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Abstract 

The pape r  is concerned  with the a sympto t i c  behav io r  as t ~ ~ of  so lu t ions  
u(x, t) of the equa t ion  

u t -  uxx- f (u )  = O, x ~ ( -  ~ ,  ~) ,  

in the case f ( 0 ) = f ( 1 ) = 0 ,  with f(u) non-pos i t ive  for u ( > 0 )  sufficiently close to 
zero and f(u) non-nega t ive  for u ( <  1) sufficiently close to 1. This guarantees  the 
uniqueness  (but not  the existence) of  a t ravel l ing front so lu t ion  u =  U ( x - c t ) ,  
U ( - ~ ) = 0 ,  U ( ~ ) - - 1 ,  and  it is shown in essence tha t  so lu t ions  with m o n o t o n i c  
init ial  da t a  converge to a t rans la te  of  this t ravel l ing front, if it exists, and  to a 
" s t a c k e d "  c o m b i n a t i o n  of  t ravel l ing fronts if it does not. The  a p p r o a c h  is to use 
the mono ton i c i t y  to take  u and t as independen t  var iables  and  p = u x  as the 
dependen t  var iable ,  and  to app ly  ideas of  su0- and super -so lu t ions  to the 
diffusion equa t ion  for p. 
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1. Introduction 

This pape r  is an a l te rna t ive  bu t  at  the same t ime independen t  account  of  the 
p rob l ems  discussed by us in an ear l ier  pape r  [2].  The  results  are  of  the same 
general  nature ,  but  they differ in cer ta in  detai ls ,  and  the proofs  are qui te  
different. To set the scene, we recall  the ma in  results  from [2],  but  we do  this 
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quite briefly and refer the reader to [2] for further historical and bibliographical 
background. Two important papers which had not appeared when [2] was 
written, those by ROTttF [6] and UCH1YAMA [7],  use an approach having 
certain affinities to that in the present paper. In [7] however the method is 
applied to the case when f > 0  in the open interval of interest. In [6], con- 
vergence results are given both for this case and the case when f has one sign 
change, as in I-2]. The class of functions f examined here does not include 
those which are positive throughout the open interval, but is more general 
than the class studied in [2] and in case (fl) of [6]. 

We are concerned with the pure initial value problem for the nonlinear 
diffusion equation 

(1.1) u t - u x x - f ( u ) = O  ( -  ov < x <  oo, t>0),  

the initial value being 

(1.2) u(x,O)=O(x) ( -  oo < x <  oo). 

The question of interest is the behavior as t ~ oo of the solution u(x, t), and, in 
particular, under what circumstances does it (or does it not) tend to a travelling 
front solution, a travelling front being a solution of (1.1) of the special form 
u = U ( x - c t )  for some c (the velocity), with the limits U(_+oo) existing and 
being unequal. As in [2] we will adopt the normalization that f e C  1 with 
f (0 )= f (1 )=0 ,  so that u - 0  and u - 1  are particular solutions of (1.1), and we 
take U ( - o o ) = 0 ,  U ( + o o ) = l .  With these assumptions on f, it is a standard 
result that if q5 is piecewise continuous and 0<qS(x)<l for all x, then there 
exists one and only one bounded classical solution u(x, t) of (1.1), (1.2), and 
O<u(x,  t ) < l  for all x, t. We shall always make these assumptions on q~ and f, 
and shall be concerned only with this unique bounded solution. 

Our main object in [2] was to show that, under minimal assumptions on 4~, 
when f '(0) < 0, f ' ( 1 )<  0, the solution converges uniformly to one of several types 
of travelling front configurations. The three principal results in 1-2] are the 
following. 

Theorem A (Theorem 3.1 of [2]). Let f ~ C l [ 0 , 1 ]  satisfy f (0 )= f (1 )=0 ,  
f ' (0)<0,  f ' (1)<0,  f ( u ) < 0  for 0 < u < % ,  and f ( u ) > 0  for % < u < 1 ,  where 
0<c%<~1<1.  

Assume there exists a travelling front  solution U of(1.1) with speed c, and let 
satisfy 0 < ~b < 1, and 

(1,3) lira sup q~(x)< %, lim inf~b(x) > %. 
x ~ - - o C  x ~ c t 3  

Then for some constants Zo, K and e), the last two positive, the solution u(x, t) of  
(1.1), (1.2) satisfies 

[u(x, t) - U(x - c t - z0) I < K e-~ 

The existence of a travelling front is not guaranteed by the above conditions 
on f, although sufficient conditions for its existence are contained in w of [2]. 
We shall be returning to this point later, but if f does satisfy these sufficient 
conditions, then of course the existence assumption in the statement of Theorem 
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A can be dropped. A particularly important case is that of the degenerate 
Nagumo equation, in which % = cq and a travelling front does exist. Notice also 
that Theorem A certainly implies the uniqueness of the travelling front (modulo 
translation). 

Theorem A asserts that a solution which vaguely resembles a front at some 
initial time will develop uniformly into such a front as t -~ oo. "Vaguely resembles" 
here means simply that the solution is less than % far to the left and greater than 
el far to the right. Of course, if the words "left" and "right" are interchanged in 
this statement, the same conclusion holds; the front will then face right rather 
than left, and will travel in the opposite direction. This corresponds to the fact 
that the equation (1.1) is invariant under the transformation x~--~-x, but an 
increasing function of x becomes decreasing and a positive speed becomes a 
negative one. 

There are also situations in which the solution will develop into a pair of 
such fronts, moving in opposite directions. This is the point of the second 
theorem. 

Theorem B (Theorem 3.2 of [2]). Let f satisfy the hypotheses of Theorem A, 
and in addition suppose that 

1 

(1.4) ~ f(u) du > O. 
0 

Let ~ satisfy 0 <= (o < 1, and 

(1.5) l imsup~b(x)<%, ~(x)>~l--~ ~ for [x[<L, 
I x l ~  oc 

where ~ and L are some positive numbers. Then if L is sufficiently large (depending 
on q and f ) ,  we have for some constants Xo, Xl, K, and ~o (the last two positive), 

] u ( x , t ) - U ( x - c t - x o ) l < K e  -'~ x < 0 ,  

(1.6) ] u ( x , t ) - U ( - x - c t - x O l < K e  -~ ,  x>0 .  

The assumption (1.4) implies that a travelling front as we have defined it (i.e. 
an increasing function) has negative speed c and so moves to the left. This is 
proved in (2.7) of [2], but it is an immediate consequence of multiplying by U' 
and integrating, over ( -  oo, oo), the equation 

U " + c U ' + f ( U ) = O  

for the travelling front. The intuitive meaning of (1.6) is that the x-interval on 
which u is near the value 1 is finite and is elongating in both directions with 
speed Jcl. If the inequality in (1.4) is reversed, and appropriate changes in (1.5) 
are made, then an analogous convergence result is still obtained, but with the 
interval on which u is near 0 elongating. 

Finally, there is the case in which no travelling front exists with range (0, 1). 
This can happen (in view of the existence of a travelling front for the degenerate 
Nagumo equation) only if f has nore than one internal zero. To each triple of 
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adjacent zeros with properties analogous to the zeros (0,~,1) of Nagumo's 
equation, there of course corresponds a travelling front with characteristic speed 
and characteristic limits at _+ oo. For  simplicity consider the case of two adjacent 
triples of this type (thus five zeros in all), and a solution of (1.1) with range equal 
to the combined ranges of the two travelling fronts. Let Co, c 1 be the two 
velocities, ordered by increasing u. If Co<C 1, we show in [2] that the solution 
will tend to split into two separate travelling fronts, becoming very flat for u 
near the center zero of the five, and that there exists no simple travelling front 
with range from the first to the fifth zero. If C o > q ,  however, there exists a 
unique such travelling front: this corresponds to the fact that in this case a 
splitting as described above would be conceptually impossible. More generally 
and more precisely, we prove 

Theorem C (Theorem 3.3 of [2]). Let  f ( u i )=  0 and f ' (u i )<0 ,  i=  1, 2, 3, where 
U 1 <U 2 <U 3. Let  there exist travelling fronts U ~ ( x - c  a t) and U2(X- -C  2 t) with 
ranges (u l, uz) and (u2, u3) respectively. Assume c 1 < c 2. Let  ~ be the least zero o f  
f greater than u 1 and ct 2 the greatest zero less than u 3. 

Suppose u l <  O(x)< u 3, and 

lim sup ~b(x) < ~ 1 , lim infq~(x)> ~ 2 . 
X ~ - -  ~ X ~  oO 

Then there exist constants x~ ,x  2, K, and co, the last two positive, such that 

[u(x, t ) -  UI(X--C 1 t - - X 1 ) - -  U2(X- -C  2 t--x2)+ U2] < K e -~ 

This implies, in particular, that 

u a for f l<c  1, 

lim u(fl t, t) = u 2 for c 1 </~ < c2, 
t , z ~ 3  

[u 3 for c2 </~. 

The work in the present paper stems from two observations on these results. 
The first is that it would be a useful extension to be able to drop the restrictions 

(1.7) f ' ( 0 )<0 ,  f ' (1 )<0 .  

It is an immediate consequence of (1.7) that 

f ( u ) < O  for u(>0)  sufficiently near 0, 
(1.8) f ( u ) > O  for u ( < l )  sufficiently near 1; 

the conditions (1.8) are important because, as proved in Lemma 2.3 of [2], they 
guarantee that, if a travelling front exists, then it is unique (modulo translation). 
Convergence results must be easier to prove when there is a unique limit for the 
convergence, and so we retain (1.8) but drop (1.7). This allows us to consider, for 
example, the equation discussed by KANEL' [-4] for the combustion of certain 
gases, in which f (u)=-0 for ue(0, e) and f ( u ) > 0  for uc(e, i). 

The work in [2] depends crucially on the assumptions (1.7), and an alter- 
native approach is therefore required. The second observation is therefore that 
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the concept of monotonicity clearly has some significance in these results (it is 
proved in Lemma 2.l of [2] that all travelling fronts are necessarily monotonic) 
and that, as is well-known, the monotonicity of ~b in (1.2) implies that of the 
corresponding solution u(x,t),  as a function of x, for all t>0 .  (To prove this, 
differentiate (1.1) with respect to x to obtain a diffusion equation for u x and 
apply the comparison theorem in w of [2] to this diffusion equation; with zero 
as a subsolution, this shows that ux > 0.) This monotonicity allows one to take as 
independent variables the pair (u,t) instead of (x,t), and to use p = u  x as 
dependent variable. This transformation is discussed in w 

As in [2], the principal tools used are comparison theorems for parabolic 
equations, although now the parabolic equation is one for p in terms of u, t. The 
problem is somewhat complicated by the fact that this parabolic equation is 
degenerate, in that the coefficient of P,,u is pZ, and the boundary conditions 
demand that p vanishes at the end-points (0, 1) of the range for u. The necessary 
analysis to deal with this, and the statements and proofs of the comparison 
theorems, are given in w 

A typical theorem that results from this approach is the following. 

Let  f E C I [ O ,  1] satisfy, for  some ~ ( 0 ,  1), 

f ( 0 )= f (1 )=0 ,  

f ( u ) < O  for  ue(O,~), f ( u ) > O  for  u6(0q 1), 
and 

1 

~f(u)  du>O. 
0 

Then there exists a travelling front  solution U ( x - c t )  o f  (1.1), unique modulo 
translation and necessarily monotonic. 

Moreover,  i f  c ~ C l (  - ~ ,  ~ )  with 

~(-  ~)=o, ~(+ ~)=1, 

and q~'(x)>0 for  all x, then there exists a function 7~C1[0, ~),  with 7 ' ( t )~0  as 
t ~ ~ ,  such that 

(1.9) lu(x, t) - U (x - c t - y(t))[ = o(1) 

uniformly in x as t - , 0 %  where u is the solution o f  the initial value problem (1.1)- 
(1.2) corresponding to the initial function O. 

This result corresponds to Theorem A, in that the conditions imposed on f 
are sufficient to guarantee the existence of a travelling front. It can be general- 
ized (as in Theorem 4.4 in w to cover any fwh ich  satisfies any of the sufficient 
conditions for the existence of a travelling front given in w of [2], or 
equivalently in Lemmas 2.5, 2.6 of the present paper. Theorem A in effect makes 
the existence of a travelling front in itself sufficient for convergence, but we 
cannot quite reach that degree of generality here. The result (l.9) is proved by 
first obtaining a convergence result in the transformed variables (p, u, t) and then 
integrating back. 
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The convergence statement in (1.9) is much weaker than that in Theorem A. 
Not only do we not have exponential convergence, we do not even have uniform 
convergence to a specific travelling front. The solution takes up the correct 
"shape" asymptotically, and the correct speed, but since we know only that 
7'(t) ~ 0  as t ~ ,  and not that 7(0 converges to a finite limit, we do not know 
that there is a specific limiting travelling front. 

It is however possible to improve on (1.9), and to obtain convergence at an 
exponential rate to a specific travelling front, provided that one is prepared to 
make heavier assumptions on 49. The essential point is that the initial function 
49(x) should be, asymptotically in x as x ~ + ~ (if c>0)  or as x ~  (if c<0),  
"sufficiently close" to a travelling front. This result is made precise and proved 
in w 

Theorem B has no corresponding result in the present paper, since its 
hypotheses preclude monotonicity of the initial function, but there are results 
corresponding to Theorem C in the case where there is no travelling front with 
range (0, 1). 

Most of the convergence theorems are stated in w and then proved in w167 
10. As already remarked, w contains more precise convergence results under 
heavier assumptions. 

It should finally be remarked that, although in the various convergence 
theorems the initial function 49 is monotonic with 49( -o r )=0 ,  49(+ ~ ) =  1, it is 
possible to extend the ideas and methods of the paper to initial functions 49 
which are not monotonic or for which the limiting values 49(_+ ~ )  are not (0, 1). 

Thus if 49 is monotonic but 4 9 ( - ~ ) = ~ > 0 ,  then the corresponding initial 
function in the transformed variables (p,u, t) is not defined for 0 <u  <~. It is 
however convenient to take it to be identically zero. This makes the problem more 
degenerate since the coefficient of Pu, in the diffusion equation now vanishes 
initially, not merely at u=0 ,  1, but throughout an interval of values of u. In fact, 
however, this difficulty is faced even in the present paper, since in w we have to 
construct for comparison purposes subsolutions which vanish initially through- 
out an interval of values of u, and there is therefore no essential difficulty in 
discussing initial functions 49 with 49 ( -~ )4 :0 .  For simplicity, however, we have 
refrained from doing so. 

To deal which initial functions 49 which are not monotonic, ~ have to allow 
p, regarded as a function of u, to be multi-valued; this has been investigated by 
CHUEH [1]. Again we will not pursue the matter further in this paper. 

2. The basic transformation 

We introduce the transformation of the independent variables from (x,t) to 
(u, t) with a lemma the contents of which are well-known but usefully recalled in 
this form. 

Lemma 2.1. Let f~cl[o,  1], with f (O)= f ( l )=O ,  and suppose also that 49~C 1 
( -oo ,  oo), with 0 <= 49 <= 1 and 49' >0. Then the solution u of (1.1)-(1.2) satisfies, for 
t>0 ,  

(2.1) ux(x,t)>O for all finite x 
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and 

(2.2) ux( + 0% t) = 0. 

Proof. We have already remarked in the introduction that (2.1) is a con- 
sequence of a maximum, or comparison, principle applied to the diffusion 
equation for u x, that is, to 

' 0 (2.3) (ux) t -  (ux)xx - f  (u) u x - 

with u~(x, 0)> 0. Strictly speaking, the comparison principle in its usual form (as, 
for example, in the comparison theorem enunciated in the introduction to [-2]) 
applies to solutions which are classical, so that u~ and u~x x have to be 
continuous. In fact, if we assume merely t h a t f e C  1, we know that u, and uxx are 
continuous, but not that they are continuously differentiable, and (2.3) may hold 
only in the sense of distributions. 

To obtain the required result in this case, we observe first that, for any fixed 
6>0 ,  both u(x+(~, t) and u(x, t) satisfy (1.1). Furthermore the inequality q~'>0 
implies that u ( x + 6 ,  0)>u(x,  0), and so comparison gives u ( x + 6 ,  t )>u(x ,  t) for 
all x and all t>0 .  Since this is true for any ~i>0, we must have u~(x, t)>O for all 
x and all t>0 .  To obtain strict inequality, set u~=ve  - ' t ,  where the constant 
is chosen so that ~> sup [f'(u)l. Then v satisfies (perhaps only in the sense 

u~[O, 11 

of distributions) the equation 

v , -  Vxx = {~ + i f ( u ) }  v 

with v(x,0)>0;  if we use the usual Green's function to obtain an integral 
equation for v (as we do in (2.4) below for u itself), then we see that both 
integrals on the right hand side of this equation are non-negative and the first 
strictly positive, proving (2.1). 

To prove (2.2), we use the integral representation for u, i.e. 

(2.4) u(x , t )=  
e - ( X -  y) 2/4t 

-o~ o - ~  2]/~(~s)-s) f { u ( y , s ) } d y d s ,  

and we obtain an integral representation for u~ by formal differentiation. To 
show that u ~ ( ~ , t ) = 0  for t>0 ,  consider first the derivative of the first integral in 
(2.4), which, if we neglect unimportant factors, is 

(2.5) ~ (x - y) e - ~-y)2/~' O(Y) dy. 

We can suppose that q~(c~) exists, since q5 is assumed to be monotonic, and we 
can in fact suppose qS(oc)=O. (If it is not, merely subtract an appropriate 

constant and note that from symmetry (x -y )e - I~-Y)2 /4 'dy=O.)  If q~(oo)=O, it 
- o o  

is a trivial exercise to show that (2.5) tends to zero as x ~oo ,  since there is a 
significant contribution to the integral only when x - y  is not large, and there of 
course ~b(y) is small. 
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The derivative of the second integral can be dealt with similarly, for we know 
from (2.1) that u(y,s) is monotonic in y for each s; so u(c~,s) andf{u(oo,s)} exist. 
This completes the proof of the lemma. 

In view of Lemma 2.1, we are justified in taking (u,t) as independent 
variables in place of (x, t). The formal manipulations are easy. If p = u x, then it is 
routine to verify that 

Ou /~x, ~u_ ~x //~x Ot Ot 
o~= l / bu & & ~u' ~xx =0 '  ~ = 1 ,  

the differentiations on the left of each equation being of the new variables with 
respect to the old, and vice versa on the right of each equation. Hence 

~2U (~p Op ~u c3p 

03U=p202p , [c3P~ 2 
O x  ' 

02u Op Ou bp ~3p (O2u ) Op 

~?xO~-~u ~t ~ Ot-~u ~x 2+f(u) + 5 '  

and if we differentiate (1.1) with respect to x and substitute the above results, we 
have 

(2.6) p, _ p2 {p,, + (f/p),} = O. 

Again, the same remark as in Lemma 2.1 applies, that the differentiation of 
(1.1) may be possible only in the sense of distributions. I f f f f C  2, then it is well- 
known that uxt and ux~ ~ are continuous, and (2.6) then holds classically. If we 
have only f~C 1, then (2.6) may hold only in the sense of distributions. 

The boundary values p(O,t)=p(1,t)=O are an immediate consequence of 
Lemma 2.1, and the initial function is 

p(u,  0) = r  = ~(u), 

where ~ is continuous with @(u)>O for O < u <  1. 
We collect these facts in the following lemma. 

Lemma 2.2. Let fECI[O, 1], with f(O)=f(1)=O, and suppose also that dp6 C 1 
(-o% oo) with O<qS<l and qS'>O. Then there exists a positive solution of the 
initial value problem 

(2.7) 

with 

(2.8) 

and with 

p,=pZ{p.u+(f/p), } ( 0 < u <  1, t>0), 

p(O,t)=p(1, t)=O (t>0) 

(2.9) p(u,O)=q)(u)>O ( 0 < u < l ) ,  
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where 
�9 ( u )  = r  {r  - ' ( u ) } ,  

(o-1 being the function inverse to r 
Furthermore, if we are given a function O(u) that is continuous and positive for 

0 < u < 1 and such that 

1/2 1 

(2.10) ~ {~(u)} - l  d u =  S {~(u)} - t  d u = ~ 1 7 6  
0 1/2 

then there exists a positive solution to the initial value problem (2.7)-(2.9) 

Remark. By a positive solution p(u,t) of the initial value problem (2.7)-(2.9) 
we mean that p(u, t) > 0 for 0 < u < 1, t > 0. 

Proof. The proof of the first half of the lemma has already been given, it 
being remembered that (2.7) may be satisfied only in the sense of distributions. 
The second part is proved by observing that, in view of (2.10), the variable 

x = i {~,(s)} i d s -  ~(u) 
1/2 

has the range ( -  ~ ,  ~ )  as u traverses (0, 1). Thus if we set up the problem 

(2.11) 

with 

(2.12) 

u , = u x x + f ( u  ) ( -  m < x < o o , t > 0 )  

U(X, 0)  ~- I/1 -- I (X) ,  

where 6-1  is the function inverse to ~, then the solution of (2.11)-(2.12) leads by 
the first part of the theorem to a solution of the initial value problem (2.7)-(2.9). 

There is a generalization of Lemma 2.2 which we will require in the sequel. 

Lemma 2.3. Let f e  C 1 [0, 1], with f(O) =f(1)  = 0, f (u)  < 0 for u( >_ O) sufficiently 
close to 0, f ( u )>O for u( < 1) sufficiently close to 1. Let A ,B  (A <B) be such that 

f(u)<_O for  us[0, A], f(u)>=O for u6[B, 1]. 

Suppose that @(u) is a given function, continuous and positive for A < u < B, and 
such that ~2(A + B) B 
( 2 . 1 3 )  ~ { ~ ( u ) } - l d u =  I { (~(u)}  - 1 d u  = (X)- 

A �89 

Then there exist functions a, be C 1 [0, oo) with 

a non increasing, a(O) = A, a > 0 unless a - 0 
and 

b nondecreasing, b(O) = B, b < 1 unless b =- 1, 

and a positive solution p(u, t) to (2.7) over a ( t )<u  <b(t),  t>0 ,  with 

p(a(t), t) = p(b(t), t) = O, 

p(u, O) = ~(u) for A < u < B. 
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Proof. This is based on the same principle as that of Lemma 2.2. We consider 
the initial value problem of (1.1) with initial function u(x,0)= ~b(x), where 

In view of (2.13), we have 

~b- l(u) = i {~(s)} -ads" 
�89 + B) 

u(- ~,0)=A, u(+ ~,0)=B. 

If u(x,t) is the solution of this initial value problem, then the function p(u,t) 
=ux(x,t) will satisfy the conclusions of the lemma. All that requires proof is 
that, if 

u(--oo, t)=a(t), u(+oo,t)=b(t) ,  

then a(t), b(t) have the required properties, and this can be deduced most easily 
from the Green's function formulation (2.4) for the solution. Thus, if we take the 
limit as x ~ ~ in (2.4), we obtain 

t 

a(t) = A + ~ f{a(s)} ds, 
0 

so that certainly a is continuously differentiable. Indeed, a satisfies the equation 

a' =f(a) ,  with a(0) = A. 

Since f (a)<O for O<a<A,  either f (A)=0 ,  in which case a( t )=A for all t>0 ,  or 
f ( A ) < 0 ,  in which case a is initially strictly decreasing, and certainly always 
nonincreasing. Furthermore f ( 0 ) = 0  implies a_>0, and since [f(a)I=O(a) for 
small a, we can integrate the inequality a'=O(a) to show that a ( t )>0 for all t > 0  
unless A = 0. The arguments for b are similar. 

We close this section with some remarks about travelling front solutions. A 
travelling front solution of (1.1) appears as a stationary solution of (2.7), and so 
satisfies the equation 

(2.14) p,,+(f/p)u=O, 

which can be integrated to give 

(2.15) Pu + f/P = - c, 

where c is readily identified as the speed of the front. Equations (2.14) and (2.15) 
have already been met in w of [2], where they are used to discuss the existence 
and uniqueness of travelling fronts. 

The boundary conditions to be associated with (2.15) are 

(2.16) p(0) =p(1) =0,  

and we are interested only in solutions positive in (0.1). Of course (2.15) and 
(2.16) are invariant under the transformation p~--~-p, c~--*-c so that to any 
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positive solution there is a negative one, corresponding to a travelling front 
facing in the opposite direction and travelling with an equal speed in the 
opposite direction. We recall the main result of [2] concerning the existence and 
uniqueness of travelling fronts. 

Lemma 2.4 (Corollary 2.3 of [2]). Let f satisfy the conditions of Lemma 2.3. 
Then there exists at most one solution which is positive in (0, 1), of the boundary 
value problem given by (2.14), (2.16). 

Lemma 2.5 (Theorem 2.4 of [2]). Let f~Cl[O, 1], with f ( 0 ) = f ( 1 ) = 0 .  For 
some e~(0, 1), suppose that one of the following assertions holds: 

1 

(a) f <O in (0,~), f > 0  in (a, 1), ~f(u)du>O; 
0 

1 

(b) f < 0  in (0, c0, f > 0  in (a, 1), yf(u)du<O; 
0 

(c) f < 0  in (0, c0, f > 0  in (a, 1). 

Then there exists one and (by Lemma 2.4) only one solution which is positive in 
(0, 1), of (2.14) and (2.16). 

Finally, to deal with functions f which yield results similar to Theorem C 
in the introduction, suppose, as always, that f ~ C l [ 0 , 1 ]  with f ( 0 ) = f ( 1 ) = 0 .  
Then a closed interval I c [ 0 ,  1] is called admissible if f vanishes at the end- 
points, f < 0  near the left end-point, f > 0  near the right end-point, and there 
exists a travelling front over I. (By a "travelling front over [cq fl] with velocity c" 
we mean a solution of (2.15) with the given c, positive in (cq fl), and vanishing at 

and ft.) 
If we are given a decomposition of [0,1] into non-overlapping adjacent 

admissible intervals [0, 1] = [~ Ij, ordered from left to right (so that the right 
j - 1  

end-point of 1 i is the left end-point of 1i.1), and if cj is the velocity of the 
travelling front over I i, then such a decomposition is called minimal if c2 is 
nondecreasing in j, that is c2.1 >ej. 

Lemma 2.6 (Theorem 2.8 of [2]). If  there exists a decomposition of [0, 1] into 
admissible intervals, then there exists a unique minimal decomposition. 

The significance of minimal decomposition (as in Theorem C, where we are 
presented with a minimal decomposition) is that monotonic solutions of the 
diffusion equation with (x,t) as independent variables split into a "stack" of 
travelling fronts, each with range in one of the intervals of the minimal 
decomposition and with its distinctive asymptotic speed and (at least when the 
c~ are distinct) spreading away from each other; and correspondingly a positive 
solution of the diffusion equation with (u, t) as independent variables will tend to 
a steady solution which is positive over each interval in the minimal decom- 
position but zero at the ends of these intervals. Precise statements of these 
results will be found in Theorems 4.3, 4.5. 
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Lemma 3.1. Let f, A, 
~E C2(A, B)n CEA, B], with 

3. Comparison theorems 

B satisfy the conditions of Lemma 2.3, and let 

7S(A) = 7qB) = O, 71 > 0 in (A, B), 
(3.1) 

~P" +( f /~) '>O in (A,B). 

Let A', B' satisfy O<_A'<_A, B<_B'<_ 1, and suppose that 
function, continuous and positive for A' < u < B', such that 

+(A' + B') B' 
{~(U)}- I  du ~- 5 {~ (u )} - i  du = (30. 

A' �89 + B') 

�9 (u) is a given 

Suppose also that q~ > 7 j in (A, B). 
Then the solution p of the initial value problem corresponding to the initial 

function qL whose existence is guaranteed by Lemma 2.3, has the property that 

(3.2) p(u,t)>~P(u) for A<-u<B, t>0.  

Proof. The initial value problem of this lemma corresponds to an initial value 
problem with x, t as independent variables: 

u , - u x ~ - f ( u ) = O  
with 

u(x, o) = 4)(~). 

Instead of solving this problem, let us consider a sequence of problems 

u(tn)__ (n) ( n ) _  hi(n) u x x - L ( u  )-~n(X) (3.3) 

with 

(3.4) u(")(x, 0) = 4,(x). 

Here the functions f ,  make up a sequence converging uniformly to f in [0, 1], 
with f , e  C 2 [0, 1] and f.(0) =f,(1) = 0, 

f , (u)<f(u) for u in (0,1(A+B)), 
(3.5) f,(u) >f(u)  for u in (I(A + B), 1); 

the functions 7, make up a sequence converging uniformly to 0 in ( -  oo, oo), with 
7nEC2(- -  OO, O0) and 7',>0. 

The initial value problem (3.3)-(3.4) has the usual unique classical solution, 
with u~")(x,t)>O for all x,t. By the arguments of w this corresponds to a 
positive solution pt,) of an initial value problem with u,t as independent 
variables, namely 

pl.)_ {p(,)}2 (,) (,) {P,, + ( f , / P ) , }  = 7', P(") > 0 
with 

p(")(u, O) = ~(u). 
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The  solution pC.~ is classical, since both  f .  and 7. are sufficiently differentiable, 
and pC")(u, t) is positive over a u-interval that does not  decrease as t increases. 

We can then define a sequence of functions ~u by the equat ion 

(3.6) ~u- + f . / ~ .  = 7/, +f/tp 

with 
T.(�89 + B))= 7J(�89 + B)) - e., 

where {~.} is a sequence of positive numbers  with e.$0 as n--. oo. Then 7J.< T as 
long as both  are positive; for, if we consider (as is sufficient) the interval 
[�89 +B),  1], we see that, at the first point  at which they meet, 7~. meets q~ from 
below, so that  ( 7 ~ . - 7 0 ' > 0 ,  and this contradicts  (3.5) and (3.6). It therefore 
follows that ~ .  is positive over (A., B.), where A. > A, B. < B, and ~ . (A. )=  7J.(B.) 
= 0. Clearly also A. --* A and B. ~ B as n ~ 0% and ~ - 7J. is small (and positive) 
th roughout  (A., B.). 

In fact, if A is such that f(u)<O for u in [0, A + 6], for some 6 >0,  then we 
can assert that A. > A, with a similar result for B. and B. For  we can rewrite (3.6) 

as . f exp (-.:+.,  'xP (-.:+. 
The expression in braces { } is negative at �89 and decreasing in 
(�89 +B),  B.); it is therefore strictly negative as u - , B . .  Now with the assump- 
tions on f, the exponential  is bounded  as u-~ B., at least if n is so large that  B. > 
B - 6 .  Hence we cannot  have 7J.-~u _-. 0 as i--* B., and so accordingly we have 
B.<B. 

If we continue to suppose temporari ly  that A and B satisfy these extra 
assumptions,  then we can apply the classical max imum principle argument  to 
provide a compar ison of  pC.) and ku. Since q~> 7 ~ in [-A, B] and 7~> ~u in 
I-A., B.],  we know that  initially pC.)> 7J in [A.,  B.]. Suppose for contradict ion 
that  pC.)= ku first at (Uo, to), where necessarily A.<uo<B .. Then, at (Uo, to) , 

(3.7) pC.) _< 0, pC.) = ~., f.nc") = ~u-, ,-..'(") => 7J, V, 

while, from the equations for pC.), ~., 

0 <plW_ {p(.)}2 m) m) ,, ' {p..+(f./p ).}+7'2{t/'s + ( f , ] t / ' . ) }<0 ,  

from (3.7). This gives the required contradict ion,  and we have 

pC"~(u, t) > 7'.(u) for A. < u < B.,  t > 0. 

A limiting process as n --* oo then gives the final result of the lemma. Indeed for 
any fixed t and uniformly in x, we have as n--* 0% 

u~"~(x, t)~u(x, t), uC"~(x, t)~ux(x, t), 

as can be seen by turning the equat ions for u and u ~") into integral form and 
compar ing them. Pick any u o with A < u o < B, so that  P(Uo, t)4= O. Then, dropping 
dependence on t, define 
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x o by U(Xo)=Uo, 

U~o ") by u~")(Xo)=U~o"), 

x ~") by u~")(x{"))=Uo. 

The implicit  function theorem implies that  x~"~--* x o as n---, oo, and that  

p~,)(Uo)_p(Uo ) -  ~,) ~, j_ - u  x (x ) ux(Xo)--,O as n ~oQ. 

If  A and B do not  satisfy the extra assumpt ions ,  we can no longer assert that  
4~> 7J,, but  we can then int roduce a sequence of initial functions cb, with 
�9 , > kP,, and with this extra compl ica t ion  achieve the desired result. The details 
do not require e laborat ion.  Note  that  the in t roduct ion of  such a sequence of 
functions ~n with ~b,> ~ would not  be possible if A = 0  or B =  1, but  in this case 
A and B satisfy the extra assumpt ions  and the sequence {4~,} is unnecessary.  

A second compar i son  theorem is proved  by methods  so similar that  we 
content  ourselves simply with its s tatement.  

L e m m a  3.2. Let f, A, B, A', B', q) be as in Lemma 3.1, but now let ~P(u) be a 
given function, continuous and positive for A < u < B, such that 

�89 B 
j" {~V(u)}- ldu= j" {~(u)} l d u = o o .  
A �89 

Suppose also that cI) > ~t' in (A, B). 
Then if p, q are the solutions of the initial value problem corresponding 

respectively to the initial functions ~, ~P we have 

p(u,t)>q(u,t) for a(t)<u<b(t),  t > 0 ,  

where the functions a, b introduced in Lemma 2.3 define the interval in which q is 
positive. 

Finally in this section we prove  a result bear ing on the increasing proper ty  
of  subsolutions. 

L e m m a  3.3. Let f, A, B be as in Lemma 3.1, and let ~ satisfy the conditons of 
both Lemma 3.1 and Lemma 3.2. Then if q(u,t) is the solution of the initial value 
problem corresponding to the initial function ~, it has the property that pointwise 
in u it is a nondecreasing function of t. 

I f  q(u,t) -+Q(u), say,  as t -+~,  then Q is a positive solution of(2.14) over some 
interval (A',B'), where 

O<A '<A ,  B<_B'<_I, 
and 

Q(A') = O, Q(B') = O. 

Proof.  By taking q~ = ~u in L e m m a  3.1, we immediate ly  obta in  

q(u, t) >= 7J(u) for A < u < B, t > 0. 
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N o w  use q(u,t*) and ~U(u) as comparab le  initial funtions in L e m m a  3.2, for any 
given t * >  0. This gives 

q(u,t+t*)>=q(u,t) for a(t)<=u<=b(t), t > 0 ,  

from which the nondecreasing character  of  q is apparent.  Then q(u,t) must 
converge to a limit as t ~ c r  say Q(u), and it remains only to establish that Q 
has the requisite properties. 

We are concerned with Q only where it is positive, i.e. in (A',B'). For  any 
small fixed 6 > 0 we know that q(u, t) > 0 for A' + 6 < u < B' - 6 and t > T, say, and 
in view of  the nondecreasing character  of  q we know further that q is bounded  
from zero in this range. Since Uxx is bounded  (for the corresponding solution 
with x, t as independent  variables) and u ~  = q q,, it follows that q, (and similarly 
qt and q,u) are bounded  and equicont inuous for A' + fi < u _< B' - fi as t ~ oc. (We 
make the temporary  assumption that f ~ C 2 [ 0 , 1 ] . )  Hence qu,qt,q,, converge 
uniformly as t ~ oc, at least through some subsequence, to Q', Q, Q", respectively. 
Taking the limit in the equat ion for q, we see that Q satisfies (2.14), as required. 

I f f  is merely C t [0 ,1 ] ,  then we can construct,  by a procedure similar to 
that  in L e m m a  3.1, a sequence of  functions fnEC2[O,|], with corresponding 
initial functions 5u and solutions q~") of  the initial value problem. Now, for any 
T 1, T 2 exceeding T, where T is chosen as in the previous part  of  the proof, and 
for any u, u 2 in [ A ' +  6, B ' - ~ ] ,  we have, at least if n is sufficiently large, 

Te 

[{q~"~ + (L/q("))},= ,2 - {q(,"' + (f , /r  . . . .  ] dt 
T~ 

T2 (u2 "1 u? f 1 1 ~ du. 
: T1S t,~ ~ ql"'/{q'"'}adu~dt=-2~9 lq("'(u, T2) q'"'(u, T1) ) 

Taking the limit as n ~ av, we can drop the sub- and super-scripts n; further- 
more  the condit ion f E  C t [0, 1] allows us to conclude as before that q(u, t), q,(u, t) 
converge uniformly to Q(u), Q'(u), at least by a subsequence, as t --,oo. Hence 

T2 

[{q,+(f/q)} . . . .  - {q ,+( f /q)}  . . . .  ]dt--*O as T1, T2~73. 
T1 

But the integrand is a non-negat ive cont inuous function of  t. (The non- 
negativity arises in the limit as n ~ o c  from the same property for q~"), which in 
turn comes from the equat ion satisfied by q~") and the fact that  q~") is a 
nondecreasing function of  time.) Hence in the limit as t --* ~ we must  have 

Q' + (f/Q) = constant,  

which gives the required result. 

4. Statement of  results 

We first prove a convergence result with (u, t) as independent  variables. The 
easiest such result occurs in case there is no question about  the existence of a 
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travelling front, i.e. when we assume that f satisfies one or other of the sets of 
conditions in Lemma 2.5. We shall in fact assume the conditions (b) of Lemma 
2.5; the conditions (a) are equivalent under the transformation u ~ 1 -  u, f~--~-f; 
the conditions (c) are only a particular case of either (a) or (b) except that they 

1 

allow the possibility ~f(u)du=O. As a preliminary step, we prove a theorem 
0 

which covers conditions (c) and also a particular case of conditions (b). 

Theorem 4.1. Let f ~ C l [ 0 , 1 ]  with f ( 0 ) = f ( 1 ) = 0 .  For some ~ ( 0 ,  1), suppose 
that f < 0  in (0,~), and that in (~,1) either f > 0  or f - O .  Let P be the unique 
positive solution of(2.14) and (2.16) in (0, 1), and let p be the positive solution of the 
initial value problem (2.7)-(2.9). Then 

p(u, t) ~ P(u) as t ~ 0% 
uniformly for u6[0, 1]. 

The proof of Theorem 4.1 is a matter of constructing suitable sub- and 
supersolutions, for which we have prepared the ground in the comparison 
theorems of w What we wish to do is, given the initial value problem (2.7)-(2.9) 
and any interval (A, B) with 0 < A < a, ~ < B < 1, to find a function ~ satisfying 
the conditions on 7' in Lemma 3.3 and in addition lying below the initial 
function ~ for the initial value problem. For  if such a ~ can be found, then the 
corresponding solution q of the diffusion equation with ~ as initial function 
increases with time to a solution Q of (2.14), positive at least over (A,B). By 
Lemma 3.2 the solution p always lies above q, and so in the limit lies above (or 
coincident with) Q. (A solution Q of (2.14), positive over (A,B) and with Q(A) 
=Q(B)=0,  is necessarily unique, as can be shown by a repetition of the 
argument which proves Lemma 2.4.) If the choice of A,B is arbitrary, subject 
only to 0 < A < ~ ,  ~ < B < I ,  then p(u,t) (in the limit as t ~ )  lies above (or 
coincident with) the solution P(u) of (2.14) and (2.16) which is positive for 
u~(0, 1). 

Our final task is to find a function ~ satisfying the conditions of Lemma 3.3, 
but with A =0,  B =  1 and the inequality (3.1) reversed. If, further, ~ lies above the 
initial function q,, then theorems comparable to those in w show that the 
solution ~ of the diffusion equation with ~ as initial function now decreases 
with time to a solution of (2.14) that is positive over (0, 1), and so necessarily to 
P. On the other hand, the solution p always lies below F:t and so in the limit is, in 
view of what has already been said, coincident with P. This is the required 
result. 

It is interesting that although the construction of such subsolutions q_ is 
possible under the conditions of Theorem 4.1, it is not necessarily possible i f f  
satisfies only the conditions of Lemma 2.5. We give an example to prove this in 
w Nevertheless, by use of a Lyapunov functional, we can dispense with the 
extra assumptions in Theorem 4.1 and so prove 

Theorem 4.2. Let f satisfy one of the sets of conditions in Lemma 2.5. Then the 
conclusion of Theorem 4.1. holds. 

When there is no travelling front over (0, 1), we have a theorem based on 
Lemma 2.6. 
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Theorem 4.3. Suppose that there exists a decomposition of [0, 1] into ad- 
missible intervals, and that in each of these intervals, say [ai, bi] , f satisfies one or 
other of the sets of conditions in Lemma 2.5, with [ai, bi] replacing [0, 1]. Let the 

minimal decomposition be [0, 1] = U I j, and let Pj be the unique positive solution 
j = l  

of (2.14) over Ij, with Pj vanishing at the end-points of Ij. I f  we define P by 

P(u)=P~(u) for us l j ,  

then p(u,t) ~ P(u) as t ~ ,  uniformly for ue[0, I]. 

These results have a corresponding interpretation when x, t are taken as 
independent variables. 

Theorem 4.4. Let f satisfy the conditions of Theorem 4.2, or of Theorem 4.3 
where the minimal decomposition consists just of [0, 1] itself and P is therefore 
positive over (0, 1). Let U be the corresponding travelling front solution of(1.1) and 
let u(x, t) be the solution of (1.1)-(1.2) corresponding to the solution p(u, t) of 
(2.7)-(2.9). Then there exists a function 7~ C 1 [0, ~),  with 7'( t )~0 as t-~ ~ ,  such 
that 

u(x ,  t ) -  U ( x  - c t -  ~(t)) ~ 0 as  t --+ ~ ,  

uniformly in x. 

There remains the case of Theorem 4.3 where the minimal decomposition of 
[0, 1] contains more than one subinterval. To be specific, let us suppose that the 
minimal decomposition is into two subintervals, [0, a], [~,1], and let the 
corresponding travelling fronts be U 1 ( x -  c 1 t), U2(x- c 2 t) with ranges (0, ~), (a, 1) 
respectively and c 1 =<c 2. Then we have the following result. 

Theorem 4.5. Let f satisfy the conditions of Theorem 4.3 with a minimal 
decomposition of [0, 1] into [0,~] and [a, 1], and let corresponding travelling 
fronts be U l ( x - c l  t) and U2(x-c2t  ) where cl<=c 2. Then there exist functions 
7i~C1[0, ~),  i=  1,2, such that 7'i(t) ~ 0  as t ~  and 

N(X, t )  - -  U 1 ( x  - -  c 1 t - -  ~/1 ( t ) )  - -  U 2 ( x  - c 2 t - ~2 ( t ) )  --[- ~ --~ 0 

as t ~ ,  uniformly in x. In the particular case c 1 =c  2 we can further assert that 

? 2 ( t ) - 7 1 ( t ) - ~  as t ~ .  

Under more restrictive assumptions on the initial function, we can improve 
Theorems 4.1-4.5 by giving estimates of the rates of decay to the limit. We leave 
a precise statement of this to w 11. 

5. Proof  of  Theorem 4.1 

In view of the remarks following the statement of Theorem 4.1, we have to 
prove the existence of a function ~ ,  satisfying the conditions on ~P in Lemma 3.3 
and with, in addition, ~__< ~, where �9 is the given initial function in (2.9). Given 
any A with 0 < A < ~ ,  we start by choosing a function w~C2[A,~], positive in 
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(A, c~) and with w(A)= 0, and such that there exists a positive constant k with 

(5.1) ( f /w) '>k>O in (A, e). 

(To find such a function w, set w =f/g, and choose g, so that g,'> k, g (A)-=-  0% 
g,(c 0 <0.) The function w may not be an immediate candidate for ~ ,  because we 
must have 

~ "  + (f/7*)' > 0 f5.2) 

and 
7*<_~b; 

but now replace w by ew, where e is a small positive constant. Since w~CZ[A,c~], 
certainly (5.1) implies that 

(5.3) (ew)"+(f/ew)'>O in (A,c 0 

if g is small enough, and this also ensures that e w<~b. A required g* has 
therefore been found which is positive in (A, ~), for any given A with 0 < A < cc We 
note also that (e w)'+ (f/e w) is a nondecreasing function with a strictly negative 
limit as u-+c~, at least if e is sufficiently small. (Recall that g(c0 <0.) 

We can in fact find a possible ~ over an interval (A, e*), for some c~* > e. This 
is an immediate consequence of the following lemma. 

Lemma 5.1. Let f satisfy the conditions of Theorem 4.1. I f  a positive continuous 
function 7* has been found satisfying (3.1) over (A,~) with 7*(A)= 7.(c~)=0, and if 

lim { 7., + (f/tp)} <0, 

then, for ~* sufficiently close to ~ (c~*> ~), a positive continuous function 7** can be 
found satisfying, (3.1) over (A,~*) with 7**(A)= 7.*(c~*)=0. Furthermore, we can 
arrange that 7** is as small as we please in (A, c~*), and also 7**/7**' as small as we 
please at ~. 

The proof of this lemma will be left to the end of the section, but the 
construction of a suitable ~ over (A, B), for any A with 0 < A < c~ and any B with 
c~ < B  < 1, is now almost immediate. 

If we take first the case where f > 0  in (~,1), then we can carry out the 
construction of a positive function 7*** satisfying (3.1) over (c~**,B), where 
~** <:~, and with 7***(e**)= 7***(B)=0. This comes from the argument that we 
l~ave already used for (A, e*), together with the transformation u*-+l-u, f~--~-f 
If the first value of u for which the functions 7**(u) and 7***(u) meet is /~, 
say, then the continuous function ~ defined by 

7** in (A, ~), 

~ =  7*** in (fl, B) 

has all the conditions required. There is the technicality that _~ may not be 
twice continuously differentiable at fl, having a jump increase in ~ '  there, but 
this does not invalidate the conclusions (or in any significant way the prooO of 



Phase Plane Discussion of Convergence to Travelling Fronts 299 

Lemma 3.3; it is merely a reflection of the well-known fact, noted in the 
introduction to [2], that if we have two classical subsolutions, then their 
supremum is also a subsolution. 

If now f - 0  in (ct, 1), choose c~*, 7 j* from Lemma 5.1, and note that the 
condition T * ' + ( f / k u * ) < 0  at :~ implies in particular that ~u*'(c0<0. Our choice 
of 7 j** has to be made differently from before, and we ask now that it satisfy the 
requirements that, for any given B with c~ < B < 1, 

q,**(~)= ~*(c~), ~*'(~)< ~**'(~)<0, ~**(a)=0, 
T**' is negative increasing in (a,B). 

There is no difficulty in satisfying these requirements, and such a ku** satisfies 
(3.1) in (c~,B) since f - 0  there, and moreover can clearly be chosen so that 
~u** < ~  in (~,B). Then 

7 ~* in (A, c 0, ~ =  
T** in (c~, B) 

gives the required T.  
It remains to discuss supersolutions. This is in essence easier than the 

discussion of subsolutions because it is largely independent of f. Let 7:/ be the 
solution of the initial value problem consisting of the equation (2.7), the 
boundary conditions 

ct(0, t)= ~l(t), q(1, t)=~/2(t), 

where yl(t), 72(0 are positive decreasing functions of t, and the initial condition 

(5.4) {/(u, 0) = T(u) = K{1 - (u-�89 2 } ( 0 < u <  1), 

where K is a large positive constant. There is no difficulty in giving existence 
and uniqueness theorems for ~/, for, with 71,72 positive, the problem is not 
degenerate (see, for example, [5]). If we assume that fffC2[0, 1] SO that we can 
discuss classical solutions (the extension to f e  C 1 [0,1] can be carried through on 
the lines of w then the usual arguments show that g/is a nonincreasing function 
of time, since by direct substitution we find that 

~u" + ( f / T ) '  <0  

in (0, 1) if K is sufficiently large, the size of K depending only on ]Lf Hc,. Also the 
given initial function ~ clearly lies below t~ if K is sufficiently large, and so p < ~/ 
for all time. If 71(0, 72(t) ---~0 as t--~o% then ~/tends to the positive solution P of 
(2.14) over (0, 1), and this is the result we want. Thus the proof of Theorem 4.1 is 
complete once we have established Lemma 5.1. 

Proof of Lemma 5.1. We have 

T' +(f/~P)< - k  2, 

say, in (A,a). Consider the solution of 

(5.5) y' + (f/y) = 0 in [~ - 6, ~] 
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for which 
y ( ~ -  6) = ~u(~ _ 6), 

where 6 is a positive constant  chosen so that  y is as small as we need it to be in 
[ ~ - 6 ,  ~]. (In appl icat ion this means  that  y=< ~ for the given initial function in 
the initial value problem.  If  it is assumed that  already ~__< ~ in [A,~] ,  then 
direct integrat ion of (5.5) shows that  we can certainly choose 6 so that  y=< q>.) 
With 6 so chosen we note that  (5.5) implies that  y ' > 0  in ( ~ - 6 , ~ ) ,  and so 
y(~) > 0. If  we let y,  be the solut ion of  

y', + (f ly ,)  = - r/ in [~ - 6, ~] 
for which 

y , ( ~ -  6) = ~ ( ~ -  6), 

then y,  is pointwise a nonincreasing function of q as ~7 increases, with y . > y :  >= 
so long as q < k2; and if 

7 j' + f / ~  = _ l 2, 

say, at c~-6, then yt~(u)< 7J(u) for u>o~-6 ,  and so yl:(u) vanishes at or  before 
u = c~. Finally, y, can vanish only at e, since if it vanishes first at u 0 < c~, then we 
have y',(u)--oe as u~u o. 

It follows therefore that  there exists some first t/o such that  y,o(~)=0,  and we 
can choose r/(<r/o ) so close to t/o that  y,7(oO/y',(e) is as small as we please. But 
u>c~ implies (since now f (u)>O) that  y',(u)<y',(e). Hence  y ,  must  vanish for 
some ~*(>  c0 close to ~. Then ~*  given by 

g.,, = { ~  in (A, c~- ~), 
y,  in ( ~ -  6, ~*) 

satisfies the conclusions of  the lemma.  

6. Nonexistence of subsolutions 

The proof  of  T h e o r e m  4.1 depends on the existence, given any A , B  with 
0 < A < e, c~ < B < 1, of  a function 7 /wh ich  is positive on (A, B) with ~(A) = kV(B) 
=0 ,  and satisfies there 

T " + ( f / T ) ' > O ,  

and further can be chosen to be arbi trar i ly small. While such a funtion ~' can be 
found if f satisfies the condit ions of  T h e o r e m  4.1, this is no longer necessarily 
true i f f  satisfies merely one or the other  of  the sets of  condit ions in L e m m a  2.5. 
It  is the purpose  of this section to provide  an example  of  this; to do so we 
suppose that  f satisfies the condit ions (b) of  L e m m a  2.5. Thus  f < 0  in (0, a), f > 0  
in (~, 1), and 

1 

f (u)  du < O. 
0 
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Now suppose that, in (c~, 1), f > k  on some closed interval 11 while f = 0  on 
another closed interval 12, where 11 lies to the left o f I  2 and both are of length �88 
say. Suppose also that we require T<8 ,  for some e<0.  

If the required function T exists, then 

is nondecreasing. On 11, 

g -  T '  + ( f / T )  

q,' = g - ( f / ~ , )  < g -  (k /e) .  

But if tp,< - 4 e  throughout 11, we could not also have 0 <  T < e  on 11. Hence at 
some point in 11 we must have 

g - ( k / e ) >  - 4 e ,  g > ( k / e ) - 4 e .  

Since g is nondecreasing, this inequality must also hold on 12, where 

T'  = g > ( k / e ) -  4e. 

throughout 12, we could not have 0 <  T < 8  throughout 12. Again, if T ' > 4 e  
Hence 

(k/e) - 4 e < 4e, e z > k/8, 

which is not necessarily true. 

7. Proof  of Theorem 4.2 

We will assume that conditions (b) of Lemma 2.5 hold. By the work in the 
earlier part of Theorem 4.1, including Lemma 5.1, we know that we can 
construct a funtion _TT, positive in (A, ~*), lying below the given initial function ~, 
satisfying 

T "  + ( f / T ) '  > 0  in (A, c~*), 

and with T(A) = T(~*) = 0, where A is any number with 0 < A < ~, and a* is some 
number with c~*>c~. The solution q of (2.7)-(2.9) corresponding to the initial 
function T then has the property that it increases with time to the unique 
positive solution Q~ of 

Q" + (f /Q)'  = 0 

over (0,fl), with Q~(O)=Q~(fl)=O, for some fl>c~*. Since ~0>T, we must have 

(7.1) lim infp(u, t) > Q~(u). 

Now, for any fi in [a*, 1], there exists the corresponding function Q~, with 

Q'~ +(f/Q~)= -c~, 
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say, and Q~(0)= Q~(/~)= 0. Further, cr > 0 since 

t~ 
Sf(u)du<O, 
0 

and c~ is a strictly decreasing function of/~ and Q~(u) pointwise in u a strictly 
increasing function of/3 (except at u = 0). (These results are contained in Lemma 
2.2 of I-2].) Let/3" be the largest value of/~ for which (7.1) is valid. Thus 

lim infp(u, t) > Q~,(u), 
t ~ c t 3  

but 
lim infp(u, t) ~= Q~(u) 

for any fl > fl*. 
If f l*= 1, so that l i m i n f p > P ,  then we are done. For  we can construct a 

supersolution exactly as in Theorem 4.1 (we pointed out then that the con- 
struction of a supersolution was essentially independent o f f )  and so show that 
lira sup p < P, from which the final result follows. 

If f l*< 1 (which we finally prove to be absurd), then we can show first that 

(7.2) lim p(/~*, t)=0.  

Suppose for contradiction that (7.2) is not true, and consider the solution of 

/ + ( f l y )  = - c 

with 
y(/~, -,~) = Q~,(~*-  ~), 

where ~ is a positive number chosen so that, for some arbitrarily large values 
of t, 

(7.3) p(u,t)>Q~,(u) for u in [/3"-26,/~*]. 

It is possible to find such a 6 because lim sup p(/?*, t )>0  implies that, for some 
t ~ o o  

arbitrarily large values of t, p(/~*,t) is bounded from zero and so has bounded 
derivatives. Then if c (<  c~,) is close to c~,, y is pointwise close to Q~,, at least so 
long as both are positive, with 

y(u) ~ Q~,(u) according as u <>/~* - 6. 

Furthermore y vanishes at Yl,Y2, say, where Yl >0  but is close to 0 and y z > f l  * 
but is close to/~*, the strict inequalities being a consequence of the signs o f f  and 
an argument employed in the proof of Lemma 3.1. It is thus clear that, in view 
of (7.3), we can choose c sufficiently close to c~, that, for some arbitrarily large t, 

p(u,t)>y(u) for u in [ /~*-26,y2]  , 

and that, for all t sufficiently large, 

p(u,t)>y(u) for u in [yl,/~*--26], 
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since in this latter range y < Qo, and lim infp > Q~,. But p > y at any time implies 
that subsequently p is never less than the solution of (2.7)-(2.9) with y as initial 
function, which is a nondecreasing function of time. Hence certainly 

lim infp(u, t) > Qr~(u), 
t ~ c t ~  

which contradicts the definition of fi*. Thus (7.2) is true. 
It is now easy to establish that, in fact, 

(7.4) lim p(u,t)=Q~,(u) for u in [0,/3"]. 

We already know that l iminfp>Q~,;  the complementary result l imsupp<Q~, 
follows by considering the auxiliary function ~/, that is, the solution of (2.7) with 
the boundary conditions 

~/(0, t) = 7,(t), FT(fi*,t)=72(t), 

where 71(0, 72(t) are positive decreasing functions of t, and the same initial 
condition as in (5.4), although now over (0, fl*). As in the proof of Theorem 4.1, F/ 
is a nonincreasing function of time, converging as t ~ to Q~, if 71(0, 72(0 ~0 .  
If further we arrange that 72(0 ~ 0 more slowly than p(fl*, t), then we will always 
have p<~/, and so finally (7.4), as required. 

From (7.4), it is immediate that, as t -~ ~ ,  

( 7 . 5 )  p , + ( f / p ) ~ - c ~ , < O  in (0,/3"). 

Having established (7.4), we can now obtain the requisite contradiction to 
/3*< 1; the argument differs depending upon whetther or not f - 0  in (/3", 1). 

Take first the case when f - 0  in (/3",1), and let 7 be any number with 
/3* < 7 < 1. Consider as an initial function c/,, positive over (A, 7) for some A with 
0 <A < e, and such that q~,(A)= 0 and 

(7.6) cb..(u)=Q~(u) 

for u(< 7) sufficiently close to 7- We shall also insist that q ) <  ~. 
Now the condition (7.6) implies that the corresponding initial function q~(x) 

(with x, t as independent variables) is identical for x sufficiently large with some 
translation of the travelling front that has range (0, 7). Since ~b~,(-~)=A >0, we 
can in fact arrange that ~b~ lies entirely above some translate of the travelling 
front, and since this is so initially, the corresponding solution u~,(x, t) lies above 
this translate for all time. 

But also, by the arguments used on p itself, the inequality q~ <~b certainly 
implies that 

lira p.~(u, t) = Q~(u) for u in [0,/3], 

for some/3 >/3", where p~ is the solution of (2.7)-(2.9) corresponding to the initial 
function q~. Also, as in (7.5), 

c~u P~ ~ - c p  in (0, fl) 
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as t --+ oo. This means that, with x, t as independent variables, the corresponding 
solution uv(x,t) has the property that it moves with an asymptotic speed cp. 
More precisely, as is discussed in more detail in the proof of Theorem 4.4, if x(t) 
is defined by 

t)= a, 

for any fixed 6 in (0,7), then dx/dt--+ce. But c,>c,.>cv, so we have the 
contradiction that (as we saw before) u~ always lies above a travelling front 
moving with speed c 7, while at the same time moving itself with a speed that 
ultimately exceeds c~. 

This completes the discussion when f - 0  in [fl*,l].  If f ~ 0 ,  consider the 
functional 

1 (1 ) 
V(t)=~,_~ ~p-p l_~ f ( s )ds  du, 

where E is a small positive constant and p is the solution of our initial value 
problem. Then 

V'= ~ p,+ f(s) ds du 
f l * -  ~ 1 t 

c t = j \p,+ ds du 
I ] * -  g 

l-~ f 2 

In view of the known signs o f f ,  we certainly have V>0. If e is small, then the 
integrated term at 1 - e  is 

�89 P(P P, + f ), 

and since pp, is bounded (being uxx ) and p(1 -e, t )  is uniformly small for all t i fe  
is small, this integrated term is certainly small for small ~. 

For large t, and any fixed e, the contribution from the integrated term at 
the limit f l * - e  is negative and not small, in view of (7.5) and the fact that 

1 

~ f du>O. 

Hence V'(t) is bounded above by a negative constant for all t sufficiently large, 
and this contradicts V>O. This final contradiction establishes that /3*= 1 and 
completes the proof of the theorem. 

8. Proof  of  Theorem 4.3 

We will restrict ourselves to the case where f satisfies the conditions of 
Lemma 2.5 in each of two intervals [0,A], [A, 1]. Extending the result to any 
number of intervals is a straightforward piece of induction. We thus have 
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posit ive solut ions QI,Q2 of  (2.14) and  (2.16) over  (0,A), (A, 1) respectively, with 
wave speeds cl ,c  2. We consider separately the two cases c a <c2  and c I > c  2. 

First, by considering the interval [0, A] on its own, we see by the a rguments  
used in the p roof  of  T h e o r e m  4.2 that  since the initial function is positive over  
(0, A) (and indeed does not  even vanish at A), we must  have 

(8.1) 

similarly 

(8.2) 

lira inf p(u, t) > Q 1 (u); 
t ~ c x 2  

lim infp(u, t) > Qz(u). 

In the case c1~c2,  the decompos i t ion  of [0,1]  into [-0,A] and [A, 1] is the 
minimal  decomposi t ion,  and Q~, Q2 are identical with P1,P2 in the s ta tement  of  
the theorem. We can therefore assert that  

lim infp(u, t) > P(u), 
t ~ o c  

where P (as in the s ta tement  of  the theorem) is defined by 

SP1 in (0, A), 
P 

[P2 in (A, 1). 

We can also construct  a supersolut ion as in Theo rem 4.1. This supersolut ion 
tends to a limit which lies above  (or coincident with) P and which satisfies (2.14) 
where it is posit ive and (2.16); the only possible candidate  when c a < c  2 is P 
itself. Thus 

lira sup p(u, t) < P(u), 

and the p roof  is complete  for the case c I < c  2. 
F r o m  now on, therefore, we assume that  c I > c  2. We still have (8.1)-(8.2), and 

we first need to establish that  

(8.3) p(A, t ) -~O as t ~ .  

Suppose  for contradic t ion that  p ( A , t ) ~ 0 .  Then we can construct  a super- 
solution over  (0,A) by taking ?/ to be the solut ion of (2.7) with boundary  
condit ions 

6/(0, t) = ~1([), ?t(A,t)=72(t), 

where 71(0, 72(t) are posit ive decreasing functions of  t, tending to zeros as 
t ~ vo but  (in the case of  )'2(t)) m o r e  slowly than p(A, t). The initial function for 71 
is the same as in (5.4). Then  ?/decreases  as t ~ ~ to Q~, and so 

l imp(u , t )=Ql (U  ) for u in [0, A], 
t ~  

which implies that  

(8.4) p , + ( f / p )  ~ - c  I in (0,A). 



306 P.C. FIFE • J. B. MCLEOD 

Similarly, 
or 

(8.5) p, + ( f /p )  --* - c 2 in (A, 1), 

and if we interpret (8.4)-(8.5) with x, t as independent variables, we get the same 
sort of contradiction as in Theorem 4.2; namely, values of u less than A are 
travelling with a higher speed than values of u greater than A, since c I > c 2. This 
is not consistent with the continued monotonicity of u(x,  t) as a function of x. 
Hence (8.3) is true. 

Now choose numbers c~, c* with the properties that 

c~<cl, c~*>c2, cT>c*. 

The solution ~ of the equation 

7t' + ( f  /~P) = - c* 

with ~g2(A)=0 has the property that ~2(u)<Qz(u) for u > A ,  and indeed 7~2 
vanishes at u z with u2<l .  (This follows from Lemma 2.2 of [2] and the 
argument already met in the proof of Lemma 3.1.) Similarly, the solution (P1 of 
the equation 

~,'  + ( f / ~ )  = _ c~; 

with tP 1 (A) = 0 has the property that 7/1(u) < Qx(u) for u < A and moreover 
vanishes at u~ >0. In view of (8.3) we can find values of t arbitrarily large such 
that 

p(u , t )>g~(u )  for u in [Ul,U2], 

where 

(8.6) 

for which 

~y={TJl in (Ul,A), 
~2 in (A, Uz). 

Let ~ be any number with c ~ < 7 < c * .  Let ~1 be the solution of 

7J' + ( f /71)  = - 7 

% , ( A - t l ) =  ~ ( A - ~ l ) ,  

17 being a small positive constant. Since y < c*, we see that 

is strictly increasing from zero in (A-~l, A), and in view of the sign of f, the 
exponential is bounded. Hence ~1 (A) > ~1 (A) = 0, and furthermore ~1 (A), which 
depends on 7, is a continuous decreasing function of 7 tending to zero as yrc*. 
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We can similarly take ~,2 to be the solution of (8.6) for which ~,2(A+~I) 
= 7Jz(A+~/), and then ~.:(A) is a positive continuous increasing function of Y 
which tends to zero as 7~,c*. Hence we can find 7 for which ~u~,(A)= ~ ( A ) ,  and 
for this 7 the function 

/ TJl in ( u x , A - q ) ,  

-~= ~ . , = ~ 2  in ( A - t l ,  A+~l) , 

7J2 in (A +q, u2) 

satisfies (3.1) (with possible jump increases in ~ ' )  and lies below p for some 
arbitrarily large t. (By virtue of (8.3), we can certainly take t/ sufficiently small 
that T,1, = ~,~ lies below p in ( A -  ~1, A + q) for some arbitrarily large t.) Now the 
solution q_ of (2.7)-(2.9) with initial function __T increases with time to P, the 
positive solution of (2.14) and (2.16) over (0, 1); hence lim infp>P.  But the usual 
choice of supersolution shows that lim sup p<=R and the theorem is proved. 

9. Proof of  Theorem 4.4 

Let us define y(t) by the requirement 

(9.1) u(x, 7)= U ( x - c t -  7(t))= �89 

Since u, U are monotonic in x, this defines both x and 7 as functions of t. 
Furthermore, since the second equality in (9.1) implies that 

x - c t - ' / ( 7 ) = ~ ,  

where ~ is some fixed number, we have 

+ c t +,/(t),  7)= �89 

Thus, differentiating with respect to t, we obtain 

{c + 7'(t)} Ux(X, t)+ut(x,  7)=0, 

where x = x ( t )  is given by (9.1), and so 

c + y' = - uffu x = - {u~ +f(u) I /u  x 

= -  {p ,+( f / p ) } -~c  as t--, oo. 

Thus 7 ' ( t )~0 as t--* oo. 
Also, 

u(x,t)-U(x-ct-y(t))= i {u~(a,t)-U'(a-ct-7(t))}da. 
+ ct + 6(0 

Now make the change of variable, for any fixed t, from x to u, so that x = x ( u ,  t), 
a = a ( v ,  t); we have 
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u(x, t ) -  U (x - ct - ~(t)) = i p(v, t ) -  P (U ( a -  c t -  7(t))) dv 
p(v, t) 

u dv 
= ~ {p(v, t ) -  P(v)+ { v -  U ( a -  c t -  y(t))} P'(O)} p(v, t)' 

where 0 lies between v and U ( a - c t - 7 ( t ) ) .  This can now be regarded as an 
integral equation for the expression u - U ( x - c t - 7 ( t ) ) ,  where x is a function of 
u and t, and t is regarded as a parameter. Since it follows from Theorems 4.2, 
4.3 that p(u, t ) -P(u)  tends to zero as t--.oo uniformly in u, and p(u,t) is 
bounded from zero if t/< u < 1 -  t/, for any r/> 0, we see that, for this range of u, 

U 

]u(x, t ) -  U ( x -  c t -  y(t))l <=~ + Kj  lv -  U ( a - c  t -  7(t))l dv 
�89 

for any given e > 0  and some constant K (depending on r/), provided that t is 
sufficiently large. Solution of this integral inequality by iteration, in the usual 
way, shows that 

(9.2) [u(x , t ) -U(x-c t -y ( t ) ) l<=~e ~K for q _ < u < l - t / .  

In particular, 

U(x--ct--7(t))<=~e~K +~7 when 

Thus, from the monotonicity of U, 

�9 t K  O < U ( x - c t - 7 ( t ) ) < e e  ~ +~ when 

so that 

u (x, t) = ~. 

O<u(x,t)<~t, 

(9.3) ]U(X,t)--U(x--ct--?(t))I<__ee~K+2~ when O<u(x,t)<=tl. 

A similar argument applies when 1 -  ~7 <u(x, t )< 1. Consequently (9.2) and (9.3) 
imply, when we take first t /as small as we please and then e the same way, that 

u(x ,  t ) -  U (x - c t -  ~(t))~0 
as t-* or, uniformly in x. The proof of the theorem is therefore complete. 

10. Proof of Theorem 4.5 

The argument in the proof of Theorem 4.4 has to be just slightly modified. 
As there, we can show that 

u(x, t)-- U 1 ( x - c  1 t -  71(t))~O 

as t--, 00, uniformly for O<u<_c~-~l, for any fixed t7>0, where 7'a(t)~0 as t ~ o o ;  
and similarly 

u(x, t ) -  U 2 ( x - c  2 t -  72(t))--~O 
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as t ~ ,  uniformly for ~ + r / < u < l .  Hence, given e>0,  we have from the 
monotonicity of Ua, U2 that, for t sufficiently large, 

(10.1) c(>Ua(X-Clt-71(t));>~--rl-E for u > ~ - r / ,  

(10.2) ~<U2(x -c2 t -72 ( t ) )<c t+~ l+~  for u <~+~/. 

Hence for u__< ~-;7 we have 

lu(x, t ) -   :a(X-Ca t -  71(t))- V2( -c2 < .  + 

and similarly for other ranges of u, which gives the require conclusion. 
In the particular case c a --c 2, we can further assert that 72(t)-Yl(t)---~oo as 

t ~ .  For if we define x(t) by u(x(t), t)=~, then (10.1)-(10.2) tells us that both 
Ul(X(t)--Clt--~l(t)) and V2(x(t)--Cat--~f2(t))are close to ~ for large t. Since 
U~(r) is close to ~ only when z is large and positive, while U2(r ) is close to c~ 
only when ~ is large and negative, the required result follows. 

11. Estimates of rate of convergence 

To obtain theorems that strengthen Theorems 4.1 -4 .5  by giving estimates of 
the rate of convergence, it seems to be necessary, when f ' ( 0 ) = 0  o r f ' ( 1 ) = 0 ,  to 
make further assumptions about the initial function 49. We restrict ourselves for 
simplicity to the case where the minimal decomposition is [0, 1] itself and prove 
the following theorem. 

Theorem 11.1. Let f satisfy the conditions of Theorem 4.2, or of Theorem 4.3 
where the minimal decomposition consists just of [0, 1] itself. Let u be the solu- 
tion of (1.1)-(1.2) corresponding to the initial function 49, where, as always, 
4 9 e C l ( - m ,  m) with 4 9 ( - o ) = 0 ,  49(oc)=1, 49'>0. Let U be the travelling front 
solution, with speed c, and assume that 

If 

(11.1) 

min {c 2 - 4f'(0), c 2 - 4 f '  (1)} > 0. 

e~CX{49(x)- U ( x - x j } e L 2 ( -  ~ ,  oo) for some Xl, 

then we have for some constants Xo, ~c and ~o, the last two positive, 

(1 1.2) [u(x, t ) -  U ( x - c  t -Xo)  [ < K e  -~ 

the result being uniform in x if 

either f ' (0)# :0  and f ' (1)4 :0  

or f'(O) + 0 and c > 0 

or f ' ( 1 ) + 0  and c < 0 ;  

in all other cases, if c < 0 it is uniform for x < (c + e) t and if c > 0 it is uniform for 
x > ( c - e ) t ,  for some ~>0. 
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Remarks. 1. The hypothesis (11.1) puts extra conditions on ~b ahead of the 
wave; for (11.1) is a restriction only as x ~ - ~  if c < 0  and as x - - * + ~  if 
c>0 .  Furthermore, if (11.1) is true for some xl ,  then it is true for any xl ,  this 
being a consequence of the asymptotic behavior of U which is discussed in 
Remark 5 below. We could equivalently express (11.1) as 

e~CX {c~(x)- H (x)}~L2( - oo, oo), 

where H is the Heaviside function. 
2. If f'(O), f ' (1)4:0,  the present theorem is a much weaker result than 

Theorem 3.1 in [2], because of the extra assumption (11.1). This arises because the 
present theorem, in both statement and proof, makes little distinction between 
the cases f '(0), f ' (1)4:0  and f '(0), f ' ( 1 )=0 .  To recover Theorem 3.1 of [2], we 
should have to make explicit use of the assumptionsf '(0),f '(1)4=0, essentially in 
the form of Lemma 4.1 of [2]. This assures us that, if z = x - e  t and ]z[ >et ,  for 
any e>0,  then (11.2) holds. We have only, therefore, to establish (11.2) for 
lzl<et, and this can be done (as indeed it is clone in the proof of Theorem 3.1 of 
[2]) essentially by carrying through the argument of the present theorem over a 
range of values of x which (for any given t) is finite, so that the restriction (11.1) 
becomes irrelevant. 

3. The function f which corresponds to KANEL'S equation for gas com- 
bustion [4], i.e. f - 0  in (0, ~), f >  0 in (~, 1), f ' (1)4:  0, is one of the cases which 
gives an exponential rate of convergence uniform for all x. 

4. Even when the exponential rate of convergence is not uniform for all x, it 
is always uniform over the range in which the wave is actually being formed. 
Thus, if z = x - c t ,  and u(x, t)=v(z, t), then 

Iv(z, t ) -  U ( z -  Xo) I < Ke -'~ 

uniformly for Izl<et.  
5. It is perhaps helpful to recall at this stage the asymptotic behavior of U. 

Linearizing the equation for U, namely 

(11.3) U"+cU'+f (U)=O,  

about the constant solutions U=O and U = 1, we see that U(z)--,O, 1 as z ~  - 0o, 
+ ~ at rates that are approximately 

exp{a( -c+] /c2 -a f ' (O) ) z } ,  exp {�89 ( -  c - ] / c 2  - 4 f'(1)) z}, 

respectively. These rates are indeed exponential, provided that we do not have 

eitherf'(O)=O and c>O or f ' ( 1 ) = 0  and c < 0 .  

The non-exponential cases are therefore precisely the cases (for c 4:0) in which 
we do not have the exponential rate of convergence uniform for all x. This is not 
coincidental. 

Proof. This is a variant of the proof of the corresponding part of Theorem 3.1 
of [-2]. Let 
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z = x - c r ,  u(x,t)=v(z,t).  

Set 

h(z, t)= v(z, t) - U ( z -  7( t ) -  ct(t)), 

where 7(t), as in Theorem 4.4, is such that 

~(:, t)- u ( : -  ~,(0)~ 0 

as t--, o% uniformly in z, and c~(t) is a continuously differentiable function to be 
chosen later. 

We want a diffusion equation for h, namely 

h,=h= +ch: + f ( v ) - f  (U)+(~' + 7') U' 

=h~: +ch: +f ' (U)h +(c~' + 3,') U' +o(h). 

Setting y - -e  ~ h, we obtain 

(11.4) yt=y:~ - {�88 2 - f ' ( U ) }  y+(~'+7')e�89 

Now y, being initially in L Z ( - ~ ,  oo), is, for 0 < t < T ,  say, in the domain of 
the self-adjoint operator i n / . 2 ( -  o% oc) given by 

Ly = - y:~ + {�88 c 2 - f ' (U)}  y. 

This is a standard result in the theory of evolution equations (see, for example, 
[3]), or equivalently it can be obtained from the integral equation for y much as 
we obtained the results in Lemma 2.1. (For these arguments to apply, f should 
be smoother than here assumed; but we can surmount this difficulty as unual by 
approximating f in C a by a sequence of functions f ,  which are sufficiently 
differentiable, operating with f ,  throughout the proof of the theorem, and then 
finally letting n-- ,~.  We omit the details.) The constant T can be chosen 
arbitrarily large. This is a consequence of the deduction from (11.4) that 

l d  
(11.5) 2 dt Ityll2= -(Ly'y)+(~'+7')(e~c:U"Y)-+-~ 

where II... II denotes the norm in L2( - 0% zc), and (.,.) the corresponding inner 
product, and where the notation o(ll y II 2) denotes a term which, given e > 0, does 
not exceed elly[I 2 in modulus for t sufficiently large. By use of the Cauchy- 
Schwarz inequality, we can rewrite (11.5) as 

l d  

2 dt 
- - -  Ily II 2 = - ( g y ,  y)+(~'-t-7')o(l[yll)+o(llyll2), 

and since it is standard that the operator Lhas the spectrum bounded below, we 
have, for some constant K, 

d 
d~ IlYll2 ~ K [lylI2 +(~' + 7') ~ 
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Integration of this inequality for HyL[ assures us that y~L2(-oo ,  oo) for all 
time, and allows us to choose T arbitrarily large. 

We can in fact do much better than this by choosing ~ appropriately. We do 
this by requiring that h is orthogonal to e ~ U', i.e. 

e r h (z ,  t) U '  (z  - y (t) - a (t)) d z  = O. 

The work above justifies the convergence of this integral; and for any t the 
equation is satisfied by one and only one value of ~(t), as we see by rewriting it 
in the form 

eC~ {v(w + o~(t), t)-- U ( w -  y(t)) ) U' ( w -  7(t))dw=O 
- - o 0  

and noting that v is monotonic in e. Furthermore ~(t) so defined is a con- 
tinuously differentiable function of t. 

We make this choice of e, and note also that the operator Lis  self-adjoint 
~1C 2 1,~0 ~ with a continuous spectrum to the right of min~z - j ~  , z c 2 - f ' ( 1 ) } ,  which is 

strictly positive by hypothesis, and a discrete spectrum to the left. Furthermore, 
we know by differentiating the equation (11.3) for U that e ~cz U' is an eigenfunc- 
tion of L corresponding to the eigenvalue 0; since this eigenfunction is of 
constant sign, 0 must be simple and the least eigenvalue, with all other 
eigenvalues strictly positive. Since y is orthogonal to the eigenfunction e ~c~ U', 
we obtain from (11.5) that 

1 d - --I]yll2<=-MIlylj 2 
2 dt 

for some constant M >0  which is independent of t for t sufficiently large. Hence 

(11.6) I] Y II = O(e-Mt). 

Finally, we can obtain an estimate for y(z, t), with t >  T, say, by using the 
usual integral equation with T as the initial time. This enables us to estimate 
IlY(', T+l)Hco in terms of HY(',z)I]L2 for T < v < T + I .  The estimate (11.6) then 
assures us that 

II y( ' ,  t)IIco = O(e -M' ) ,  

the positive constant M not necessarily being the same at each appearance, but 
always, of course, independent of t. 

We also want to show that 

~'.+ T'=O(e-Mt), 

and for this purpose we multiply (11.4) by e ~cz U' and integrate over ( - ~ ,  ~).  
Thus 

(11.7) (e~czV',y,)=-(e~CzV',Ly)+(~'+y')(ec~U',V')+o{(~c~V',lyl)}. 
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Differentiating the relat ion 

(e �89 U', y) = 0, 

we obta in  

(e ~cz U', y,) = (c(+ ~,')(e ~cz U", y); 

the scalar p roduc t  on the right is seen to decay exponent ial ly  by use of  the 
Cauchy-Schwarz  inequali ty and (11.6). Also, 

(e r U', L y )=(L(e  ~c~ U'), y ) = 0 ,  

and the remainder  term in (11.7) also decays exponentially.  Thus f rom (11.7) we 
have 

c~' + y' = O (e-  M,). 

Hence  by integration,  with a suitable choice of  the constant  x o. 

(11.8) ~ + 7 = Xo + O(e -Mt ) .  

The p roof  of  the theorem is now virtually complete.  We have, uniformly in z, 

e ~ {v(z, t ) -  U(z - 7 ( 0 -  c~(t))} = O(e-M').  

If  c < 0  (the a rgument  for c > 0  is similar), then 

v(z, t ) -  U ( z -  y ( t ) -  ~(t))= O(e-~M + ~c% 

uniformly for z<e t ,  where we choose e ( > 0 )  so small that  M + � 8 9  Thus, for 
z<Et ,  we can utilize (11.8) to obta in  

Iv(z, t) - U (z - Xo)l < K e-~ 

for suitable choices of  K and co, and this is the required result. All that  remains  
is to show that  we can extend the range of uniformity to all z i ff ' (1)4=0.  But in 
this case 

U ( z ) -  1 = O(e-M~), 

say, as z ~ o o ,  and so, at z=e t ,  we have 

v(~t, t ) -  1 = O(e-M').  

In view of the monoton ic i ty  of  v, we obtain  

v(z, t ) -  1 =O(e-Mt) ,  

uniformly for z>e t .  Consequent ly  

v (z, t) - U (z - x o) = O (e - M,), 

uniformly for z > et, which completes  the proof.  

This research was sponsored by the United States Army under Contract No. DAAG29- 
75-C-0024. 
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