 

t The simplified equations used in Keller & Segel(l970) are almost identical to those used 
here [i.e. equations (1) and (2)]. The only difference is between equation (1) and the 
analogous equation in the slime mold analysis. There, k(s) is negative, corresponding to the 
production of acrasin, and an extra term is included which represents the degradation of 
acrasin. Equation (2) is unchanged. 
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ing assumptions were made. In neither case do these assumptions critically 
bear on the ability of the theory to describe the phenomena in question. In 
the present analysis, we have made explicit assumptions concerning the 
functions k(s), ,u(s) and x(s). Although the qualitative agreement between 
our results and existing experimental data is encouraging, these assumptions 
cannot be considered to be justified by such agreement, but must await 
further experimental work for independent verification. 

To measure the chemotactic coefficient one could perhaps impose a known 
or calculable gradient of substrate on a uniform mixture of bacteria and 
measure the bacterial flux. To establish a constant gradient one might layer 
samples with the same bacterial density but differing substrate concentrations 
(the highest on top because of gravity) and assay the bacterial concentration 
on the top layer periodically. One could do this at different average concentra- 
tions and thus get the dependence of the flux on s. Since the sedimentation 
constant of bacteria is known, the effect of gravity could be computed and 
eliminated. 

The fact that our theoretical framework is capable of describing both 
chemotactic bands of motile bacteria and the onset of aggregation in slime 
mold gives reason to believe that the same framework can be used to describe 
other collective chemotactic phenomena. Two examples of such phenomena 
are the following: (1) Adler (1970) reports a new assay for chemotaxis in 
which a capillary tube containing attractant is pushed into a suspension of 
bacteria on a slide. The bacteria in the tube are counted after a fixed period. 
Adler’s measurements can be related to x and ,LL by solving equations (1) and 
(2) subject to appropriate initial and boundary conditions; (2) a rate test for 
assaying the effect of the attractant acrasin on cellular slime molds (Bonner, 
Kelso & Gillmor, 1966) begins by placing a Cellophane square uniformly 
covered with motile test cells at the bottom of a Petri dish. The dish contains 
an acrasin solution of known concentration. The leading cells leaving the 
square form a rather sharp edge and appear to move at constant speed. This 
speed is measured and correlated with acrasin concentration. It appears 
likely that this test can be analyzed as a traveling band phenomenon governed 
by equation (2) plus equations (Keller & Segel, 1970) which describe the 
production, reaction and diffusion of acrasin and the relatively heavy 
enzyme which deactivates it. 

Our theoretical framework thus seems to have the capability of relating 
various assays of chemotaxis to each other and to a precisely defined measure 
of the strength of chemotaxis. 

This work was begun while one of us (L. A. S.) was on leave at the Bio- 
mathematics Division, Cornell University Graduate School of Medical Sciences and 
Sloan-Kettering Institute. The work of both of us in the Biomathematics Division 
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was supported in part by NCI Grant CA 08748. The work of one of us (L. A. S.) 
at that time was partially supported by a leave of absence grant from Rensselaer 
Polytechnic Institute. Since returning to Rensselaer Polytechnic Institute his work 
on this paper has been supported by the Army Research Office (Durham). We are 
grateful to J. Adler for unpublished data and observations. 
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Appendix 

Under the assumptions &.s), k(s) = constant, and D = 0, the existence of 
traveling waves which have the property s + 0 at - co implies that the 
chemotactic function x(s) must have a singularity of order one or greater 
at s = 0. To show this we assume the existence of a traveling wave solution 
to equations (1) and (2) as before, but we now leave x(s) arbitrary. We obtain 

b = Qeddhe-<, 9’ = x, (Al) 

instead of equation (11). From equation (8) 

&/dc = Qkc- l&S)fPe- 4. 042) 

Thus s is monotonic increasing, so we can regard g as a function of s. We 
find 

f = ln (Qkwe2/ ‘r exp C--sbO/~ldp)~ (A31 

If s is to approach zero as F + - co, the integral in (A3) must diverge as 
s J 0. Suppose 

x(s) zz 6s; when s is small, (A41 



248 E. F. KELLER AND L. A. SEGEL 

for some constants 6 and a. Then the integral in (A3) becomes 

]exp[-E$]dp, a#-1, 

which diverges as s JO if and only if a+ 1 -C 0. When a = - 1, as was 
assumed in the text, the integral (A3) also has the appropriate behavior. Thus, 
if a traveling band is to exist for motile organisms which are characterized 
by a chemotactic function satisfying equation (8) then a < - 1. 

By examining the asymptotic behavior of the integral in (A3) for small 
values of s, and substituting the result into (Al), we can show that b behaves 
like a constant multiple of s-“ as x -+ - co. By measuring the decay of 
bacterial count and substrate density behind the advancing band, then, one 
can in principle determine whether the Weber-Fechner law holds approx- 
imately (a = - 1) or whether there is a significant deviation from this law. 
Such measurements could in principle give information about the behavior 
of x at all values of substrate density but, in accord with intuition, the material 
of this Appendix shows that only behavior at relatively low values of s has a 
significant influence on the phenomenon. 


