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ABSTRACT 

A two-dimensional model for predator-prey interaction is proposed. Two criteria for 
global stability of the locally stable equilibrium are presented. These make the graphical 
method of Rosenzweig and MacArthur more significant. 

1. INTRODUCTION 

The main purpose of this paper is to establish global stability of the 
locally stable equilibrium of a predator-prey model discussed in [2]. In that 
paper, Freedman proved the graphical stability criteria of Rosenzweig and 
MacArthur [l l] and discussed the graphical criterion for stability first 
suggested by Gause, Smaragdova, and Witt [3] for systems without carrying 
capacity, and rediscovered for such systems by Oaten and Murdoch [9]. 
When the equilibrium is unstable, the behavior of the solutions is quite clear 
by the Poincare-Bendixson theorem. When the equilibrium is locally stable, 
it seems, however, that no rigorous analysis for global stability of this model 
has yet appeared in the literature, although such a criterion has been given 
by Goh [4] for Lotka-Volterra systems. 

In Sec. 2, we state the model and its functional properties, which are 
more general than those given in [2]. 

In Sec. 3, we will look at the global stability of the equilibrium which lies 
in the interior of first quadrant. The result of Theorem 3.2 is quite general, 
though it only partially satisfies the special model discussed in [5]. In 
Theorem 3.3, we add a biologically significant restriction to the prey 
isocline and apply Dulac criterion to the model. Theorem 3.3 generalizes the 
results in [5] and also provides those results which the technique in Theorem 
3.2 fails to obtain. 

Section 4 is the discussion section, and we defer the proofs to the 
appendix. 
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2. THE MODEL 

The basic model that we shall consider is 

g =%(x)-w(x), 

4 
-& =u[ -q(x)+crw], 

(2.la) 

(2.lb) 

where x represents the prey population (or density) and y represents the 
predator population (or density). The assumptions on g(x), q(x), and p(x) 
are given below. 

The specific growth rate, g(x), governs the growth of the prey in the 
absence of predators. Several forms of g(x) have been catalogued in [9] or 
[lo]. For examples,g(x)=y[l -(x/K)], g(x)=y(K-x)/(K+~x) or g(x)= 

y[I -(x/K)‘], I> c>o. 
We assume that 

and that 

g(O)>O, (2.2) 

there exists K > 0 such that 

g(K)=0 and (x-K)g(x)<O for x+K. (2.3) 

The predator response function, p(x), has been much discussed in the 
literature. Several typical forms can be found in [9] or [lo]. In some models 
p(x) is assumed unbounded, for instance, p(x)= kx in the Lotka-Volterra 
model. There are many models in which p(x) is assumed bounded above, 
for example,p(x)=kx/(a+x),p(x)=kx’, 12 c>O, orp(n)=k(l-e-“). 
In general, we assume 

p(O)=O, p’(x)>O, x>o !=$ ( > 
The death rate q(x), which depends on the prey population, is assumed 

to satisfy 

4(O) >o; q’(x)<O, x200; $nmq(x)=qm>O. P-5) 

For the density-independent case for example in [2], q(x)zs, while for 
the density-dependent case, for example [7], 

ex +f 
4w=,+,t where 

We will write down conditions for there to exist an equilibrium interior 
to the first quadrant, i.e., a “positive” equilibrium. 
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From (2.1 b) we will need to solve 

-q(x)+cp(x)=O. 

From (2.4) and (2.5), let x* >O be the unique point such that 

cp(x*) = q(x*). 

Substituting into (2.la) we get for the y-value of the equilibrium, 

xlg(x*) 
y*= p(x*) . 

In order to guarantee y* positive it is necessary to assume 

x*<K. 

Then (x*,y*) is the required equilibrium. 

3. GLOBAL STABILITY 

3 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

Following in the same way as in [2], we compute the variational matrix 
evaluated at ( x*,y*). The stability conditions are 

asymptotic stability 
;i z instability 

where 

Rewrite (3.2) as 

xg(x) 
H(x*)=x*g(x*)$ln ~ 

[ 1 p(x) _*’ 

(3.1) 

(3.2) 

P-3) 

Hence the stability conditions can be stated graphically as follows: if the 
prey isocline y = xg(x)/p(x) is decreasing (increasing) at x*, then (x*,y*) is 
asymptotically stable (unstable). That is precisely the stability criterion of 
Rosenzweig and MacArthur [14], which states that (x*,y*) is unstable if the 
isoclines intersect to the left of a local maximum of the prey isocline, and 
stable if they intersect to the right. 

The question we are mainly interested in is: Under which conditions on 
the shape of the prey isocline will local stability of (x*,y*) imply global 
stability of (x*,y*). 
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In this section we state the principal results of the paper. The proofs are 
deferred to the appendix. The first lemma is a statement that the system 
(2.1) is as “well behaved” as one intuits from the biological problem. 

LEMMA 

The solutions of (2.1) are positive and bounded, and furthermore, there 

exists T > 0 such that x(t) < K for t > T. 

The next two theorems are our main results. We have some restrictions 
on the shape of the prey isocline. 

THEOREM 3.2 

Zf [xg(x)/p(x) -y*](x - x*) Q 0, then (x*,y*) is global& stable in the 1st 

quadrant. 

The assumptions onp(x) and g(x) [even that g(x) is decreasing] provide 
little information about the shape of the isocline y = xg(x)/p(x). From 
Theorem 3.2, we know that as long as the portion of the prey curve 
y = xg(x)/p(x), 0 < x < x* lies above the line y =y* and that the portion of 
the prey curve y = xg(x)/p(x), x* < x < K lies below y =y*, then (x*,y*) is 
globally stable. We also note that in this case we require only that (x*,y*) 
be stable. 

Unfortunately, Theorem 3.2 cannot cover all the cases in the literature. 
Consider the following example in [5], with g(x)= y[ 1 -(x/K)], p(x)= 

kx/(a +x), c = m/k, and q(x)= D, 

x!=yx(l-X)-Z, 

y’= 
( s -D)Y. 

P-4) 

The author showed that if m > D, x* = a/[(m/D)- l]< K and y* = 
(y/ k)( 1 - x*/ K)(a + x*), then (x*,y*) is the unique “positive equilibrium” 
and (x*,y*) is asymptotically stable if x* < K<a+2x*. Furthermore the 
author used the Dulac criterion to show that local stability in fact implies 
global stability. However, if we apply Theorem 3.2 we only obtain partial 
results, i.e., if x* < Kg a + x*, then (x*,y*) is globally stable. 

We may consider the prey isocline y = (y/ k)[ 1 -(x/ K)](a + x), which is 
concave downward, and we make the following additional assumption (also 
see [ 111, [ 131): The prey isocline y = [xg(x)/p(x)] belongs to C* [0, K] and is 
concave downward, i.e., 

‘CO, O<x<K. (3.5) 

We have the following theorem, which generalizes a result in [5]. 
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THEOREM 3.3 

Assume the equilibrium (x*,y*) of (2.1) is stable, i.e., H (x*) < 0, and let 
(3.5) hold. Then (x*,y*) is gIoba& stable. 

4. DISCUSSION: 

It is a well-known fact that the local stability of an equilibrium point in a 
system of ordinary differential equations does not necessarily imply its 
global stability. However, the usual methods used in the analysis of stability 
of equilibrium points in population models establishes only local stability. 
The restriction to sufficiently small perturbations of the initial conditions 
frequently rules out the perturbations of interest to the ecologist. 

The system (2.1) contains a general class of predator-prey models. In 
Theorem 3.2 we construct a Lyapunov function which is similar to those 
Goh constructed in [4] for the Lotka-Volterra model. The result of Theorem 
3.2 looks special but it can be applied to some models-for instance, the 
Lotka-Volterra model, 

g=y”(l-$)-kxy, 

& z =y(m.x-D). 

Theorem 3.3 is an improvement of the graphical criterion of Rosenzweig 
and MacArthur [ 141, which has been proved analytically in the form of this 
model (see [2]). The criterion may be stated as follows: (x*,y*) is unstable if 
the prey isocline y =xg(x)/p(x) is increasing at x* and stable if it is 
decreasing at x*. From [ 1 I] and [ 131, it is reasonable to assume that the prey 
isocline is concave downward. Under this assumption and by Theorem 3.2, 
it follows that the local stability of (x*,y*) in (2.1) implies global stability. A 
typical example for Theorem 3.3 is 

&%(1-$)-J& 

$=y($$D). 

Kolmogorov [6] considers what in some sense is the most general growth 
model: 

dx 
x = xf (%Y), 

dv 
Ji =yg(x,y), 

(4.1) 

where f and g satisfy (i) af/ay < 0, (ii) x af/ax + y ag/ay < 0, (iii) ag/ay < 0, 
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(iv) x ag/ax +y ag/+ > 0, (v) f(O,O) > 0, (vi) f(O,A) = 0 with A > 0, (vii) 
f(B, 0) = 0 with B > 0, (viii) g( C, 0) = 0 with C > 0, and (ix) B > C. Under 
these conditions he claims the system (4.1) possesses either a stable critical 
point or a stable limit cycle. For the biological meaning of (i)-(ix), we refer 
to [9]. 

The system (2.1) can be reduced to the form (4.1) with f(x,y)=g(x) - 
[p(x)/x]y and g(x,y)=cp(x)-q(x). It satisfies (i)-(ii) and (iv)-(ix) with 
A =$(0)/g(O), B = K, and C= x*. The difference between (2.1) and (4.1) is 
that the growth of predators just depends on the population of prey, i.e., 
there is no interspecific competition in predator species. 

When (x*,y*) is unstable, it is easy to verify that (x*,y*) is an unstable 
spiral or node. From Lemma 3.1 and the Poincart-Bendixson theorem, the 
system (2.1) has a periodic solution surrounding (x*,y*) which is stable 
from the outside and which lies in the strip {(x,y) : 0 < x < K, y > O}. 

Hence we have the following conclusion: Let the hypothesis of Theorem 
3.2 or Theorem 3.3 hold. Then at least one of the following is valid: (i) 
(x*,y*) is a global attractor, or (ii) the system (2.1) has a periodic solution 
surrounding (x*,y*) which is stable from the outside and which lies in the 

strip {(x,y):O< x< K, y >O}. 

5. APPENDIX 

PROOF OF LEMMA 3.1 

Since x(O), y(O) are positive, from (2.1) it follows that x(t), y(t) are 
positive for all t > 0. 

If x(0) < K then x(t) < K for all t > 0. Otherwise, there exists t, >O such 
that 

x(t,)= K and $,) >o. 

By (2.la), (2.2) (2.3), and (2.4), it follows that 

gctl) = -Y(b)P(x(~,)ko. 

This is the desired contradiction. 
If x(0) > K, then from (2.la), (2.2), and (2.3), either x(t) decreases to 

some constant X > K or there exists t, > 0 such that x(tJ < K. Using the 
same argument as the case x(0) < K yields that x(t) < K for t > tZ. Hence 
x(t)<max(K,x(O)) for all t>O. 

Multiplying (2.la) by c and adding (2. lb) yields 
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or 

Let n = max(cxg(x) + cq,x). Then 

or 

cx(t)+y(t) < /l-q=J+ -+, 
cc 

where A = cx(O)+y(O)-q/qm. Hencey(t) is also bounded. 
In order to show that there exists T > 0 such that x(t) < K for t > T, it 

suffices to show that it is impossible to have limx(t)= X > K. Since K > x*, 

if limx(t)=X > K, then by (2.lb), (2.4) (2.5) and (2.7) we have that y(t) 
becomes unbounded as t-m. This is a contradiction. 

PROOF OF THEOREM 3.2 

From (2.4) we construct a Lyapunov function 

v= s “CP(O-4(E) 
PC0 

d[+y -y* -y*ln 5 ( 1 
x* 

on G = { (x,y) : x > 0, y > 0). Then the time derivative of V computed along 
solution of (2.1) is 

v=(cPW-4w) (z--y*)<0 onG. 

Let E=((x,y)EG: V(x,y)=O}. Th en E = {(w) : &x)/p(x) =y*, Y > 01, 
and the largest invariant set A4 in E is {(x*,y*)}. Hence Theorem 3.2 
follows directly from Lemma 3.1 and Lasalle’s extension theorem [7]. 

PROOF OF THEOREM 3.3 

From Lemma 3.1 and the Poincare-Bendixson theorem it suffices to 
show that there is no limit cycle in the region D = { (x,y) : x > 0, y > O}. The 
absence of a limit cycle will follow from a theorem of Dulac (see [ 11). 

Let 

f*(w)=~g(x)-YP(~)~ 

h(w) =u[ CP(X> - 4X)]? 
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and 

h(x,y)= [ p(x)]“y8, x,0, y>o, 

where a,6 E R will be selected below. The Dulac theorem states that there 
will be no limit cycle if the expression a(f,h)/ax+a(f,h)/ay does not 
change sign in D. The expression can be computed to be 

*= a(f4) + vi4 - _ 
ax ay 

=-Y ““[ P(q?‘tx)tl+ a) 

+ [Pt~)]“-*Y”{~P’(x)xg(x) 

+xg’(x)P(x)+g(x)P(x)+PP~x)[cP(x)-q(x)]}~ 

where fi=S+ 1 >O. 
Let (Y= - 1. Then 

A=(~(x))-~y~F(x), (3.6) 

where 

F(x)=p(x)[ g(x)+xg’(x)]-P’(x)xg(x)+PP(x)[cP(x)-q(x)]. (3.7) 

We may rewrite F(x) as follows: 

xl?(x) ’ 
F(x)=p2(x) P(x) 

[ 1 +&(x)[ CPW-q(x)]* (3.8) 

Then 

- PP’(XMX) - PP (x)q’tx). (3.9) 

Since F(O)=0 and F’(0) = - pq(O)p’(O) ~0, there exist 6, >O such that 

F(x)<0 for O<x<6,. Let 

O<p<min 

r 

-w(x) ” 

-g’tKW ,<T.zK p(x) I I 
v(K)- q(K) ’ dX)P’(X) - d(X)P(X) I . (3.10) 

max 
S<X<K P2(X) 
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Then from (3.2), (3.7), and (3.10), it follows that F(x*) < 0, and 

We claim that 

F(x) Q 0 for 8~ x G K. (3.11) 

If not, there exists x,, 6<x, <K, such that 

xg(x) ’ 
F(x,) ‘P2(Xl) p(x) 

[ 1 +Pp(x,)[ cP(xl)-q(xl)] =o P-12) 
X=X, 

and 

~‘(x,)=2P(x,)P’(xl) [ Ty_ +p’(xJ[ %]:.,, 
+2PcP(xl)P’(xl) - &(Xl)P’(Xl) - &‘(Xl)P(Xl) >o 

But from (3.12) 

-v(x) M 
w,)=2P’(x,){ -P[ CPW-e-l)]} +P2(xl) p(x> 

[ 1 X--X, 

+2PcP(x,)P’(x*) - P[ q(xl)P’(x,)+ 4(Xl)P(X,)] 

=P[ P’(-QI(X,) - ml)P(xl)] +P2w 

G P[ P’(xl)q(xl) - d(Xl)P(Xl)] +P2(xd8<%K -%7(x) “ 

[ 1 
p(x) 

P’(X,MXl) - d(Xl)P(Xl) -w(x) ” 
P2(X,) 

+ min - 

[ 11 
6<XSK P(X) 

P’(x)q(x)-d(x)P(x) + min %(X) n 

P2(X) [ II S<x<K P(X) 

< 0. 

Hence (3.11) holds. By Lemma 3.1, (3.6), and the Dulac criterion, Theorem 
3.3 follows. 
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