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Abstract. A non-local model for dispersal with continuous time and space is carefully jus-
tified and discussed. The necessary mathematical background is developed and we point out
some interesting and challenging problems. While the basic model is not new, a ‘spread’
parameter (effectively the width of the dispersal kernel) has been introduced along with a
conventional rate paramter, and we compare their competitive advantages and disadvantages
in a spatially heterogeneous environment. We show that, as in the case of reaction-diffusion
models, for fixed spread slower rates of diffusion are always optimal. However, fixing the
dispersal rate and varying the spread while assuming a constant cost of dispersal leads to
more complicated results. For example, in a fairly general setting given two phenotypes with
different, but small spread, the smaller spread is selected while in the case of large spread
the larger spread is selected.

1. Introduction

The spatial dispersal of cells or organisms is clearly central to biology, and the evo-
lution of dispersal itself is consequently of great importance. Although the latter
issue has only fairly recently received much attention, it is now a major focus of
theoretical interest. In outline, it is probably fair to say that the models for this have
usually fallen into two categories. The first consists of models based on discrete
time and space (patch models); these are notoriously intractable theoretically and
are usually studied by numerical simulation. We do not discuss the validity of these
models, suffice it to say that it is far from clear what their relationship is with mod-
els based upon continuous space (see [19] p. 503 for some remarks on this issue).
Extensive references to the evolution of dispersal may be found in the reviews [20],
[3] and [8]. The patch models are discussed in [5], [17], [24] and [37]. Here we
shall consider models continuous in both time and space.
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The continuous model which has been most studied in the context of disper-
sal is based upon reaction-diffusion equations. In particular, for discussions on the
evolution of diffusion in this setting see [4], [13], [27], [28] and [19]. For a spatially
heterogenous but temporally homogeneous (i.e. stationary) environment, there is
a clear conclusion ([4] and [13]): In a very strong sense, that is under very weak
conditions, the phenotype with the lowest diffusion rate will be selected. For an
environment which is heterogeneous but time periodic, this conclusion no longer
holds and the situation is much more complex, see [19]. This conclusion is nev-
ertheless somewhat surprising from a biological point of view, as one might be
inclined to think that, although there are a whole range of possible mechanisms,
spatial heterogeneity would be very important in driving (at least under some cir-
cumstances) an increase in the rate of diffusion. For example, it is possible that this
would reduce intra-specific competition.

The exact nature of dispersal and its theoretical treatment are coming more and
more into question, see [2] and [31] for lengthy discussions and a huge variety of
articles cited. It is, therefore, natural to ask whether the class of reaction-diffusion
models, with its fundamental assumption that motion is governed by a random walk,
is too restricted for the more subtle question of dispersal selection. It is possible
to ask whether certain dispersal mechanisms may be preferred over others. This is
a rather broad question and, although interesting, appears to be hard to formulate
precisely.

Our approach is to ask a more precise but simpler question. In Section 2 we
derive a class of models more general than diffusion, but still moderately tract-
able analytically, in order to examine whether, in a controlled context, one can
gain information and insight in this difficult area. Variants of the particular model
we shall adopt have been discussed in [12] and [32] and is there termed a ‘po-
sition-jump process’. We use the continuous-time version of this model. Similar
discrete-time versions have been long current and we give only three references,
one mathematical, [39], and the others biological, [21] [22].

Let x denote position in space and t time. The basis of our model are equations
of the form

∂u

∂t
= Du+ uf (u, x), (1.1)

where the dispersal operatorD is based upon an integral kernel. To illustrate, con-
sider the simplest example,

(Du)(x) = (Dρ,Lu)(x) = ρ

{
1

L

∫ l

0
k

( |x − y|
L

)
u(y) dy − u(x)

}
(1.2)

where the spatial domain is [0, l] ⊂ R and k is a non-negative function satisfying
the normalisation condition: ∫ ∞

−∞
k(y) dy = 1. (1.3)

Notice that there are two parameters governingD: the dispersal rate ρ, which rep-
resents the total number of the dispersing organisms per unit time, and the dispersal
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spread L, which characterises the dispersal distance. As will become clear through
the analysis presented in the paper, these two parameters have quite different qual-
itative implications concerning the relative competitive advantage.

With regard to the reaction term, the following assumptions are made:

f (0, x) > 0 and non-constant,
∂f

∂u
< 0. (1.4)

The simplest example is provided by the classical logistic growth function

f (u, x) = a(x)− u. (1.5)

Here a(x) models the effect of a spatially variable, but temporally constant, envi-
ronment.

The goal of our investigation is to understand how competition drives selection
of ρ and L. Ideally we would do this by considering a competitive system of the
form

∂u

∂t
= Dρ0,L0u+ uf (u+ v, x) (1.6)

∂v

∂t
= Dρ1,L1v + vf (u+ v, x) (1.7)

Observe that in this system the reaction terms are identical, i.e. the interaction of the
different phenotypes with the environment is identical. The only distinction is in
the dispersal terms, thus understanding the global dynamics of this system allows
one to decide to what extent either dispersal strategy is advantageous.

Before proceeding to describe our investigation, we wish to persuade the reader
that the answers are unlikely to be obvious. To motivate this statement, we consider
the simplest model of this nature (a reaction-diffusion model) and point out that,
in our view, the obvious argument is false. Suppose for simplicity that the envi-
ronment a, determining the per capita growth rate, is such that a(x) ≥ 0 for all x.
The ‘obvious’ argument referred to goes as follows. It is best for individuals to live
where the environment a(x) is ‘best’, that is greatest, and it is an advantage to the
species to have small diffusion since this will ensure that individuals stay in the
best regions and do not wander into poor regions. Thus small diffusion leads to the
maximum carrying capacity and is selected. Unfortunately it is easy to prove that
the carrying capacity is maximised by an intermediate diffusion rate. Of course the
above argument is not correct for it is the question of invasion by small numbers
of a new phenotype (with the environment represented by a − ũ, where ũ is the
density of the resident species) which must be settled. It is well known that it is not
the case that all successful mutations are beneficial in the sense that they increase
the carrying capacity.

Easy intuitive arguments are not readily found and we shall therefore rely mainly
on the mathematical results rather than on (possibly fallible) intuition. Unfortunate-
ly, results concerning the global dynamics of the above mentioned system appear
to be quite difficult to obtain. Therefore, we adopt the following approach. Assume
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that for the parameters (ρ0, L0) the phenotype u is at a positive equilibrium ũ(x),
i.e. ũ(x) satisfies,

0 = Dρ0,L0 ũ+ ũf (ũ, x),

and suppose that a mutant with one parameter changed, e.g. (ρ1, L0) or (ρ0, L1),
is introduced. We then ask whether the mutant (which is always introduced with
very small numbers) will or will not invade successfully. Mathematically, this cor-
responds to determining the stability of the semi-trivial equilibrium (ũ, 0). This
in turn requires an understanding of the principal eigenvalue associated with the
linearization at (ũ, 0); if it is positive the invasion attempt is successful; if it is
negative the mutants die out.

The technical background for this approach is, in the case of reaction-diffusion
equations, extremely well known. For dispersal of the form (1.2) this is not the
case. The analysis of the dynamics of such equations seems largely to have taken
place in the context of physically motivated problems (see [10], [11], [38] and [1])
and some results are available; see also [25] for a discussion and references from
a different point of view. Although the fact that the dispersal is represented by a
bounded operator may seem at first sight to simplify matters, as can be seen from
[6], under some circumstances quite the opposite is the case. At any rate, it is con-
venient (and safer) to present briefly some basic results in the form needed here
and this is done in Sections 3, 4 and 5. For example, using the results of Section 3,
we prove the following.

Suppose (1.1) has a positive solution ũ. Then, ũ is the global attractor for all
solutions with initial conditions consisting of non-trivial, non-negative functions.

As we have remarked above, the dispersal is controlled by two parameters. The
rate ρ is analogous to the diffusion coefficient in the setting of reaction diffusion
models. We conjecture that if the spread L is held fixed, i.e. L0 = L1 and ρ0 < ρ1,
then even in the more general context of (1.6) and (1.7) the same result as for
the reaction diffusion holds: slow dispersal is always selected. More precisely, the
semi-trivial equilibrium (ũ, 0) is the global attractor for the cone of initial con-
ditions consisting of non-trivial, non-negative functions. In Section 5 we prove a
partial result along these lines, see further remarks in Sections 5 and 8.1.

These results indicate that the selection appears to be a remarkably robust phe-
nomenon: if the resource is spatially heterogeneous, but temporally constant, then
the slowest disperser is always selected, this result being independent of the form
of the kernel. However, the overall picture changes radically if the rate is fixed and
invasion by phenotypes with different spreads are considered; this is the main focus
of the discussion of the non-local dispersal in this paper.

For the remainder of the paper, we fix the rate and consider the invasion of
phenotypes with different spread. The results in this setting are considerably more
varied, and substantially more difficult to obtain. The first point that needs to be
addressed is how to choose an interesting 1-parameter family of kernels with com-
parable spreads. This is done in Section 2.4 where we introduce the concept of a
dispersal budget and use this to restrict our attention to kernels of equal cost.

Even with this restriction, comparing different spreads is difficult. Thus, as a
first step we limit our analysis to the case where |L1 − L0| � 1. With spread it
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appears that the behaviour near the boundaries of the domain may play an important
role. We essentially consider two cases. In Section 6 we study the most obvious
case which we term ‘hostile surroundings’; here individuals which disperse outside
a finite region, [0, l], die. In Section 7, we imagine an infinite but periodic envi-
ronment. A variant of this is to say that the boundary reflects back all individuals
which reach it. The advantage of these latter approaches is that the boundary does
not play a crucial role.

An interesting phenomena is observed. ForL0, L1 sufficiently small, the smaller
spread is preferred. More precisely, the semi-trivial equilibrium (ũ, 0) correspond-
ing to the phenotype with smaller spread is stable. In other words, the phenotype
with larger spread cannot invade.

On the other hand, if the spread is sufficiently large then under certain cir-
cumstances the selection of larger spread is possible; these questions are treated
in Sections 6 and 7. A significant conclusion is that no simple intuitive view of
selection seems possible. We discuss these matters in Section 8, where we review
the mathematical and biological results of this investigation.

2. Derivation of the model

2.1. Infinite environment

Consider a single species in an n-dimensional habitat where it is presumed that the
population can be adequately modelled by a single function, u(x, t), which is the
density at position x at time t . We will derive a continuous model for the population
dynamics for this species by considering in detail a situation discrete in both space
and time, and then letting the size and time intervals become small. Although the
approach has some similarities with the classic derivation of the Laplacian via a
random walk, here it is not presumed that individuals move from a given patch via
a binomial distribution. For a derivation of the diffusion model, we cite [30] and
[29] among the huge number of references on this topic.

For clarity of exposition, we derive the continuous model for the case n = 1,
and claim that it is straightforward to generalize to arbitrary dimension. Divide R

(the habitat) into contiguous sites, each of length �x. Discretize time into steps
of size �t . Let u(i, t) be the density of individuals in site i at time t . We wish
to derive the change in the number in this site during the next time interval. The
first assumption is that the rate at which individuals are leaving site i and going to
site j is constant. Thus the total number should be proportional to: the population
in the interval i, which is u(i, t)�x; the size of the target site, which is �x; and
the amount of time during which the transit is being measured, �t . Let α(j, i)
be the proportionality constant. Then, the number of individuals leaving site i
during the interval [t, t +�t] is

∞∑
j=−∞
j �=i

α(j, i)u(i, t)(�x)2�t. (2.1)
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It is biologically reasonable to insist that the mean and variance of the distances
moved are finite. Hence

∞∑
j=−∞
j �=i

α(j, i)�x,

∞∑
j=−∞
j �=i

|j − i|α(j, i)(�x)2 and
∞∑

j=−∞
j �=i

|j − i|2α(j, i)(�x)3

(2.2)

will all be assumed finite. Later these sums will be interpreted as integrals.
During this same time interval, the number of arrivals to site i from elsewhere

is
∞∑

j=−∞
j �=i

α(i, j)u(j, t)(�x)2�t. (2.3)

Finally, within each site we allow for the birth and death of individuals. Let
f (u(i, t), i) denote the per capita net reproduction rate at site i at the given popu-
lation density. Again, we assume that this rate is constant over the time interval in
question. Then the number of new individuals at site i is

f (u(i, t), i)u(i, t)�x�t. (2.4)

Combining these expressions, we deduce that the population density at location i
and time t +�t is given by

u(i, t +�t) = u(i, t)+
∞∑

j=−∞
j �=i

α(i, j)u(j, t)�x�t

−
∞∑

j=−∞
j �=i

α(j, i)u(i, t)�x�t + f (u(i, t), i)u(i, t)�t. (2.5)

There are several different limits which can be taken here, each of which results in
a different model. Our interest is in the integro-differential equation obtained by
allowing both �t → 0 and �x → 0, viz.

∂u

∂t
(x, t) =

∫ ∞

−∞
[α(x, y)u(y, t)− α(y, x)u(x, t)] dy

+f (u(x, t), x)u(x, t). (2.6)

It is worth observing that, unlike the derivation of the Laplacian, we are not impos-
ing a constraint on the relative rates at which �t → 0 and �x → 0.

We shall assume throughout that the rate of transition between the various patch-
es, α(x, y), is homogenous and only depends on the distance between patches i.e.
upon |x − y|. Equation (2.6) may now be written as

∂u

∂t
= f (u, x)u+ ρ

[∫ ∞

−∞
k(x − y)u(y) dy − u(x)

]
(2.7)



The evolution of dispersal 489

where k is an even function with∫ ∞

−∞
k(s) ds = 1, (2.8)

and

ρ :=
∫ ∞

−∞
α(|y|) dy. (2.9)

2.2. Parameter dependence

As indicated in the introduction, we are concerned with how evolution might select
dispersal parameters; particularly the spread and rate of diffusion. When we want
α to explicitly depend upon a parameter, say τ , then we write ατ . It is easy to
quantify the notion of rate, it is just the multiplicative factor ρ already introduced
in equations (2.9) and (2.7). To treat the idea of ‘spread’, it is reasonable to preserve
the shape of the function α but allow it to be stretched or contracted. Thus, for a
given function k, we are led to define the spread parameter L by the manner in
which it modifies k to kL. Specifically, we define

kL(x) = 1

L
k

( x
L

)
. (2.10)

If, for example, L is doubled, then the mean distance between natal and parental
nest sites is doubled. Later, in Sections 2.3.2 and 2.3.3, we shall have a kernel func-
tion K(x, y) derived from k and when this is required to depend explicitly upon L
we shall write KL(x, y). The dependence of K upon L may be quite complicated
but will always be based on the assumption that it is derived from the corresponding
kL given by equation (2.10), see equation (2.13) for example.

2.3. Finite region

Thus far the habitat has been considered to be infinite in extent. Without some
qualifications, this leads to technical difficulties. Furthermore, it is biologically un-
realistic. With this in mind we modify equation (2.7) to apply to a habitat in R of
length l which occupies the region [0, l]. There are two natural ways in which this
may be done, and each is considered in turn in the following subsections.

2.3.1. Hostile surroundings
Suppose that the habitat outside the interval [0, l] is so hostile that all individuals
which land there immediately die. Then the density may be set to zero outside this
region and so equation (2.7) becomes

∂u

∂t
= ρ

{∫ l

0
k(x − y)u(y) dy − u

}
+ f (u, x)u. (2.11)

Notice that
∫ l

0 k(x − y) dy is less than unity for each x unless the support of k is
contained in [−l/2, l/2].
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When the kernel k depends upon the spread parameter L as in equation (2.10)
then equation (2.11) becomes

∂u

∂t
= ρ

{
1

L

∫ l

0
k

(
x − y

L

)
u(y) dy − u

}
+ f (u, x)u. (2.12)

2.3.2. Periodic environment
It is easy to believe that with hostile surroundings the behaviour near the boundary
may play an important role in the dynamics. The simplest way to exclude these
effects is to assume that the environmentally dependent reproduction rate f (u, x)
and the density u(x) are periodic in x with period l. In this case

∫ ∞

−∞
k(x − y)u(y) dy =

∞∑
i=−∞

∫ (i+1)l

il

k(x − y)u(y) dy

=
∞∑

i=−∞

∫ l

0
k(x − y − il)u(y + il) dy

=
∫ l

0
u(y)

[ ∞∑
i=−∞

k(x − y + il)

]
dy.

When the spread parameter is included, k must be replaced by kL as in equation
(2.10) yielding the kernel KL where

KL(x) = 1

L

∞∑
i=−∞

k

(
x + il

L

)
. (2.13)

The model equation may be written as

∂u

∂t
= f (u, x)u+ ρ

{∫ l

0
KL(x − y)u(y) dy − u(x)

}
, (0 ≤ x ≤ l). (2.14)

Note that the kernel function KL is non-negative, periodic (with period l) and
satisfies

∫ l

0
KL(y) dy = 1. (2.15)

Data suggests that there are a variety of different plausible forms for the trans-
port function (see [22] and references therein). Following [34] we shall sometimes
choose k to be a back-to-back exponential. Its dependence upon the spread param-
eter L, see equation (2.10), is then given by

kL(x) = exp (−|x|/L)
2L

(x ∈ R). (2.16)
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It is now easy to show that

KL(x) =
cosh

|x| − l/2

L

2L sinh
l

2L

(|x| ≤ l). (2.17)

2.3.3. Reflecting boundary
Instead of the environment being periodic, there is a different way in which peri-
odicity may occur. Suppose that the animals (or plants) are confined to the region
x ∈ [0, l] and that whenever they reach a boundary they are reflected back into this
region. Then, provided only that

∂f

∂x
(u, 0) = 0 = ∂f

∂x
(u, l), (2.18)

the problem is equivalent to one in which the environment has period 2l and is
symmetrical about x = 0. This model has the merit of preventing any loss of ani-
mals at the boundaries. The dispersal kernel is obtained in a similar manner to that
for the periodic environment and the result is

∂u

∂t
= ρ

{∫ l

0
K(x, y)u(y) dy − u

}
+ f (u, x)u (2.19)

where

K(x, y) =
∞∑

i=−∞
[k(x + y + 2il)+ k(x − y + 2il)].

2.4. The dispersal budget

Suppose that the amount of energy per individual that the organisms can expend up-
on dispersal is fixed (because of environmental and developmental constraints). As
an example, consider a tree producing and dispersing seed. Evolutionarily speak-
ing, the species can ‘choose’ to disperse a few seeds over a long distance or many
over a short distance or some compromise. Similar considerations may be applied
to animals or birds moving away from their natal site and finding their own site to
reproduce. We assume that the costs involved in dispersal are proportional to:

– the number of individuals dispersed,
– a nondecreasing, even function F of the distance moved.

Now the amount of seed transferred from site i to site j in time �t is

α(j, i)u(i, t)(�x)2�t.

Thus, the cost associated with this is

F(i − j)α(j, i)u(i, t)(�x)2�t.
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With the above assumptions, the total cost (or energy consumption) in time �t for
a typical site is

∫ ∞

−∞
F(y)α(y) dy [u(x, t)�x]

and so if the amount of energy expended per individual is fixed then
∫ ∞

−∞
F(y)αL(y) dy = constant. (2.20)

Our ultimate goal is to compare different dispersal strategies. To make a fair
comparison it is reasonable to assume that the cost function F is fixed, but allow
the transport function α (and hence k) to depend upon a parameter L in the manner
shown in equation (2.10). Thus

αL(x) = ρ(L)
k(x/L)

L
. (2.21)

where, as in equation (2.8), the integral of k is unity. Let us choose

F(y) ∝ |y|m (m ≥ 0) (2.22)

as the simplest possibility. Equations (2.20), (2.21) and (2.22) imply that

ρ(L) = ρ0L
−m, (2.23)

where ρ0 is a constant.
Fixing the energy budget means that, evolutionarily speaking, the species has

the choice between large L, in which the dispersal rate is small but the seeds move
large distances, and small L (larger dispersal rate but the seeds are spread over
smaller distances). Our objective will be to determine which option is successful,
or whether some intermediate value of L is selected.

The dispersal will always depend upon the two parameters ρ0 and L. Addition-
ally it may depend upon m, the cost parameter, but often this will be taken to be
zero. As mentioned in the introduction, ρ (or ρ0 when m = 0) is called the rate
of dispersal. It measures the rate of flow of the animals (or seeds) at any point. As
explained in Section 2.2, L is a measure of the spread of the animals.

2.5. Summary of the model

The governing equation for the population dynamics of a single species is taken to
be

∂u

∂t
= uf (u, x)+Du, (2.24)

whereD is the dispersal operator. We shall concentrate on two models subsequent-
ly; the hostile surroundings case, where Du is given in (2.12), and the periodic
case, where Du is given in (2.14). In each case ρ = ρ0L

−m from equation (2.23).



The evolution of dispersal 493

The reflecting boundary case, see Section 2.3.3, may also be treated very similarly.
In both cases we have

∫ l

0
Dudx ≤ 0. (2.25)

For the periodic (and reflecting boundary) cases the number of individuals is pre-
served by dispersal and there is equality in (2.25). For the hostile surroundings,
if k > 0 the inequality is strict. There will be certain similarities with the classi-
cal Laplacian operator with zero Dirichlet or mixed boundary conditions, whereas
the periodic case will be more similar to the case where there is a zero Neumann
condition.

Although it is possible to treat a more general case in which f satisfies the
conditions (1.4), we shall, for simplicity, assume from here on that the reaction
term is of the logistic form (1.5).

It is convenient to list here certain conditions which are assumed in the sequel
unless there is a specific indication to the contrary.

(C1) a ∈ C1[0, l] is strictly positive and, in the periodic case, a ∈ C1(R).
(C2) k ∈ C1[0,∞) is even and strictly positive.
(C3) k(x) and x2k(x) ∈ L2(R+). These conditions are required by (2.2).

Relaxing the condition a(x) > 0 for all x ∈ � still allows much progress to be
made, but this condition is assumed for simplicity. We need to develop some theory
in the next section and in order to do this, without unnecessarily restricting the gen-
erality, we write the dispersal operator in terms of a fairly general integral operator.
We define

D = ρE = ρ{X − I } (2.26)

where

(Xu)(x, t) =
∫ l

0
β(x, y)u(y, t) dy. (2.27)

3. Some basic theory for non-local dispersal

In Section 2 we derived various parameterized classes of kernel, a particular choice
of parameter, say τ , representing a dispersal phenotype. We shall eventually
consider a τ -phenotype at equilibrium and investigate whether a τ ′-phenotype,
introduced in small numbers (say by mutation) into the population, can invade. For
a dispersal process modelled by the Laplacian, the technicalities needed are ex-
tremely well known, see [4] for example. However, non-local processes governed
by integral operators differ in some important respects and we must now outline
certain basic elements of the theory needed. In this section we discuss the scalar
case and in Section 4 the system. In order not to interrupt too much the continuity
of the account, we have placed some of the proofs in an appendix. We first consider
the analogue of the idea of a principal eigenvalue. It is well known that there is a
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maximum principle, see [9] for example. We next derive a convenient form of this
and use it to give conditions for the existence of an equilibrium.

For illustration, let� = [0, l] where 0 < l < ∞ but note that the theorems and
proofs in this section extend almost exactly to an n-dimensional cube in R

n. For
1 ≤ p ≤ ∞, let ‖ · ‖p denote the Lp norm and let H be the Hilbert space L2 with
inner product (·, ·). Let C, C1 be the usual Banach spaces of continuous and once
differentiable functions � → R.

We list the following conditions, with X defined by equation (2.26):

(H1) β : �×� → R is continuous, symmetric and non-negative.
(H2) X : Lp → C1 is continuous. (Note that this condition holds for the kernels

discussed in Section 2, including exp(−|x|), or if β is C1.)
(H3)

∫
�
β(x, y) dy ≤ 1 (x ∈ �).

(H4) β(x, y) > 0 (x, y ∈ �).
The concept of asymptotic stability (i.e. local stability) of an equilibrium is crucial
in the present investigation. The key fact is that there is a close analogy with the idea
of a principal eigenvalue (PEV) for linear elliptic operators. However, because (as
discussed in the introduction) there is a difference in the ‘compactness’ behaviour
of the dispersal operators, we need to prove the above assertion with care. The proof
of the next theorem is given in Appendix B.1.

We consider X,H : H → H where

Hu(x) = h(x)u(x). (3.1)

Let σ(·), σp(·) denote the spectrum and point spectrum respectively.

Theorem 3.1. Assume that (H1) holds and h ∈ C. Then H,X and M are self-ad-
joint, whereM = ρX+H . Suppose in addition that h is Lipschitz and β(x, x) > 0
(x ∈ �). Then M has a PEV λ0 given by

λ0 = max
‖u‖2=1

(Mu, u), (3.2)

the maximum being attained for a strictly positive, continuous eigenfunction φ, say,
which is unique. Also σ(M) ⊂ (−∞, λ0].

The eigenfunction problem forM is not, so far as the authors are aware, completely
standard, and we therefore add the following remarks concerning the conditions
on h and β in the theorem. As a glance at the proof reveals, there are a number
of alternative conditions which would yield the result and our choice is simply for
convenience in the present context. However, it is worth noting that if the Lipschitz
condition on h is replaced by continuity then an example may be easily found for
which the eigenvalue problem has no positive eigenfunction. A similar remark ap-
plies if the condition β(x, x) > 0 is weakened to β(x, x) ≥ 0 and β non-trivial. It
is inappropriate to pursue these questions in the present context.

It will be assumed in the rest of this section that (H1)–(H4) all hold. For T > 0,
let ST = �× (0, T ), QT = �× {T } if T < ∞, otherwise QT = ∅.
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Theorem 3.2. (Strong Maximum Principle). Take T > 0. Assume that c̃ : � ×
[0,∞) is continuous.

Suppose that u(x, 0) ≥ 0, u is continuous in x and C1 in t and u satisfies the
following equation:

∂u

∂t
≥ Du+ c̃(x, t)u.

Then the following alternative holds.

Either u > 0 in QT ∪ ST
or ∃t∗ ≤ T such that u(x, t) = 0 (x ∈ �, 0 ≤ t ≤ t∗) and u(x, t) > 0
(x ∈ �, t > t∗).

Proof. See Appendix B.2. ��

We consider the (scalar) equation

du

dt
= Du+ u(a − u), (3.3)

with initial condition u(x, t) = u(x, 0). By a solution (or subsolution or super-
solution) we mean a function that is continuous in x and C1 in t . Following [6],
the notation u ∈ C1([0,∞), C) will be used. We now develop the analogue of the
sub/super solution method for the scalar parabolic case.

Definition 1. A function u with the above smoothness condition properties is said
to be a subsolution in QT if

du

dt
≤ Du+ u(a − u). (3.4)

A supersolution is defined similarly by reversing the inequality.

The following result is analogous to the classical theory (for example [9], Theorems
4.1 and 4.2 or [33], pp. 54, 55). Since essentially the same maximum principle holds
(Theorem 3.2), the proofs of Theorems 3.3 and 3.4 are minor amendments and are
omitted.

Theorem 3.3. (Comparison). Letu, ūbe sub/supersolutions withu(x, 0) ≤ ū(x, 0).
Then either

u < ū (in ST ∪QT )

or, for some t∗ > 0,

u = ū (in St∗ ∪Qt∗).

Theorem 3.4. Let u(x) be a stationary subsolution and u a solution with u(x, 0) =
u(x). Then either u is a solution or u is strictly increasing in t for each fixed x.

Theorem 3.5. (Existence). Suppose that u(x, 0) is continuous and non-negative.
Then equation (3.3) has a continuous, non-negative solution for all t > 0.
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Proof. Obviously a large constant, c, is a supersolution and zero is a subsolution,
so 0 ≤ u(x, t) ≤ c. We have an a priori bound and global existence in L∞ follows
from [6]. The continuity is just a consequence of the continuous dependence on
initial conditions for an ordinary differential equation. ��
Theorem 3.6. Suppose that u(x) is a non-trivial, non-negative subsolution. Then
equation (3.3) has exactly one, strictly positive, C1, stationary solution. This is
globally stable (for solutions with non-trivial initial conditions) in the sense of
pointwise convergence.

Proof. Since there is a constant supersolution, from Theorem 3.5 a continuous solu-
tion u(x, t) with u(x, 0) = u(x) exists and from Theorem 3.4 it is non-decreasing.
Now note that u(x) cannot be a solution if u(x0) = 0 for some x0. For if it were,
putting x = x0 in equation (3.3) gives

∫
�

β(x0, y)u(y) dy = 0,

which is impossible as β > 0 and u is non-trivial. With this in view, we can see
from Theorem 3.4 that u(x, t) > 0 (x ∈ �, t > 0).

We thus have an increasing sequence {u(x, tn)}, say of continuous functions
which is bounded above and thus converges to an L∞ function ũ (because continu-
ous functions are measurable, and a convergent sequence of measurable functions is
measurable and henceL∞). From the monotone convergence theorem (proceeding
to a sequence if necessary) we see that

lim
t→∞

∫
�

β(x, y)u(y, t) dy =
∫
�

β(x, y)ũ(y) dy.

It follows that

lim
t→∞Du(x, t) = (Dũ)(x). (3.5)

We claim that ũ is an equilibrium. To see this let

(Fu)(x, t) = ρ

∫
�

β(x, y)u(y, t) dy + u(x, t)[a(x)− u(x, t)− ρ],

so that equation (3.3) is just ∂u/∂t = Fu. We wish to show that F ũ = 0. Suppose
the contrary. Then ∃x0 ∈ � such that (F ũ)(x0) > 0. Thus from equation (3.5),
∃δ > 0 and t0 such that F ũ(x, t) ≥ δ for t ≥ t0. Therefore

∂u

∂t
(x0, t) ≥ δ (t ≥ t0),

and it follows that u(x0, t) → ∞ as t → ∞. This contradicts the definition of ũ.
To show that ũ isC1, note first that since it isL∞ and β is continuous, certainly

Xũ is continuous. Now ũ satisfies the equation

ũ2 − (a + ρ)ũ− ρXũ = 0,
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and the positive solution of this is

ũ = a + ρ +
√
(a + ρ)2 + 4ρXũ

2
.

The differentiability of ũ follows from that of a and Xũ.
The proof of uniqueness follows from a contradiction argument. Suppose that

there are two positive solutions u1 and u2. Set w = u1 − u2. Then

Du1 + u1(a − u1) = 0,
Dw + w(a − u1 − u2) = 0.

With L = D + a − u1, these may be written as

Lu1 = 0, (3.6)

Lw − u2w = 0. (3.7)

Equation (3.6) shows that zero is the principal eigenvalue ofL. From equation (3.7)
the principal eigenvalue of L−u2 is also zero. However, this contradicts the varia-
tional principle 3.4 applied successively withh = a−1−u1 andh = a−1−u1−u2.

To prove the global stability, note first that if u is a subsolution then so is εu
for 0 ≤ ε ≤ 1. Clearly, if u(x, 0) is non-trivial then u(x, t) > 0 for t > 0 (from
Theorem 3.4). Hence one may choose t0 and ε > 0 such that u(x, t) > εu(x) for
t ≥ t0. Changing the time origin to t0, it is clear that u(x, t) lies between solutions
u1, u2 with u1(x, 0) = εu(x) and u2(x, 0) = C, where C is a large constant, and
u1, u2 are non-decreasing, non-increasing respectively. These tend to solutions as
t → ∞ and the global stability follows from the uniqueness. ��
Remark. Of course the condition that the PEV of the linearization about zero is
positive, is sufficient for the existence of a subsolution.

Example 3.7 (The periodic case (including reflecting boundaries)). From equation
(2.15),

∫
�
β(x, y) dy = 1 for x ∈ �. With u = ε, Du = 0 and so

Du+ u(a − u) = ε(a − ε) > 0

for small enough ε. Therefore, from Theorem 3.6, there is a unique, positive so-
lution ũ. Suppose now that D = τE where τ > 0 and E is fixed. Then it is easy
to prove the following by the contraction mapping principle since E is a bounded
operator. In the sense of C,

ũ = a +O(τ) (τ � 1). (3.8)

Example 3.8 (Hostile Surroundings). Suppose that

Du = ρ0L
−m(XLu− u).

With m = 0, ũ exists for small enough ρ0. To see this, note that

(Du)(x) ≥ −ρ0u(x) (x ∈ �).
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Hence, with u = ε,

Du+ u(a − u) ≥ −ρ0u+ u(a − u)

= ε(a − ρ0 − ε)

> 0

for ρ0 < minx∈� a(x) and ε sufficiently small.
In contrast with the first case, if m �= 0 it is not at all clear whether or not such

a solution exists for all L. In fact there is numerical evidence (for the special case
when the kernel is based upon 1

2 exp(−|x|) and m = 1) that the solution ũ may
disappear and then reappear as L decreases! For this reason, we shall confine the
investigation of the hostile surroundings case to the relatively easy case of m = 0.

4. Invasion by a mutant

We lay down here the basic structure for the analysis of dispersal. Consider a spe-
cies whose dispersal depends smoothly on a dispersal parameter τ , and suppose
that the species is at its non-zero equilibrium, ũ, say. Assume that a small number
of a different phenotype with dispersal parameter τ ′ is introduced, possibly by mu-
tation. We enquire whether or not the new phenotype will invade. This is done by
carrying out a local stability analysis. Thus we consider the system

D(τ)u+ u(a − u− v) = ∂u

∂t
, (4.1)

D(τ ′)v + v(a − u− v) = ∂v

∂t
, (4.2)

and enquire whether the equilibrium (ũ, 0) is asymptotically stable.
Define linear operators L1 and L2 by setting

L1(τ )u = D(τ)u+ (a − ũ)u, (4.3)

L2(τ )u = L1(τ )u− ũu. (4.4)

Noting that both of these operators are of the form treated in Theorem 3.1, we let
λ(τ) denote the PEV of L1(τ ). By definition, ũ satisfies the equation

D(τ)ũ+ (a − ũ)ũ = 0, (4.5)

which implies that ũ is the principal eigenfunction corresponding to the PEV zero.
Therefore

λ(τ) = 0. (4.6)

A standard linearization procedure leads to the operator L : H × H → H × H,
where

L(u, v) =
[
L2(τ )u − ũv

L1(τ
′)v

]
. (4.7)

This is of upper-triangular form and one may expect that the asymptotic stability
of (ũ, 0) is determined by λ(τ ′). This is confirmed by the following result which is
proved in Appendix B.3.
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Lemma 4.1. The equilibrium (ũ, 0) is asymptotically stable in C if λ(τ ′) < 0 and
unstable if λ(τ ′) > 0.

The biological consequence is as follows.

Note 4.1. By definition λ(τ ′) is the PEV of the equation

D(τ ′)φ + (a − ũ)φ = λ(τ ′)φ. (4.8)

The phenotype with dispersal parameter τ ′ can invade from small numbers if λ(τ ′)
is positive and will go to extinction if it is negative.

We shall see in the next section that in a certain class of cases, we can imme-
diately deduce the sign of λ(τ). However, in general this will be analytically very
difficult and we therefore now outline our approach for the case when (τ − τ ′) is
small. Biologically this is not unreasonable as it corresponds to a small phenotypic
change. The analysis is formal (but could be justified rigorously) and is based on
the broad assertion that an expansion in powers of ε, where ε = τ ′ − τ , is valid.
Recalling that λ(τ) = 0, we write

φ = ũ+ εφ1 + . . . ,

λ(τ + ε) = ελ1(τ )+ ε2λ2 + . . . ,

D(τ + ε) = D(τ)+ εD1(τ )+ . . . .

Here D1(τ ) is a linear operator, the Frechét derivative of D with respect to τ eval-
uated at τ . Substituting into equation (4.8) and picking out the terms in ε0, ε1 we
see that the first is satisfied because of equation (4.5) and we obtain the equation

D(τ)φ1 + (a − ũ)φ1 = λ1(τ )ũ−D1(τ )ũ. (4.9)

Multiplying by ũ, integrating over� and using self-adjointness, we obtain the result

λ1(τ ) = (D1(τ )ũ, ũ)

‖ũ‖2 . (4.10)

Therefore, for small ε, λ(τ + ε) has the same sign as (D1(τ )ũ, ũ) and if this is
known we can immediately determine whether a mutant with slightly different
dispersal parameter will invade. In other words we can determine whether, in an
evolutionary sense, a larger or smaller dispersal parameter is preferred.

It has to be emphasised that the analysis is local in two senses: the number
of invaders is small and the phenotypic difference between the invaders and the
residents is small. The global questions are a great deal harder than for the diffusion
case treated in [4].

An important remark is that λ1(τ0) = 0 when (D1(τ0)ũ, ũ) = 0. We may
then call τ0 an evolutionary equilibrium, which will be an evolutionary attractor or
repeller depending on whether λ2(τ ) is negative or positive.

The tactics that we have used to discuss the evolution of dispersal have simi-
larities with evolutionarily stable strategies (ESS) and with adaptive dynamics. A
criticism that can be levelled at the ESS approach is, to quote [26], that ‘only the
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statics of adaptive evolution was considered’. Indeed, [26] suggest that evolutio-
narily unbeatable strategy is a better name for the fundamental entity involved.
Although adaptive dynamics does, as its name suggests, attempt to overcome this
shortcoming, it does not usually include a detailed model of population dynamics.
Rather it is based upon the notion of fitness, see for example [16]. It is doubtful
that such an approach is adequate in the context of dispersal.

5. The selection of dispersal rate

As outlined in the introduction, it is shown in [4] for the case of classical diffu-
sion with dispersal ρ�u, that small ρ is always selected. In the present case the
first step must be to carry out an analogous investigation and consider the special
case where the dispersal parameter ρ is simply a scaling factor multiplying a fixed
non-local dispersal operator, which we designate by E = X− I , so that D = ρE.
It is convenient to abbreviate and use the term ‘dispersal rate’ for ρ. Remarkably,
our analysis suggests exactly the same conclusion as [4]: the smaller rate is always
selected. This result is surprisingly robust and requires only mild restrictions on the
details of the dispersal.

Take then

(Eu)(x) =
∫
�

β(x, y)u(y) dy − u(x) (5.1)

Du = ρEu = ρ(Xu− u), (5.2)

and consider the system

du

dt
= ρEu+ u(a − u− v), (5.3)

dv

dt
= ρ′Ev + v(a − u− v). (5.4)

The following lemma, a generalisation of [4], Lemma 2.1, rapidly settles the issue.
From Note 4.1, the asymptotic stability of (ũ, 0) is determined by the sign of λ(ρ′),
the PEV of the equation

ρ′Eφ + hφ = λ(ρ′)φ, (5.5)

where h = a − ũ and ũ is the solution to

ρEũ+ ũ(a − ũ) = 0. (5.6)

Lemma 5.1. (ρ′ − ρ)λ(ρ′) < 0 for ρ �= ρ′.
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Proof. Suppose that ρ′ > ρ. (The case ρ′ < ρ is similar.) From Theorem 3.1,

λ(ρ) = max
φ∈C

ρ(Eφ, φ)+ (hφ, φ)

‖φ‖2

= max
φ∈C

(ρ − ρ′)(Eφ, φ)+ ρ′(Eφ, φ)+ (hφ, φ)

‖φ‖2

≥ (ρ − ρ′)[(Eφ(ρ′), φ(ρ′))+ ρ′(Eφ(ρ′), φ(ρ′))+ (hφ(ρ′), φ(ρ′))]
‖φ(ρ′)‖2

= λ(ρ′)+ (ρ − ρ′)(Eφ(ρ′), φ(ρ′)), (5.7)

where φ(ρ′) has been used as a trial function in the maximisation. Clearly the result
will follow if can be shown that (Eφ(ρ′), φ(ρ′)) < 0.

From Lemma A.1, this inequality holds unless φ(ρ′) = 1 and (E1)(x) = 0
for x ∈ �. But in this case there is equality and from equation (5.7) we have
0 = λ(ρ) ≥ λ(ρ′). If λ(ρ′) = 0 then from equation (5.5) h = 0 and ũ = a. Equa-
tion (5.6) now implies that Ea = 0 and hence, from Lemma A.1, a is a constant
which contradicts (H2). ��

Of course, from equation (5.6), λ(ρ) = 0, so the lemma shows that λ(ρ′) < 0 if
ρ′ > ρ. We further remark that a slight extension of this result, taking h = a− ũ− ṽ
instead, shows that there cannot be a stationary co-existence solution to equations
(5.3) and (5.4). In the case of the analogous reaction-diffusion system, it was proved
in [4] that, as a consequence, (ũ, 0) is globally stable (for solutions with non-trivial
initial values) and it is natural to enquire whether the same result also holds in the
present case. The following result goes some way towards establishing this, but the
basin of attraction is severely limited. It appears that a global result may be proved,
but the details are complicated, and it is not appropriate to present them here.

The following convention is used for two functions u1, u2 : u1 ≤ u2 means
that u1(x) ≤ u2(x) (x ∈ �), and u1 < u2 implies that, in addition, u1(x) �= u2(x)

for some x ∈ �. The proof of the following lemma is given in Appendix B.

Lemma 5.2. Assume that ρ′ > ρ. Suppose that (u0, v0) ∈ C × C satisfies the
relations

0 < u0 < ũ, 0 < v0 < ṽ.

Let (u, v) be the solutions of equations (5.3) and (5.4) with initial value (u0, v0).
Then (u, v) → (ũ, 0) pointwise.

We have thus proved that qualitatively exactly the same result holds for dispersal
operators D = ρE as for the Laplacian. That is smaller dispersal rate is always
selected (this refers to a small number of invaders, i.e. it is a local result). This
holds for any biologically reasonable dispersal. The result is counter-intuitive from
a biological point of view, although in some circumstances (birds on islands) low-
er dispersal appears to be selected very strongly, see [7]. In the next section, we
proceed with the plan outlined in the introduction of considering a parameterized
family of kernels, where the parameter determines the spread rather than the rate
of dispersal, and examine the issue of selection.
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6. The evolution of the dispersal spread – periodic environment

We showed in the last section that if only the rate of dispersal is considered then
reduced rate is always favoured by evolution. We now consider variation in the
dispersal width or spread, which was introduced in Section 2, while fixing the rate
ρ0. We concentrate upon what is mathematically the easier case, that is the periodic
environment, which includes the case of no migration across the boundary (and
reflecting boundary). This has similarities with the case of zero Neumann condi-
tions for the Laplacian. It is difficult to make any progress theoretically unless we
assume that (ρ − ρ′) is small, and we do this here.

For definiteness, let us recall the notation from Section 2. We start with a dis-
persal mechanism on an infinite interval with kernel kL. The dispersal operator D
is then defined by

(Du)(x) = ρ0L
−m

{∫
�

KL(x − y)u(y) dy − u(x)

}
(6.1)

where ρ0 and m are constants with ρ0 > 0, m ≥ 0 and KL is given as in equation
(2.13). The object in the rest of this section is to determine the sign of λ1(ρ) from
equation (4.10) for the cases L � 1 and L � 1. The argument is heuristic.

6.1. L � 1

We first remark that if m > 0 then

ũ(x) ≈ a(x) (L → ∞). (6.2)

To see this, note that to a first approximation

lim
ε→∞ ε

∞∑
n=−∞

α(nε) =
∫ ∞

−∞
α(x) dx = ρ.

Taking ε = l/L, one finds that for large L

(Du)(x) ≈ ρ0L
−mEu(x)

where

Eu(x) = 1

l

∫
�

u(s) ds − u(x).

The approximation (6.2) follows from Example 3.7. When m = 0, an asymptotic
estimate is somewhat more difficult to obtain, but is not needed in the following
argument.
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Let

uc,n = 1

l

∫ l

0
ũ(x) cos

(
2πnx

l

)
dx,

us,n = 1

l

∫ l

0
ũ(x) sin

(
2πnx

l

)
dx,

k̂(s) = 4
∫ ∞

0
k(x) cos(sx) dx, (6.3)

k̂1(s) = 4s
∫ ∞

0
xk(x) sin(sx) dx. (6.4)

We impose rather strong assumptions on k, assuming that, in addition to (C1)–
(C3), xk(x) ∈ C4[0,∞) and k(n), the nth derivative of k, isL1(R+) for 0 ≤ n ≤ 4.
Integration by parts shows that for large s,

k̂(s) = O(s−2), (6.5)

k̂1(s) = − 8

s2 k
′(0)+O(s−3). (6.6)

We remark that an asymptotic approximation of the type (6.6) is only valid if one
of the odd derivatives k(2n+1)(0) �= 0; otherwise it appears to be more difficult to
obtain an approximation.

It is straightforward to show that λ has the same sign as

−m
[{

1

l

∫
�

ũ(x) dx

}2

− 1

l

∫
�

ũ2(x) dx

]

−
∞∑
n=1

{u2
c,n + u2

s,n}
{
mk̂

(
2πnL

l

)
+ k̂1

(
2πnL

l

)}
. (6.7)

Suppose first that m > 0 when, from the above remark, ũ → a as L → ∞. Then
it is easy to see from equations (6.5) and (6.6) that the summation term is small
relative to the first term. We deduce from Schwarz’s inequality that this first term
is positive and so λ is positive.

On the other hand, if m = 0 then, from equation (6.6),

sgn k̂1(s) = −sgn k′(0) (s � 1). (6.8)

If k′(0) �= 0 then for large L every term in the summation in equation (6.7) has the
same sign and it is clear that λ may take either sign. Simple examples are:

k(x) = 1

2
exp(−|x|) when λ < 0,

k(x) = 1

2
|x| exp(−|x|) when λ > 0.
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6.2. The case L � 1

The argument is far from rigorous, but we later provide confirmatory numerical
results. Unless x is near the boundary, one term is adequate in the summation for
KL and so

1

L

∫ l

0
KL(x − y)u(y) dy ≈ 1

L

∫ l

0
k

(
x − y

L

)
u(y) dy

=
∫ (l−x)/L

−x/L
k(Y )u(x + LY) dY

=
∫ (l−x)/L

−x/L
k(Y )

[
u(x)+ LYu′(x)+ L2Y 2

2
u′′(x)+ . . .

]
dY (6.9)

≈ u(x)+ 1

2
L2u′′(x)

∫ ∞

−∞
Y 2k(Y ) dY + . . . (6.10)

since k is even and is normalised by equation (2.8). Therefore, with c a positive
constant, equation (6.1) becomes

(Du)(x) ≈ cρ0L
2−mu′′(x). (6.11)

Also u satisfies the periodic boundary conditions

u(0) = u(l), u′(0) = u′(l). (6.12)

In the reflecting boundary case a similar argument gives

u′(0) = u′(l) = 0. (6.13)

In both case we obtain the diffusion given by equation (6.11) together with a bound-
ary condition leading to a self-adjoint operator. Therefore, when m < 2, we are
back in the case considered by [4] (or a slight variant of it). We conclude that λ is
negative when L is small and m < 2. That is small dispersal spread is always
favoured.

6.3. Summary

A rather similar analysis applies for the case when the boundary is reflecting. The
situation is summarised by Table 1.

For certain specific cases it may happen that k̂1(s) is of one sign for all s > 0. For
instance this occurs when k(x) = 1

2 exp(−|x|) and when k(x) = exp(−x2)/
√
π ,

where in each case k̂1(s) is positive, and it follows that when m = 0, λ < 0 for
all L. Usually k̂1(s) will not be of constant sign and conclusions are harder to find.

Form > 0 progress may be made with Fourier series when k(x) = 1
2 exp(−|x|).

When a(x) is simply 2 + cos(2πx) the curve in the (m,L)-plane upon which λ
is zero is shown as the dashed curve in Fig. 1. However, by choosing a(x) with
Fourier components of higher order, it is possible to to find examples in which λ
changes sign more than once as L is increased. Such a case is illustrated in Fig. 1
by the solid curve. Clearly the fact that this curve can meander around the plane
has important consequences for stability.
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Table 1. Summary of behaviour for the periodic case.

L m sgn λ

� 1 > 0 +1
� 1 0 sgn k′(0)
� 1 0 ≤ m < 2 −1

Fig. 1. Curves upon which λ is zero in the (L,m)-plane for two choices of a periodic
environment.

7. Hostile surroundings

In this case animals/seeds will die if they pass across the boundary. We may thus
expect that it is a disadvantage to have larger spread. Although this is generally the
case, it is possible to construct examples where an increase in spread is selected.
Indeed, there is an ‘evolutionarily unbeatable strategy’, see the discussion at the end
of Section 4. We also note that in this case there may be co-existence for appropriate
values of the parameters.

We remarked in Example 3.8 that ifm > 0, that is there is a cost to dispersal (as
discussed in Section 2), there may not even be a non-zero equilibrium solution. We



506 V. Hutson et al.

therefore restrict ourselves here to the casem = 0, and we assume, see Example 3.8,
that ρ0 < minx∈� a(x), so the semi-trivial solution ũ exists. The dispersal operator
is then defined (using the notation of equations (2.10) and (2.8)) as follows;

(Du)(x) = ρ0

{
1

L

∫ l

0
k

(
x − y

L

)
u(y) dy − u(x)

}
, (7.1)

where, recall from Section 2, k is even, strictly positive, C1 and

∫ ∞

−∞
k(z) dz = 1. (7.2)

Suppose first that L � 1. Then from equation (4.10) the sign of λ is the same
as

−
∫ l

0

∫ l

0
ũ(x)ũ(y)

{(
x − y

L

)
k′

(
x − y

L

)
+ k

(
x − y

L

)}
dy dx. (7.3)

Under the assumed smoothness condition on k, the bracketed term in (7.3) is
clearly positive for large enoughL, and we conclude that λ < 0 ifL is large enough.

Consider next L � 1. From equation (6.10), for positive c, except for x close
to 0 or l,

(Dũ)(x) ≈ cρ0L
2ũ′′(x). (7.4)

Thus it is plausible that ũ → a in L2 as L → 0. In the notation of Section 6.1, λ
always has the same sign as

−
∫ ∞

0
k̂1(yL){u2

c,y + u2
s,y} dy. (7.5)

It is easy to show that, for small yL,

sgn k̂1(yL) = sgn

(∫ ∞

0
x2k(x) dx

)
= 1

under the condition y
∫ ∞
y
xk(x) dx → 0 as y → ∞. If, as argued above, ũ → a

then uc,y and us,y will converge and be small for large y. Hence one may deduce
that λ < 0 for L � 1. The argument yielding the sign of (7.5) could obviously
be strengthened if the convergence of ũ could be proved. We shall not pursue this
question here, but we remark that the analogous problem for the diffusion case is
very well known.

We note that in the special case k(x) = 1
2 exp(−|x|), we can reduce the prob-

lem to an ODE and, with the help of Maple, prove that λ < 0 for all L. Numerical
experiments on the kernel exp(−x2)/

√
π confirm that λ < 0 for all L. However,

this is not always the case. As an example, let
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ũ(x) = 1 + 3x2 (|x| ≤ 1),

k(x) = 1

2
[δ(x − x0)+ δ(x + x0)] .

It is now easy to use equation (7.5) to show that λ is positive for a finite interval of
L. This example is artificial because ũ has been fixed rather than a(x). However,
since we know that λ is negative for large and small L, it does show that there is
an a(x) for which λ is positive somewhere, although the shape of the curve (as
just calculated) will not be correct. The form of k above implies that all individu-
als disperse by exactly the same distance x0. It is clearly possible to approximate
this artificial behaviour by a smooth, finite k and still retain the conclusion that λ
changes sign. With the choices

a(x) = 3.7 − 0.7 cos(2πx)+ 3 cos(10πx) (0 ≤ x ≤ 1)

k(x) = |x| exp(−x2)

the results of numerical computations are shown in Fig. 2 where λ evidently takes
positive values. It is to be noticed that the bifurcation as λ passes through zero
suggests that there can be stable co-existence.

We may broadly summarise the situation for the hostile environment case as
follows. For both small and large dispersal spread L, smaller spread is selected. In
all simple examples treated, this is true for all L. However, for some kernels k and
environments a(x) there will be a range of L in which larger spread is selected.

Fig. 2. λ (from 7.3) as a function ofLwhen k(x) = |x| exp(−x2) for a hostile environment.
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8. Discussion

This paper has two principal aims. The first is to set up and study a continuous
model of dispersal based upon an integral and the second is to consider the selec-
tion of dispersal in this framework. The mathematics is central in understanding the
selection and the mathematical and biological points are inextricably intertwined.
Nevertheless, it is convenient to comment on these issues separately.

8.1. Construction and properties of the model

Models (which are continuous in both space and time) for the dispersal of bio-
logical organisms have been discussed, for example, in [12] and [30]. While these
derivations are of great interest, they are of a rather general nature and here we
have derived in Section 2 a detailed model which takes into account the structure of
dispersal and in particular defines the parameters L and ρ0 for the spread and rate
of dispersal. Also, in Section 2.4, we introduce the idea of a dispersal budget and
the associated parameter m. Allowance is made for the effect of the environment
by way of the function a and we are able to model situations in which it is periodic
and also when there is a refuge surrounded by a hostile environment.

To put the problem in a broader mathematical context, we note that forma-
lly similar models have been studied in other physically motivated contexts, see
[10], [11] and [38] and as a consequence there is a not inconsiderable amount of
background theory available. Nevertheless, in order to study the problem under
discussion, we need to develop the theory in a convenient form. The mathematics
raises some interesting questions; for a valuable discussion see [6]. A big issue is
the following. In contrast with the reaction-diffusion case, because the dispersal
operator is bounded (and so has a less-strong effect on variations than the Lapla-
cian) the semi-flow generated both in the scalar and system case do not have a
smoothing effect and this makes for a theory which has important qualitative dif-
ferences from the reaction-diffusion theory. If there is bistability, that is more than
one attractor for the reaction system, the behaviour can be quite wild, see [6]. It
is particularly interesting to speculate as to whether this represents a significant
class of biological situations. In the context we consider here, there is exactly one
attracting equilibrium. In this case much of the standard theory goes through. We
note though that even the question of the existence of a principal eigenvalue is
not as simple. Nonetheless there are some technical questions raised which at the
present moment do not appear straightforward. For example, because of the lack
of smoothing, asymptotic compactness does not hold, and even for a co-operative
system it is not immediately possible to obtain the analogue of results along the
lines of [35]. There appear to be several interesting, open lines of investigation.

8.2. Biological implications

The problem that we have concentrated upon is the selection of dispersal although
we hope that our dispersal model will be used in other contexts. Of particular in-
terest are situations where our model produces significantly different qualitative
behaviour from the reaction-diffusion model.
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As was indicated in the introduction we have avoided any comparison of the
continuous models introduced with the patch models that are ubiquitous in the bi-
ological literature. We justified this on the grounds that a rigorous mathematical
comparison is beyond the scope of this paper. This reasoning is, of course, not valid
when we restrict our discussion to qualitative behaviour. It is clear that there are
patch models which will reproduce the behaviour we have uncovered. This is es-
pecially true for the numerical results described below since the numerical method
itself can be interpreted as a discrete patch model. On the other hand, one of the
‘disadvantages’ of using patch models is the extreme freedom that they provide.
The integral model that we have presented allows for some of this freedom; there
are very few constraints on the form of the integral kernel. Nevertheless, having
fixed the kernel we have introduced two natural parameters, rate and spread, which
we hope will provide useful constraints for the analysis of selection of dispersal.

We mentioned above the behaviour in the bistable case and it is unclear whether
or not the pattern formation (via a Turing instability) will have a different flavour.
However, we wish to close with some remarks and numerics on the selection of
dispersal. We have shown in Section 5 that the selection of dispersal rate is almost
certainly similar to the reaction-diffusion case treated in [4] and [13]. However,
when it is the dispersal spread, L, that is being considered, the situation becomes
much more complicated and interesting.

Consider first the easiest case, that is m = 0 (see Section 2.4). The biological
idea of what we call ‘hostile surroundings’ is that of an island (or refuge or oasis)
where organisms which leave the region die. If the dispersal spread is large, intu-
ition suggests that this is deleterious and selection will favour a reduction in L; this
is established mathematically in Section 7. The case of L small is similar to that of
small rate and again a reduction in L is selected. These ideas seem intuitively rea-
sonable and one might hazard the guess that small L is always selected. However,
this is not the case as we show by an example in Section 7. This suggests that, for
an intuitive view to be correct, a much more sophisticated approach must be used
and this is confirmed by our analysis of other cases. These remarks emphasize the
importance of the mathematics.

The periodic case (Section 6) is important as it approximates a common situa-
tion where the region is very large and the effect of the boundary is smaller. With
m = 0, we show that whilst still forL � 1, smallL is selected as before, forL � 1
selection depends upon the kernel. In particular, with k(x) = 1

2 exp(−|x|) smaller
L is selected but with k(x) = 1

2 |x| exp(−|x|) it is larger L which is selected. This
seems hard to understand intuitively from the biology.

Let us now turn to cases where there is a dispersal ‘cost’, that ism > 0. We note
that this raises the possibility of a ‘choice’of whether it is better for a large numbers
to move a small distance or small numbers a large one. The situation for small L
is unchanged; smaller L is always selected. However, when L is large then larger
L is selected. Note that this is in complete contrast to the selection of dispersal
rate. Whatever the intuitive picture here, it is further complicated by the results of
the numerical case mentioned in Section 6. The somewhat bizarre nature of Fig. 1
shows how complex the situation might be. Notice that, for a fixed value of m, the
selection direction changes and there is an evolutionary attractor.
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The main conclusion one can draw here is that selection of dispersal in the cur-
rent model may depend crucially upon the details of the assumptions. Any simple
conclusion is hard to find. Perhaps this reflects the real situation of dispersal.

Appendices

A. Lemma A.1

(i) For non-trivial u ∈ C,

(Eu, u) ≤ 0 (A.1)

with strict equality if and only if both of the following hold:

u = const (A.2)∫
�

β(x, y) dy = 1 (x ∈ �) (A.3)

(ii) (Eu)(x) = 0 (∀x ∈ �) if and only if both equations (A.2) and (A.3) hold.
(iii)

∫
�
(Eu)(x) dx ≤ 0 for non-trivial, non-negative u, with strict equality if equa-

tion (A.3) holds.

Proof. Since β > 0,∫
�

∫
�

β(x, y)[u(x)− u(y)]2 dxdy ≥ 0, (A.4)

whence, from the symmetry of β,∫
�

∫
�

β(x, y)u(x)u(y) dxdy ≤
∫
�

u2(x) dx

∫
�

β(x, y) dy

≤
∫
�

u2(x) dx (A.5)

from (H1). This proves that (Eu, u) < 0.
To deal with the equality case, first note that equations (A.2) and (A.3) imply

that (Eu, u) = 0. To prove the converse, suppose that u is not a constant. Then the
inequalities in the expression (A.4) and (A.5) become strict, from which it follows
that (Eu, u) < 0. Therefore u is a constant. With u(x) = 1, (Eu, u) = 0 which
implies that ∫

�

dx

∫
�

β(x, y) dy =
∫
�

dx,

which clearly cannot hold if
∫
�
β(x, y) dy < 1 for some x. Equation (A.3) now

follows. ��

B. Proofs

Throughout we takeρ = 1. It is clear that this maybe done without loss of generality
by re-scaling.
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B.1. Proof of Theorem 3.1

Clearly H is self-adjoint and the first claim is standard. Define

σ+ = sup
‖u‖2=1

(Mu, u). (B.1)

To complete the proof, we must first establish the following:

max
x∈�

h(x) < σ+. (B.2)

Choose x0 ∈ � such that h(x0) = maxx∈� h(x), and let�δ = {x ∈ � : |x−x0| ≤
δ}. From the Lipschitz condition on h, there is a C > 0 such that

h(x0)− h(x) ≤ C|x − x0| (x ∈ �). (B.3)

From (H1) and the condition β(x, x) > 0 (x ∈ �), there exist ε, δ > 0 such that

β(x, y) ≥ ε (x, y ∈ �δ). (B.4)

To prove (B.2), it is enough to show that there is a u ∈ L2 such that

h(x0)‖u‖2 − (Hu, u) < (Xu, u),

which is ∫
�

[h(x0)− h(x)]u2(x) dx <

∫
�

∫
�

β(x, y)u(x)u(y) dxdy. (B.5)

For some γ > 0 to be chosen later, define the trial function u as follows:

u(x) =



1/(γ + h(x0)− h(x)) (x ∈ �),

0 (x /∈ �).
From (B.3), ∫

�δ

dx

γ + h(x0)− h(x)
≥

∫
�δ

dx

γ + C|x − x0|

≥ 1

C
ln

(
Cδ + γ

γ

)

≥ ε−1 (B.6)

for small enough γ . Then∫
�

[h(x0)− h(x)]u2(x) dx =
∫
�δ

h(x0)− h(x)

[γ + h(x0)− h(x)]2 dx

<

∫
�δ

dx

γ + h(x0)− h(x)

≤ ε

{∫
�δ

dx

γ + h(x0)− h(x)

}2

(B.7)
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from (B.6). Also, from (H1) and (B.4),

ε

{∫
�δ

dx

γ + h(x0)− h(x)

}2

≤
∫
�

∫
�

β(x, y)u(x)u(y) dxdy. (B.8)

(B.7) and (B.8) yield (B.5) and hence (B.2).
Note next that σ+ ∈ σ(M) and σ(M) lies to the left of σ+ ([36] p.331, [18]

p.167). It is standard that there is a sequence {un} with ‖un‖ = 1(∀n) such that

lim
n→∞ ‖(M − σ+I )un‖ = 0. (B.9)

Define the operator H̃ : H → H by setting

(H̃u)(x) = [σ+ − h(x)]u(x).

From equation (B.2), H̃ has a bounded inverse. Define next sequences {En}, {Fn}
in H as follows:

En = (M − σ+I )un

= Xun − H̃un,

Fn = H̃−1Xun − un = H̃−1En.

It is an obvious consequence of equation (B.9) that En → 0 and so Fn → 0 as
n → ∞. Since X is compact, there is a subsequence, still denoted by {un}, such
that Xun → v, say; let φ = H̃−1v. Then limn→∞ H̃−1Xun = H̃−1v = φ. It is
easy to see that since Fn → 0, un → φ. Hence

H̃−1Xφ = φ �⇒ Xφ = H̃φ �⇒ Mφ = σ+φ. (B.10)

Therefore σ+ ∈ σp(M), φ (assumed normalised) is an eigenfunction of M corre-
sponding to the eigenvalue λ0 = σ+, and φ is continuous. Also λ0 = (Mφ, φ).
It is also clear from equation (3.2) that φ ≥ 0, for otherwise the choice of |φ| as
test function would give a greater value for λ0. Strict positivity follows from the
definition of X in equation (2.26) and the first inequality in (A.5). The uniqueness
is then a simple consequence, for if φ1, φ2 were different eigenfunctions, φ1 − φ2
would be an eigenfunction. But this must change sign, contradicting the positivity.
��

B.2. Proof of Theorem 3.2

This proceeds in simple stages, the first being a routine observation.

(i) It is enough to prove the result for the inequality

du

dt
≥ Xu+ c(x, t)u, (B.11)

where c is strictly positive and bounded on ST ∪ QT . This follows from the
substitution u = v exp(−αt) and choice of α large enough.
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The following notation will be useful:

cM = sup
x∈�
t≥0

c(x, t),

U(t) = min
x∈�

u(x, t),

U−(t) = min(U(t), 0).

Clearly

c(x, t)u(x, t) ≥ cMU−(t) (x ∈ �, t ≥ 0). (B.12)

(ii) Claim: u(x, t) ≥ 0 (x ∈ �, t ≥ 0). To prove this take δ = 1/[2(cM + 1)].
From (H2) and equations (B.11) and (B.12) it follows that

∂u

∂t
(x, t) ≥ (cM + 1)U−(t). (B.13)

Define t1 and then x1 by taking

U−(t1) = min
0≤t≤δ

U−(t),

u(x1, t1) = U−(t1).

Obviously
∫ t1

0 U−(t) dt ≥ t1U−(t1), and it follows on integrating equation
(B.13) over [0, t1] and taking x = x1 that

u(x1, t1) ≥ u(x1, 0)+ (cM + 1)t1U−(t1),

whence

U−(t1)[1 − (cM + 1)t1] ≥ u(x1, 0) ≥ 0.

But t1 ≤ δ, so this is impossible unless U−(t1) = 0. From the definition of t1,
we must have U−(t) = 0 for 0 ≤ t ≤ δ. A repetition of the argument proves
the claim.

(iii) The result will obviously follow if we can establish the following claim:
u(x0, t0) = 0 for some x0 ∈ �, t0 > 0 implies that u(x, t) = 0 (∀x ∈
�, (t ∈ [0, t0]). To prove this, it is enough to suppose that on the contrary
u(x1, t1) > 0 for some x1 ∈ �, t1 ∈ [0, t0), and use continuity for the case
t1 = t0. Then from (H4), (Xu)(x, t1) > 0 (x ∈ �). From equation (B.11),

∂u

∂t
(x, t1) > 0 (x ∈ �).

Since this holds for every t1 for which u > 0 for some x ∈ �, we deduce that
u(x0, t0) > 0, a contradiction. ��
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B.3. Proof of Lemma 4.1

First, considerLi(τ ) as operators H → H. Let λ0(Li(τ )) denote the PEV ofLi(τ )
for i = 1, 2. We start by showing that σ(L) is real and

λ0(L1(τ
′)) < 0 �⇒ σ(L) ⊂ (−∞, 0), (B.14)

λ0(L1(τ
′)) > 0 �⇒ σ(L) ∩ (0,∞) �= ∅. (B.15)

The fact that σ(L) is real follows easily from L1 and L2 being self-adjoint. The
proof is based on the simple observation, as in [4] Theorem 3.2, that the right hand
end of σ(L) is the larger, � say, of λ0(L1(τ

′)) and λ0(L2(τ )). It is clear from
equations (4.4) and (4.6) together with the variational characterization (3.2) that
λ0(L2(τ )) < λ0(L1(τ )) = 0. Thus λ0(L1(τ

′)) < 0 �⇒ � < 0. With r(·)
denoting the resolvent set, we note that if λ > � then λ ∈ r(L1(τ

′)) ∩ r(L2(τ )).
It is therefore clear that the following is the solution of L(u, v) = (u1, v1) for any
(u1, v1) ∈ H × H:

v = (L1(τ
′)− λI)−1v1,

u = (L2(τ )− λI)−1(u1 + ũv).

This shows that λ ∈ ρ(L) and proves (B.14).
On the other hand, if λ = λ0(L1(τ

′)) > 0, and φ is the corresponding eigen-
function, then since λ ∈ r(L2(τ )) the pair

(ũ(L2(τ )− λI)−1φ, φ)

is an eigenfunction of L. Thus λ ∈ σ(L), which establishes (B.15).
Consider next L as an operator on C×C into itself. We claim that if Re λ > �,

then λ lies in the resolvent set of L. From the L2 result, (L− λI) is injective, so it
is enough to prove that it is surjective. Write D(τ) = ρτ (Xτ − I ). Then from the
definition of λ0(L1(τ )), for the (positive) principal eigenfunction ψ ,

ρτ ′Xτ ′ψ + [a − ũ− ρτ ′ − λ0(L1(τ
′))]ψ = 0.

Since (Xψ)(x) > 0 for all x ∈ �, it follows that

a − ũ− ρτ ′ − λ0(L1(τ
′)) < 0 (x ∈ �).

By a similar argument

a − 2ũ− ρτ − λ0(L2(τ )) < 0 (x ∈ �).
We must show that for every (w, z) ∈ C×C the solution of the following equations
is also in C × C:

ρτXτu+ (a − 2ũ− ρτ − λ)u− ũv = w, (B.16)

ρτ ′Xτ ′v + (a − ũ− ρτ ′ − λ)v = z. (B.17)

But Xτ ′v ∈ C and from what was proved above,

a − ũ− ρτ ′ − Re λ < 0.
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Therefore, from equation (B.17), v ∈ C. From equation (B.16), a similar argument
shows that u also belongs to C and this proves the claim.

To prove the asymptotic stability, note that by [14] Theorem 1.3.4, for some
c, β > 0,

‖eLt‖ ≤ ce−βt (t ≥ 0).

The asymptotic stability follows from a standard argument for ordinary differential
equations on a Banach space, see [14] Theorem 5.1.1, for example. ��

B.4. Proof of Lemma 5.2 (Outline only)

A complete and detailed proof of this result is lengthy and it is not appropriate to
include it here. In outline, however, it follows a PDE-type argument and is straight-
forward. First, a maximum principle holds for the scalar equation (see Section 3)
and this extends in the usual way to a competitive system, see for example [23]
chapter 1 or [15]. As proved in Section 5, there is no coexistence solution. Also,
from the scalar comparison theorem, the region 0 < u < ũ and 0 < v < ṽ is
positively invariant.

Let z = (z1, z2) and w = (w1, w2). Write w ≤ z if w1 ≥ z1 and w2 ≤ z2. For
the system (5.3), (5.4) expressed in the form dw/dt = F(x,w), suppose that for
some stationaryw in the invariant set above,F(x,w) ≤ 0. Ifw is not a solution then
the solution of the system with w(x, 0) = w(x) is such that w1(x, ·) and w2(x, ·)
are strictly increasing and decreasing respectively. Since they are bounded, they
must each tend to a limit, which must be a solution. Since there is no coexistence
solution, this has to be (ũ, 0). It is thus enough to find such a w.

From the linearization about (0, ũ), the eigenvalue equations are

µDφ + (a − ṽ)φ = λφ,

νDψ + (a − 2ṽ)ψ − ṽφ = λψ,

with λ > 0, φ > 0. Then

νDψ + (a − 2ṽ − λ)ψ = ṽφ.

However, the PEV of the operator is negative. Further, an analogue of the positivity
result of [15] Theorem 16.6(i) clearly holds, and we conclude that ψ < 0.

Now let w = (δφ, ṽ + δψ) for some small δ > 0. We need only to check that
F(x,w) ≤ 0. For the first component, we have

µDφ + (a − ṽ − δφ − δψ)φ = λφ − δ(φ + ψ)φ > 0

for small δ. For the second component, we have

νD(ṽ + δψ)+ (a − δφ − ṽ − δψ)(ṽ + δψ)

= δ[µDψ + (a − 2ṽ)ψ − ṽψ] − δ2ψ(φ + ψ)

= δλψ − δ2ψ(φ + ψ)

< 0

since λ > 0 and ψ < 0. This completes the proof. ��
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