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Abstract 

The paper is concerned with the asymptotic behavior as t---, oo of solutions 
u(x, t) of the equation 

ut-uxx-f(u)=O, xe( -  ~, oo), 
in the case 

f(0) =f(1)  =0, f ' ( 0 )<0 ,  f ' ( 1 )<0 .  

Commonly, a travelling front solution u=U(x-ct), U ( - o o ) = 0 ,  U(oo)=l ,  
exists. The following types of global stability results for fronts and various 
combinations of them will be given. 

1. Let u(x,O)=uo(X) satisfy 0 < u 0 < l .  Let 

a_ = lim sup Uo(X), a + = lira infuo(X). 

Then u approaches a translate of U uniformly in x and exponentially in time, if 
a is not too far from 0, and a+ not too far from 1. 

1 

2. Suppose ~f(u)du>O. I f a  and a+ are not too far from 0, but u o exceeds a 
o 

certain threshold level for a sufficiently large x-interval, then u approaches a pair 
of diverging travelling fronts. 

3. Under certain circumstances, u approaches a "stacked" combination of 
wave fronts, with differing ranges. 

1. Introduction 

This paper is concerned with the pure initial value problem for the nonlinear 
diffusion equation 

(1.1) ut-uxx-f(u)=O ( -  oo < x <  oo, t>0),  

the initial value being, say, 

(1.2) u(x,O)=q~(x) (-~<x<oo).  



336 P.c. FIFE & J.B. McLEOD 

One of the central questions of interest for this problem is the behavior as t ~  oo 
of the solution u(x,t); in particular one would like to determine under what 
circumstances i t  does (or does not) tend to a travelling front solution. This 
problem has attracted an increasing amount of attention in recent years [1-5, 
11-17, 21, 23]. We mention in particular the classic paper of KOLMOGOROV, 
PETROVSKI[ & PISKUNOV [16], the extensions by KANEL' [14, 15], and the 
more recent work of ARONSON 8(: WEINBERGER [1, 2]. These papers assume, 
as we do, that f~C  1 with f ( 0 ) = f ( 1 ) = 0 ,  so that u---0 and u-=l are particular 
solutions of (1.1). A travelling front is a solution of (1.1) of the form u = U(x -c  t) 
for some c (the velocity), with the limits U(+_oo) existing and unequal; for 
definiteness we take U ( - o o ) - - 0  and U(+ oe)=l .  With the above assumptions 
on f, it is a standard result that if (p is piecewise continuous and 0<q~(x)<l ,  
then there exists one and only one bounded classical solution u(x, t) of (1.1-2), and 
0 < u(x, t)__< 1 for all x, t. We shall always make these assumptions on ~0 and f, 
and shall be concerned only with this unique bounded solution. 

A particular case of (1.1) was introduced by FISHER [9] to model the spread 
of advantageous genetic traits in a population. A mathematical treatment was 
given in [16], assuming 

f ( u ) > 0  for u~(0, 1), f ' (0 )>0 ,  f ' (1 )<0 ,  f'(u)<=f'(O). 

It is shown there that if the initial function q0 is chosen so that 

q~(x)---0 for x < 0 ,  <p(x)---1 for x > 0 ,  

then it is indeed true in a certain sense that the solution of the initial value 
problem "tends" to a travelling front. Specifically, there exists a travelling front 
U(x-  ct) and a function 0(t) such that, as t--* oo, 

(1.3) u(x, t ) -  U(x-ct-~k(t))---)O uniformly in x, 

and 0 ' ( t )~0 .  Because it is not true that 0(t) tends to a finite limit as t ~  ~ ,  the 
solution u does not approach a travelling front uniformly in x; what does 
happen, however, and what (1.3) implies, is that the x-profile of the function u 
(monotone in x for each t) approaches that of the travelling front U. 

In [14], KANEL' proves similar convergence results for the case 

f(u)<O for u~[0,~], ~<1,  

f(u) >0  for u~(c~, 1). 

1 

He also assumes f ' ( 1 ) < 0  and Sf(u)du>O. This set of conditions includes the 
0 

equation for combustion of certain gases, in which f(u)=O for uE(0, a), and also 
the important case in which f(u)< 0 in (0, ~). 

The latter case, when f has exactly one intermediate zero in (0, 1), is called 
the "heterozygote inferior" case by ARONSON & WEINBERGER [1], reference 
being made to the genetical context envisaged by FISHER. But it is relevant in 
other contexts besides Fisher's. It serves to describe signal propagation along 
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bistable transmission lines 1-19], and is a degenerate case of the FITZHUGH- 
NAGUMO model for the propagation of nerve pulses (see also [18]). Finally, this 
case is also very relevant to models for pattern formation and wave propagation 
in a diffusing and reacting medium [6, 7]. This bistable case of Fisher's 
equation, and its generalizations, are the principal objects of study in the present 
paper. 

In his work, KANEL' allows ~o to be more general than a step function (as in 
[16]), though he still requires it to be either monotone and 0 or 1 outside a finite 
interval, or a perturbation of a travelling front. The convergence statement is 
stronger than that in [16], in that ff = constant. 

ARONSON 8,: WEINBERGER [1] introduce also the "heterozygote superior" 
case 

f(u)>O for ue(O,c O, f(u)<O in (c~,l), f'(O)>O, f'(1)>O. 

In relation to the travelling front question, they show that in each case 
mentioned above, there is a number c*> 0 with the property that every nonzero 
disturbance of the state u - O  which is initially confined to a half-line X<Xo (so 
that ~o(x)=O for X>Xo) and which exceeds some threshold value propagates 
with an asymptotic speed c*, in the following sense: 

lim u(x+ct, t)=O for each x and each c>c*, 
t ~ c O  

and 
lim u(x+ct, t)>c~ for each x and each c 
t ~ o O  

with 0 < c < c * .  
ROTHE [21], HOPPENSTEADT [12], MCKEAN [17], STOKES [-23], and 

KAMETAKA [13] have recently taken another look at the case f ( u ) > 0  for 
u~(0, 1). Stokes, taking ~0 to be a step function or a sufficiently steep monotone 
function, improves the convergence result in [16] by showing that ~,=constant 
in the case 4f'(0)<(c*) 2. ROTHE, HOPPENSTEADT, and KAMETAKA show, 
among other things, that by prescribing the precise x-asymptotic behavior of q~ 
ahead of the front, one can obtain uniform convergence to travelling fronts. 
MCKEAN applies probabilistic methods to the case f (u)=u(1-u)  to obtain 
similar results. 

CHUEH [4] has treated the case when f is allowed to depend on Ux, and a 
travelling front represented by a saddle-saddle phase plane trajectory exists. He 
obtains convergence of the profile of u to that of the front. 

Our main object in the present paper is to show, under minimal assumptions 
on q~, that when f ' (0)<0,  f ' (1 )<0  the solution converges uniformly to one of 
several types of travelling front configurations. A later paper will present 
convergence results for more general functions f 
Typical results obtained here for the bistable case are the following. 

Let f ~ C 1 [0, 1] satisfy, for some ~ ( 0 ,  1), 

f ( u )<0  for ue(O, et), f ( u ) > 0  in (cgl), f ' (0)<0,  f ' (1)<0.  

By [14] there exists a unique (except for translation) monotone travelling front 
U(x-ct) .  Suppose that O<=q~(x)<= 1 for all x, with 
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lim inf q~(x) > a, lim sup ~0(x) < c~. 

Then for some x o the solution of the initial value problem approaches 
U ( x - c t - X o )  uniformly in x as t ~ .  Further, c > 0 ( < 0 )  according as 
1 

~ f(u)du<O(>O), and the rate at which the limit is approached is exponential. 
0 

On the other hand, suppose that q~ is of bounded support (or more generally, 
that lira sup cp(x) < a) and that q~(x) > ~ + tl for some t 1 > 0 and Ix[ < L. I f  L is large 

X ~  • oO 1 

enough, depending on rl, and ~f(u)du >0, then the solution develops (uniformly in 
0 

x)  into a pair of diverging travelling fronts 

U ( x - c t -  Xo) + U ( -  x - c t -  x l ) -  1. 

We also treat cases where f has more than one internal zero. To each triple 
of adjacent zeros of f with properties analogous to the zeros (0,a, 1) in the 
heterozygote inferior case, there of course corresponds a travelling front with 
characteristic speed and characteristic limits at +_ o9. For simplicity consider the 
case of two adjacent triples of this type (thus five zeros in all), and a solution of 
(1.1) with range equal to the combined ranges of the two travelling fronts. Let 
Co, C 1 be the two velocities, ordered by increasing u. If Co<q,  we can show that 
the solution will tend to split into two separate travelling fronts, becoming very 
flat for u near the center zero of the five, and that there exists no single travelling 
front with range from the first to the fifth zero. If Co>C1, however, there exists a 
unique such travelling front, and this corresponds to the fact that in this case a 
splitting as described above would be conceptually impossible. The solution will 
develop into the unique travelling front. The case Co--C 1 is one which we are 
unable to discuss by the methods of the present paper. 

The principal tools used throughout the paper are a priori estimates and 
comparison theorems for parabolic equations. It may be well to state here the 
particular results of this type that we shall need. The indicated Schauder 
estimates can be found, for example, in [10, Theorem4 of Chapter7, and 
Theorem 5 of Chapter 3], and the comparison theorems in [20] with extensions 
in [1]. 

Let Q be a rectangle [Xo, Xl] • [to, q ]  in the (x,t) plane with t o>0  and with 
any of the Xo, Xl , t  I either finite or infinite. Let the sides be of length >2. 
Corresponding to Q, let Q' be the smaller rectangle [Xo + 1 , x l -  1] x [t o + 1, q] .  
For a function u, for which the derivatives appearing in (1.1) are defined and 
continuous in Q, let 

lU[eo = sup [u(x, t)[, [u]~ -= [U[o e -~ [Ux]o e, 
(x, t ) eQ  

lu12 Q --lul~ + lu~xlo ~ + lU,[o ~ 

Consequences of interior Schauder estimates: Let u be a solution of(1.1) in Q. 
Then for some C > O, independent of u and Q, we have 

(1.4) ]Ulle' <= C(]fo U]o a + LU[oQ), 
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(1.5) [ulOz' ~ C([fo u[~ + [u[o ~ < C(If'o ul Q [ul~ + [ulQ), 

the moduli o f  continuity o f  uxx and u t in Q' are subject 
(1.6) 

to a bound depending only on ]fo ul~ and lu]o Q. 

An immediate consequence is that the uniform boundedness of u in the half- 
space {t>0} implies that of ux, u~,  and u, in the half-space {t> 1}. We shall use 
this boundedness property throughout the paper without further mention. 

The comparison arguments we use are standard. Let N be the nonlinear 
differential operator, acting on functions of x and t, defined by 

(1.7) N u  =- u, - u~  - cu x - f(u). 

Consider the initial value problem 

(1.8) N u = O  for (x, t ) s ( -  o% oo) • (0, oo), 

(1.9) u(x, o) = O(x). 

A regular subsolution u(x, t) of (1.8-9) is a function defined and continuous in 
( - 0 %  oo)x [0, T), T <  0% for which the derivatives appearing in (1.7) are con- 
tinuous in ( -  0% oo) x (0, T), and satisfying 

Nu_ < 0 in ( - 0% oo) x (0, T), u < ~ for t = O. 

A subsolution is defined to be a function of the form 

u(x, t) = Max {u 1 (x, t) . . . . .  u,(x, t)} 
i 

for some set {_ui} of regular subsolutions with common domains. Supersolutions 
are defined analogously. 

Comparison Theorem. Let  u be a subsolution, and ~ a supersolution, of(1.8-9). 
Then u(x, t )<~(x ,  t) in ( -  ~ ,  oo) x [0, T). 

In this theorem either u or fi could, of course, be an exact solution. 
The plan of the paper is as follows. In w we review the existence and 

uniqueness of travelling front solutions, primarily for the case where f ( u ) <  0 for 
u sufficiently small and positive and f ( u ) >  0 for u sufficiently near 1. Many, but 
not all, of the results covered in this section are known and have appeared 
previously. In w 3, we state our precise results on uniform convergence. These are 
proved in w 4--6. Most of our results were previously announced in [8-[. 

2. Existence and Uniqueness of Travelling Fronts 

We assume throughout that f s  C 1 [0, 1] and f (O)=f (1 )=O.  We first make the 
point that any travelling front with range [0, 1] is necessarily monotonic. 

Lemma 2.1. Any  solution u = U ( x - c t )  of (1.1) with U~[0,1], U ( - o o ) = 0 ,  
U ( oo ) = 1, necessarily satisfies U' (z) > 0 for  f in i te  z = x - c t. 
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Proofi Such a function U(z) satisfies the ordinary differential equation 

(2.1) U"+cU'+f(U)=O 

and so corresponds to a trajectory in the (U,P) phase plane of the system 

dU 
(2.2) dz =P' 

dP 
(2.3) - -  = - cP- f (U)  

dz 

connecting the stationary points (0, 0) and (1, 0). This trajectory is a simple curve, 
since the differential equation (2.1) is of the second order, and it has the 
properties that it stays in the strip 0_< U_<I, is directed toward the right for 
P > 0, and toward the left for P < 0. Any simple curve with these properties must 
be such that P > 0  throughout its length. If it contains a point (Uo,0) with 
Uoe(0,1), then there would exist a travelling front U(z) such that U(0)= Uo, 
U'(0)=0. Then U"(0)#0, for otherwise U - U  o by uniqueness of solutions of 
(2.1). This means that P would change sign as the point (U0, 0) is crossed, which 
we have seen to be impossible. Therefore P = U' > 0 except at the endpoints. This 
completes the proof. 

In view of Lemma2.1, to any travelling front with range [0,1] there 
corresponds a function P(U) defined for Ue[0, 1], positive in (0, 1), zero at U =0  
or 1, representing the derivative dU/dz. From (2.1), we see that it satisfies the 
equation 

(2.4) P' + J = - c 

or, eliminating c, 

where c is the corresponding wave speed. Moreover P must satisfy the boundary 
conditions 

(2.6) P(0) = P(1) = 0. 

Conversely, given such a function P satisfying (2.4), (2.6), we may obtain a 
corresponding solution of (2.1) by integrating the equation 

U'(z)=P(U), U(O)=�89 

This equation may be solved for z in an interval (Zo, Zl) to obtain a monotone 
solution with lim U(z)=O, lim U(z)=l .  To show that u(x,t)=U(x-ct) is a 

z.~ zo z 'r  z t  

travelling front as we have defined it, we have only to verify that Z o = -  oo, 
Z1 ~ Ct). 

Since f(O)=O, we have [f(U)l<flU for some ft. Let V he a positive number 

such that P - - c<v .  Let S be the line P=vU in the (U,P) plane. If the graph of 
7 
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the given solution P(U) touches S at a point in the first quadrant distinct from 
the origin, then at that point we have 

P ' = - c  - f <  - c + ~ < 7 ,  

so that the trajectory immediately goes below S. This implies that, for some 6 > 0, 
either 

(i) P(U)>TU for U~(0,6), or 

(ii) P(U)<?U for Ue (0, b). 

In the former case we have, from (2.4), 

P'(V)=-c-f-<-c+fl~<? 
P -  ? 

so that P ( U ) < ?  U. Therefore (ii) must hold. But then 

1/2 1/2 du 1 ~ du -zo-- ! 

so that z o = - o o .  Similarly, z~ = oo. 
Hence if f ~ C ' [ 0 ,  1], f ( 0 ) = f ( 1 ) = 0 ,  there is a one-one correspondence be- 

tween travelling fronts (modulo shifts in the independent variable z) and 
solutions of (2.4), (2.6) which are positive in (0, 1). 

The form of the equation (2.4) makes it clear that for every solution-pair (P, c), 
there is a second pair ( - P , - c ) ,  so that our theory applies to monotone 
decreasing solutions of (2.1) as well. 

Integration of (2.4) (after multiplication by P) yields 

1 1 

c y P(u) du = - yf(u) du, 
0 0 

so that, for a positive solution of (2.4-6), we have 

1 

(2.7) c->0(-<0) according as ~f(u)du<=O(>=O). 
0 

1 

(For a negative solution, the sign of c is the same as that of ~fdu.) 
0 

Lemma 2.2 (KANEL' [14]). Let f ~ C  1[0, 1] satisfy f ( 0 ) = 0  and f(u)<=O for 
small positive u. Let P/(U), i=  1, 2, be solutions of (2.4) with corresponding, speeds 
c i. Assume P/(0)=0 and Pi(U)>Ofor Ue(O, Uo). Then for each U6(O, Uo] we have 

PI(U)~P2(U ) according as c 1 -~c z. 

Proof. From (2.4), we have 

PI' - Pd - ~  (PI - n 2 ) =  - ( c  1 --c2), 
t ' l  It-" 2 
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so that 
dF(U) 0 

dU - (Cl-C2)exp ~ (-f(t)/Pl(t)P2(t))dt '  
0o/2 

where 
0 

F(U)=(P~-Pz)exp S (-f(t)/P~(t)P2(t))dt" 
Uo/2 

As US0, we have F ( U ) ~ O  since P ~ - P 2 ~ 0 ,  and the exponential factor is 
bounded as U+0 because of the sign o f f  If c 1 =c2, then F(U), being constant, is 
zero, so that Px-P2. But if Cl>C 2, F is strictly decreasing, so that P~<P2 for 
U>0 .  

In the remainder of this section, we shall usually assume that f satisfies the 
following conditions: 

f e  C 1 [0, 1], with f(0) =f(1)  = 0, 
(2.8) f(u)<=O for u sufficiently small, 

f (u)>O for u sufficiently near 1. 

Corollary 2.3. Let f satisfy (2.8). Then there exists at most one solution of(2.5- 
6) which is positive in (0, 1). 

Proof. Suppose there exist two; let them be those in Lemma2.2, wherein 
Uo= l .  The fact that P~(1)=P2(1)=0 implies, by that lemma, that c1=c2, and 
in turn that P1-P2. 

Theorem 2.4. Let f e C l [ 0 , 1 ] ,  and f ( 0 )= f (1 )=0 .  For some c~s(0, 1), suppose 
that one of the following assertions holds: 

1 

(a) f < O  in (O,e); f > O  in (c~,l); ~f(u)du>O; 
0 
1 

(b) f < 0  in (0,~); f>=O in (c~,l); ~f(u)du<O; 
0 

(c) f < 0  in (0,~); f > 0  in (c~,l). 

Then there exists one and (by Corollary 2.3) only one solution of (2.5-6) which is 
positive in (0, 1). 

Remark. The theorem is in some sense best possible. For if we relax the 
restriction 

1 

f(u) du > 0 
0 

in case (a) and consider instead 
1 

~f(u) du=O 
0 

with f =  0 in (0, 3), say, where 0 </~ < ~, then the only possible solution is, by (2.7), 
also a solution of (2.4) for which c---0; and since f = 0  in (0,/3), we have P = 0  in 
(0,/~), which shows a positive solution to be impossible. 
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Proof. This theorem (in case (a)) was proved in [14], [1, Theorem4.2], and 
[2, Theorem4.1]. Case (b) follows from case (a) by replacing U by 1 -  U, a n d f  
by - f  Case (c) for c 4= 0 follows from the other two cases. For c = 0, (2.4) can be 
integrated, and the result is the required solution. 

Our object now is to extend this existence theorem to a wider class of 
functions f still retaining the hypothesis (2.8). At the same time, we shall 
consider the possibility of solutions of (2.4) with internal zeros, which represent 
phase-plane images of "stacked" combinations of travelling fronts. 

The following preliminary lemmas will be needed. 

Lemma 2.5. Let f ~  C 1 [0, 1] with f (0 )=  0, f (1 )=  0, and let there exist a solution 
Po(U) of (2.4), positive on (0, ~), with Po(O)= 0 and "velocity" c = c o. 

Then for any c<__Co, there exists a solution P(U) of(2.4) on (0,~) with P(0)=0  
and P(U)> Po(U). There exists a maximal such solution, which we denote by P~(U), 
so that for any other solution ,6 with the given c satisfying P(O)= O, and for U in 
the domain of  P, we have P~(U)>= P(U). Moreover, P~(U) depends continuously on c 
for C~C O. 

Proof. We follow the construction used in [2]. For v>0,  c<=c o, let P~.,(U) be 
the solution of the regular initial value problem 

f P ' + ~ + c = 0 ,  P(0)=v. 

Clearly P~,v(U)>Po(U ) for U~[0,~]. Since P~,v(U) is monotone in v, 
Pc(U) - lira Pc. ~(U) exists and satisfies Pc(U) > Po(U). 

v,tO 

Furthermore, by the monotone convergence theorem, Pc satisfies (2.4), and so 
is the required solution. If ~ is another solution, clearly Pc.~ > ~ for all U where 
the latter is defined; passing to the limit, we find that Pc is maximal. Its 
continuous dependence on c is proved as in [2, Proposition 4.5]. 

In the following, when we speak of a "travelling front over [a, fl] with 
velocity c", we shall mean a solution of (2.4) with the given c which is positive in 
(a, fl) and vanishes at c~ and ft. 

Lemma2.6. Let f satisfy (2.8). For 0 < ~ < f l < l ,  assume that there exist 
travelling fronts over [0, 1], [0, cr and [fl, 1], with velocities Col,Co,, and c~1 
respectively. Then necessarily 

(2.9) %, > Co i > ca 1. 

Proof. We apply Lemma2.2 with P~ being the solution over [0, 1], Pz the 
solution over [0, , ] ,  and Uo=a. Since P21,) =0<PI(~),  we have Coi =c1<c2=co~. 
The other inequality in (2.9) is proved in a similar fashion. 

Theorem 2.7. Let f ~ C  1 [0, 1] with f ( 0 ) = f ( 1 ) = 0 ,  and let there exist a travel- 
ling front over [0, ~] with velocity Co,, and one over [~, 1] with velocity c,1 <c0, .  
Then there exists a travelling front over [0, 1] with velocity Coa satisfying 

Coa > Co1 >Cal. 
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Remark. For this theorem to hold it is not necessary that f satisfy (2.8). If it 
does, however, then Lemma 2.6 shows the inequality c~1 < Coo to be a necessary 
as well as a sufficient condition for the existence of a travelling front over [0, 1]. 

Proof. For all c<co~, let P~(U) be the (maximal) solution of (2.4) guaranteed 
by Lemma2.5, and let g(c)=P~(e), C<Co~. It is continuous in c, and satisfies 
lira g(c) =0. 

By the symmetrical argument, for each C>Cal there is a positive solution 
~(U) of (2.4) satisfying P~(1)=0, with h(c)=P~(~) continuous, and lim h(c)=0. 

r ~ c ~ l  

Hence there is a solution C=Col of g(c)=h(c). For this value of c, Pc is the 
continuation of Pc; this is therefore the required travelling front over [0, 1]. 

Definition. A closed interval I c [0, 1] is called admissible if f vanishes at the 
endpoints, f < 0 in I near the left endpoint, f > 0 in ! near the right endpoint, 
and there exists a travelling front over I. 

Suppose we have given a decomposition of [0,1] into nonoverlapping 
adjacent admissible intervals 

[0, 13 = (D I j, 
)=1 

ordered from left to right (so that the right endpoint of I~ is the left endpoint of 
Ij+ 1). Let {c j} be the associated velocities of the travelling fronts over the I~. 

Definition. Such a decomposition is called minimal if cj is nondeereasing in 
j: Cj+ 1 ~ Cj. 

Theorem 2.8. I f  there exists a decomposition of [0, 1] into admissible intervals, 
then there exists a unique minimal decomposition. 

Remark. The significance of minimal decompositions will be seen in Theo- 
rem 3.3 and in a later paper. In fact, monotone solutions of (1.1) with range 
[0, 1] will split into a "stack" of travelling fronts, each with range in one of the 
intervals of the minimal decomposition and with its distinctive asymptotic 
speed, and (at least when the cj are distinct) spreading away from each other. 

Proof. The existence of a minimal decomposition is trivial. In fact, if the 
original decomposition is not minimal, there will be two adjacent intervals 11 
and I2, say, with associated velocities satisfying cl > c2. By Theorem 2.7, we may 
combine them into a single admissible interval. Thus proceeding in a finite 
number of steps (since each step reduces by one the total number of intervals), 
we arrive at a minimal decomposition. 

We now show that there cannot be two distinct minimal decompositions. Let 
two minimal decompositions be given. If they are distinct, there will be an 
interval of one, call it I, which overlaps at least two intervals of the other. Call 
the latter overlapping intervals J1,...,Jq, ordered from left to right, so that 

q 

I ~  U Jk and Ic~Jk# ~, l<k<q .  The interval Ic~J1, being a union of the 
k = l  n 

original intervals, has a minimal decomposition I c~J 1 = U I~, again ordering 
k = l  
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from left to right. Let the velocities associated with I, Jk, and I~ be c, dk, and c;, 
respectively. By Lemma2.6 we have c'~ > c  and c' ,<dl .  By minimality, C'l<=C' .. 
Hence c < d  1. A similar argument shows that c>dq. Hence d l > d  q. But this 
contradicts the minimality of the second decomposition and proves the theorem. 

3. Uniform Convergence Results 

Beginning with this section, we take up the question of the asymptotic 
behavior as t ~ ~ of solutions of the initial value problem (1.1-2). We deal with 
circumstances under which a solution approaches a travelling front, or a 
combination of fronts, uniformly in x and exponentially in t as t ~ .  Con- 
clusions to this effect, under minimal assumptions on ~o, can be made when the 
travelling front or fronts concerned are over u-intervals at the endpoints of 
which f ' ( u )<0 .  The basic result is the following. 

Theorem 3.1. Let  f e  C 1 E O, 1] satisfy 

f(O)=f(1)=O, f'(O)<O, f ' (1)<O, 

f ( u ) < 0  for 0<U<~o,  

f ( u ) > 0  for ~1 < u < l ,  

where 0 < % < ~  a <1. 
Assume there exists a travelling front solution U of  (1.1) with speed c, let (p 

satisfy 0 < (p < 1, and suppose 

(3.1) lira sup ~o(x) < ~o, lira inf~0(x)> ~ 1 . 

Then for some constants Zo, K, and ~o, the last two positive, the solution u(x, t) of  
(1.1 2) satisfies 

(3.2) [u(x, t) - U(x - c t - Zo) I < K e-  ~' 

Remark. It is clear from w that the existence of a travelling front is by no 
means guaranteed. Readily verifiable conditions on f were, however, given in 
that section which ensure its existence. If f satisfies these conditions, the 
existence assumption in the statement of Theorem 3.1 may of course be omitted. 
A particularly important case is that of the degenerate Nagumo's equation, in 
which ~o=~1. A travelling front does exist in this case. 

Theorem 3.1 implies that a solution which vaguely resembles a front at 
some initial time will develop uniformly into such a front as t - ,oo .  "Vaguely 
resembles" simply means that the solution is less than ~o far to the left, and 
greater than ~1 far to the right. Of course, if the words "left" and "right" are 
interchanged in this statement, the same conclusion holds; the front will then 
face right rather than left, and will travel in the opposite direction. 

There are also situations in which the solution will develop into a pair of 
such fronts, moving in opposite directions. That is the gist of the following 
result. 
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Theorem 3.2. Let  f satisfy the hypotheses of  Theorem 3.1, and in addition 

1 

(3.3) ~f(u) du > O. 
o 

Let  ~p satisfy 0 < ~p < 1, and 

(3.4) l imsupcp(x)<%, cp(x)>~ 1 +r/ for  Ixl <L,  

where r 1 and L are some positive numbers. Then if  L is sufficiently large (depending 
on r l and f ), we have for  some constants Xo, X l , K ,  and co ( the  last two positive), 

(3.5a) l u ( x , t ) - U ( x - c t - X o ) [ < K e  -~ x < 0 ,  

(3.5b) l u ( x , t ) - U ( - x - c t - x l ) l < K e  -~ ' ,  x > 0 .  

Note that (3.3) implies c<0.  The intuitive meaning of (3.5) is that the x- 
interval on which u is near the value 1 is finite and is elongating in both 
directions, with speed [c[. If the inequality in (3.3) is reversed, and appropriate 
changes in (3.4) are made, then an analogous convergence result is still obtained. 
In the latter case, the interval on which u is near 0 will elongate. 

Finally, we consider the possibility of the solution developing into a com- 
bination of fronts with different, but adjacent, ranges. As in w 2, we call them a 
stacked combination of fronts, and for simplicity treat only the case when there 
are two of them. 

Theorem 3.3. Let  f (u i )  ----- 0 and f ' (u i )  < O, i = 1, 2, 3, where u 1 < u: < u 3. Let  there 
exist  travelling fronts  U l ( x -  c 1 t) and U 2 ( x -  c e t) with ranges (ul, Ua) and (u2, u3) 
respectively. Assume c 1 <c  2. Let  ot 1 be the least zero o f  f greater than Ul, and ~a 
the greatest zero less than u 3. Suppose u 1 <cp(x)<u3,  and 

(3.6) lim sup qo(x) < cq, lim inf ~o(x) > e2. 

Then there exist constants x l , x 2 , K ,  and co, the last two positive, such that 

(3.7) [ u ( x , t ) _ U l ( X _ C l t _ X x ) _ U 2 ( x _ c 2 t _ x 2 ) + u 2 [ < K e  ~t. 

Note that (3.'7) implies, in particular, that 

Ux for /~ <Cl,  
l imu( f l t ,  t )= u2 for cl <[J<c  2, 
t ~  t i t 3  for e 2 <  ft. 

4. Proof of Theorem 3.1 (First Part) 

In this section we establish the uniform convergence of u ( x , t ) - U ( x -  c t - Z o )  
to zero as t ~  ~ ,  the exponential nature of this convergence being deferred to w 5. 

Several lemmas will be needed in the proofs of the theorems given in the 
previous section. Some arguments are easiest to give in terms of a moving 
coordinate system. For  the purposes of Theorem 3.1, we set z = x - c t ,  and write 
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the solution of (1.1-2) as 

v(z, t )=  u(x, t )=u( z  + ct, t). 

Our basic lemma in the following. 

Lemma 4.1. Under the assumptions of  Theorem 3.1, there exist constants 
zl ,  z2, qo, and # ( the last two positive), such that 

(4.1) U ( z -  z O - q o e -  U' < v(z, t) < U ( z -  z2) + qo e-"t .  

Proof. We prove only the left-hand inequality; the other is similar. The 
function v satisfies 

(4.2a) N[v]  =_-v t - v z~ -cv~ - f ( v )=0 ,  z ~ ( -  ~ ,  oo), t>0 ,  

(4.2 b) v(z, O) = ~o(z). 

Functions ~(t)and q(t)(q(t) positive) will be chosen so that 

t) = Max [0, U ( z -  - q(t)] 

will be a subsolution. 
First, let % > 0  be any number such that ~1 < 1-qo<liminf~o(z) .  Then take 

z* so that U(z - z* ) -qo<~O(Z)  for all z. This is possible for sufficiently large 
positive z* by virtue of (3.1). Let 

~b" , ~ [ f ( u - q ) - f ( u ) ] / q ,  q>0,  
tu, q) 

]. - f ' ( u ) ,  q = O. 

Then q~ is continuous for q>0 ,  and for 0 < q < q o  we have ~ < 1 - q o < l - q < l ,  
so that q~(1,q)>0. Also ( b ( 1 , 0 ) = - f ' ( 1 ) > 0 .  Thus for some i t>0  we have 
q~(1, q) > 2It for 0 < q < qo. By continuity, there exists a 6 > 0 such that q~(u, q) > tt 
for 1 - 6 < u < 1, 0 < q < qo. In this range, we have 

f ( u -  q ) - f ( u )  > #q. 

Setting ~ = z - ~ ( t ) ,  and using the fact that 

(4.3) U" + c U' + f (U )  = O, 

we find that, if v_ > O, 

N [v_] = - ~'(t) U'(~)-  c U'(0 - q'(t) - U"(~) - f ( U  - q) 
= - ~'(t) U'(~) - q'(t) + f ( U )  - f ( U  - q). 

Thus when U 6 [ 1 - 6 ,  1], q6[0,qo], 

N[_v] <= - ~ '  U ' - q ' - p q <  - ( q '  + pq), 

provided 4':>0, since U ' > 0  (see Lemma2.1). We choose q(t)=qo e-ut, which 
results in N[_v] < 0  when 1-6_< U_< 1. 
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By possibly further reducing the size of # and 6 and using the same 
arguments, we may also be assured that N[v_] <0  whenever 0_< U <3 and U>q. 

Now consider the intermediate values, 6_< U_< 1 -  6. In this range we know 
that U'(z)>fl for some f l>0,  as shown in Lemma2.1. Also, by the differentia- 
bility of f ,  we have f ( U ) - f ( U - q ) < ~ c q  for some ~c>0. Thus 

N[v]=< - f l~ ' -q '  + ~cq. 

We now set 

(Specifically, 

(4.4a) 

where 

(4.4b) 

~'(t)=(-q'+~cq)/fi=(#+~c)q/fl>O, with ~(0) =z*. 

~ Z  1 + Z  2 e-'Ur~ 

z2=-qo(#+K)/#~, Zl=Z*-Zv)  

Thus ~(t) is increasing and approaches a finite limit as t ~  ~ .  Then N[_v] <0 
whenever _v > 0, and by our condition on z*, v_ will be a subsolution. Thus 

v(z, t)>v_(z, t)> U ( z - z O - q ( t ) =  U ( z - z O - q o e  ,t, 

which completes the proof. 

Lemma 4.2. Under the assumptions of Theorem 3.1, there exists a function o9(~), 
defined for small positive e, such that limog(e)=0, with the property that, if 

~ 0  

0<~o < 1 and [q~(z)- U(z-Zo)l  <e for some Zo, then 

Iv(z, t ) -  U ( z -  Zo)l < ~o(~) 

for all z and all t > O. 

Proof. In the proof of Lemma4.1, we may take qo=O(~) and [z*-zol  =O(r 
Hence also Iz l -Zo[=O(e ), Iz=-Zol=O(~), and the conclusion follows from the 
lemma. 

Remark. Lemma 4.2 already yields the stability of travelling fronts in the C O 
norm, but Theorem 3.1 claims much more. 

In the following development, it will be necessary to have asymptotic 
estimates for the derivatives of v. 

Lemma 4.3. 
constants a, #, and C with a > [c[/2, such that 

I1 - v(z, t) l ,  Iv~(z, t)l, Ivzz(z, t)l, 
(4.5a) 

(4.5b) 

Under the assumptions of Theorem 3.1, there exist positive 

Iv,(z, t)l 
<C(d-~c-")Z+e-U') ,  z > 0 ;  

[v~(z,t)l, Iv,(z,t)l 
<C(d-lc+~)Z+e-Ut), z<0 .  

Iv(z,t)[, Iv~(z,t)l, 
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Proof. The wave front U(z) approaches its limits exponentially; this is easily 
seen by linearizing (2.1) about the constant states U = 0  and U = I .  In fact, this 
analysis shows that U(z)~  1 as z ~ oo at the approximate rate 

exp {�89 [ - c - r  2 - 4 f ' ( 1 ) ]  z}, 

and so at an exponential rate faster than exp {(-�89189 A similar analysis 
holds as z ~ -  oo. This, together with (4.1), establishes (4.5) for the undifferen- 
tiated function v. Since [f(u)l<klu] for u near 0 and I f (u) l<k(1-u)  for u near 1, 
we also have 

If(v(z,t))l<C(e-~Cz-~lZl+e-~' ) for some C>0.  

From this and (1.4) it follows that (4.5) is satisfied for v~. The same estimates for 
v~z follow then from (1.5), and (4.2a) yields them for vt. This completes the proof. 

Lemma 4.4. For each 6 > 0  the "orbit" set 

{v(., t): t>__~}, 

considered as a subset of  C 2 ( -  0% oo), is relatively compact. 

Proof. We know from (1.4-6) that v, v~, and v= are bounded and equicon- 
tinuous for t>6.  Let {t',} be a given sequence. If there is a finite accumulation 
point t~, then the (uniform) continuity of v and its derivatives implies that v(., t) 
approaches the limit v(', too) "along a subsequence". So assume there is none. 
For any K > 0 ,  let vK(z,t ) be the restriction of v to the set [z[<K, t>6.  By 
Arzelh's theorem, for each K = l , 2 , . . . ,  there is a subsequence {t,,~} such that 
the sequence {VK(Z,t,,K)} converges in C 2 [ - K , K ] .  We may always, in fact, 
choose {t., ~+1} to be a subsequence of {t,,K}. We then take a diagonal 
sequence, denoted by {t,}, so that {v(z, t,)} converges uniformly on each interval 
[ -  K, K] to a limit w(z), the derivatives to order two converging to those of w. 

Since v satisfies (4.5), we may pass to the limit as t ~ oo thus showing that w 
satisfies (4.5) with t = oo. 

Given any e>0,  by Lemma4.3 one may choose T and K such that for k 
=0,  1,2, 

]Okz(V(z,t)--w(z))l<e for [zl>K, t>T .  

One may also choose N so that t N > T and 

IO~(v(z,t,)-w(z))l<e for n > N ,  Izl<K. 

This proves that lim v(z, t,)= w(z) in C 2 ( - ~ ,  ~),  and completes the proof of the 
lemma. "~ ~ 

Lemma 4.5. Under the assumptions of  Theorem 3.1, there exists a value z o such 
that 

lim iv(z, t ) -  U ( z -  zo) I =0,  
t ~ o O  

uniformly in z. 
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Proof. Let e > 0 be a number satisfying Ic[ e < 2#, where # is the constant in 
Lemma4.3. Let w be a truncation of v in the following sense: 

w(z,t)=v(z, 0 for [zl<et, 

w(z,t)=O for z < - e t - 1 ,  

w(z,t)=l for z>et+l ,  

and w satisfies (4.5). It is clear from (4.5) that v may be smoothed in this manner 
so that the truncation w also satisfies (4.5). 

We define the Lyapunov functional 

V[w] = S eCZ[�89 dz, 
- -  oo  

o 

where H(z) is the Heaviside step function and F(v)=-~f(s)ds. It clearly con- 
0 

verges, as do the integrals below, because of the truncation. In fact, V[w] is 
bounded independently of t. To see this, we use (4.5) to estimate it as follows: 

e t + l  

[V[w][<C1 ~ eCZ(e . . . .  2a lz l+e-2U,)d  z 
- - e t - -  1 
~ t  

< C 2 ~ (e- 2~ I~1 + elCl ~- z,,) dz. 
0 

Since I c l ~ -2 # <0 ,  the right side is bounded for all time. 
Setting V(t) =- V[w(., t)], we have by integration by parts 

AV(t) z At = - _ ~ { (  w~(z't)+Wz(Z't+At)~ cz -~ ] ~  - - ~ - j d z .  

Passing to the limit as A t--. 0 and using the uniform (in t) convergence of the 
integral, we see that 12(t)-dV/dt exists and 

12( t )=-  ~ eCZ(w~z+cw~+f(w))w, dz. 
- o t ~  

Letting Q [w] - S e ~ [Wz2 + c w z + f(w)] 2 d z, we calculate 
--O(3 

12(t) + Q [w] (t) = - ~ e ~z [w= + c w, +/(w)]  N [w] dz, 

where N is given by (4.2a). Since N[w] = 0  for ]z[<et and w satisfies (4.5), 

E t + l  

Igs(t)+Q[w](t)l<= C1 ~ e~(e(- �89 +e-ut)Zdz 
~ t  

< C (e- 2aet+e(tlcl-2u)t) 
2 

Again, since e lc[-  2# <0, we obtain 

(4.6) lim 112(t) + Q [w] (t)[ = 0. 
t ~ o o  



Nonlinear Diffusion Equations 351 

Since Q [w] > 0, it follows in particular that lim sup 12(t)< 0. We thus deduce the 
t ~ a 3  

existence of a sequence {t,} with t , ~  ~ such that 

(4.7) lim 12(t.) = 0; 
n ~ c o  

(for otherwise lim sup lY(t) < 0, implying that V(t) ~ - ~ ,  whereas we 
l ~ o ( 3  

from above that V(t) is bounded). Combining (4.6) and (4.7), we obtain 

know 

(4.8) lim Q [w] (t.) = O. 

By Lemma 4.4, there is a subsequence of {t,}, call it {t',}, along which v(-, t',), and 
hence w(-, t',), converges in the norm of C2( - ~ ,  ~ )  to a limit function ~(z). 
From this and (4.8), we obtain, for any finite interval I, 

I eC~'(wz~ + cw~ +f(w))Z[,=,,dz ~ ~ eC~(~zz + c vz +f(~))2 dz = O; 
I I 

thus 
~z +c~z + f(?J)=-O. 

We also have ~ ( - ~ ) = 0 ,  ~(oo)=1. Hence by the uniqueness of travelling 
fronts (Corollary2.3) we have ~(z)= U(z -Zo)  for some z o. This establishes that 
v(z, t',) approaches U ( z - z o )  in the sense of C 2 as n ~ ~ .  

To finish the proof of Lemma4.5, we now merely apply Lemma 4.2, which 
indicates that once v is close to U(z -Zo)  for some t',, it remains close for all later 
time. 

5. Proof  of Theorem 3.1 (Conclusion) 

Lemma4.5 asserts the convergence of v to a travelling front; we now show 
that the rate is exponential. This conclusion can be obtained by appealing 
directly to a theorem of SATTINGER [22], the conditions of which are satisfied 
by virtue of Lemma 4.5. We give, however, an alternative proof which is in some 
ways simpler than Sattinger's, though more limited in scope. 

Recalling the definition of w(z, t) in the proof of Lemma4.5, we set 

h(z, t) =- w(z, t) -- U ( z -  z o - ~(t)), 

where z o is the constant in that lemma, and ~(t) is chosen so that for large t, h is 
orthogonal to e cz U', that is, 

(5.1) S eCZh(z,t) U ' ( z -  Zo-C~(t))dz=O. 
- o o  

The existence of such an ~, with ~ ( ~ ) = 0 ,  follows from the implicit function 
theorem. In fact, by Lemma4.5 and estimates (4.5) (which also hold for w, U, and 
h), the left side of (5.1) vanishes at ~=0,  t =  ~ .  Furthermore its derivative with 
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respect to e is 

ecz(U'(z-zo-CO)2dz - ~ e~h(z,t) U"(Z-Zo-OOdz,  
- - o ( 3  - -  (x3 

which is nonzero at c~=0, t =  ~ because the right-hand integral then vanishes. 
The implicit function theorem also shows that c~ is continuously differentiable. 

Theorem 3.1 will be proved by showing 

(i) Ih(z, t)l < Ce-~', and 

(ii) Ic~(t)l < Ce- ~' 
This will imply that w converges exponentially to U(z-zo) .  But we know from 
(4.5) and the definition of w that 

Iv(z, t)-w(z, t)l < C e  - ~ '  

for some (possibly different) positive v. We shall thus obtain that v converges 
exponentially to U(z-Zo),  as desired. 

To establish (i), we work with a diffusion equation for h. First we see from 
the definition of w that w = v  for IzL<~t, and that w and its derivatives satisfy 
(4.5). We therefore have 

w, = w= + cw z + f(w) + O(r), 
where 

Therefore 

{ , 

r(z, t) = {e-  ~ . . . . .  t + e- ,t, 
i 

tO, 

[2[ ( /3t ,  

~t<]z l<et+ l, 

I z l>e t+ l .  

ht=wt+e'  U'=Wz~+Cwz+ f ( w ) -  U " - c U ' - f ( U ) + ~ '  U' +O(r) 

=hz~+ch~ + f ' (U)h+~ '  U' +O(hZ)+O(r). 

Setting h=e-lCZy yields 

(5.2) Y, = Yz~ - {�88 c2 - f ' (U)}  y + ~' e I c~ U' + O(h y) + 0 (e ~cz r). 

The linear operator L given by 

L y -  - y = +  {�88 2 - f ' (U)}  y, 

with appropriate domain in &~ co), is self-adjoint with a continuous 
spectrum to the right of Min {�88188 which is strictly positive, 
and a discrete spectrum to the left. Furthermore, we know by differentiating (2.1) 
that the eigenvalue 0 lies in this discrete spectrum with eigenfunction e ~r U'. 
Since this eigenfunction is of constant sign, 0 must be simple and the least 
eigenvalue, with all other eigenvalues strictly positive. Let I1" II denote the norm in 
5~ Clearly elCZh=y lies in this space. Multiplying (5.2) by y and 
integrating over ( -  oo, co), we obtain, by virtue of (5.1), 

l d  
2dt I[yl l2=(-Ly'  y)+O(llh~yll2)+O(lle~CZrll ILYlI). 
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Since y is orthogonal to the eigenfunction e ~c~U' corresponding to the zero 
eigenvalue of L, the right side will in turn be 

< - M l l y l l 2 + f ( s u p [ h ( z , t ] l l y l l Z + e - ~ " l l y l [  + d  § Ilyl]), 
2 

where M is a positive constant independent of t. Since h ~ 0 uniformly as t ~ ~), 
and since 2#>lc lE ,  we have, finally, 

l d  M 
2dr ltYll2 < = - ~ I l Y l F Z + O ( e - K 9  

for large enough t and some K > 0. Integration of this inequality shows that 

(5.3) IlYll < Ce -~' 

for some v > 0. 
At this point we need an interpolation lemma. Though somewhat standard, 

its proof will be given later for completeness. 

Lemma 5.1. Let f e  C 1 (IR), and put fo = Ilfll co, f l  = [[fllcl. Then 

fo 3 < ~fa ~ f 2  dx. 
- -  oo  

We apply this to the function y( ' , t ) .  Since [[y(.,t)[]c, is bounded inde- 
pendently of t, estimate (5.3) and the above lemma imply 

(5.4) ]l Y(', t)Flco = O(e- ~t). 

For each 6 > 0, we see from (5.4) and the definition of y that 

Ih(z, t)l < C e ~1~1~- ~t 

for Izl < Or. Let 6 be such that �89 Icl 0 - v  <0. For Izl > ~t, however, (4.5) yields 

(5.5) Ih(z , t ) l<Ce -~t, v>0. 

Therefore (5.5) holds, in fact, for all z and all t > 0. 
The proof of Theorem 3.1 will be complete if we only can show that 

Ic~(t)[ = O(e-~'). 

For this purpose we multiply (5.2) by e ~cz U' and integrate over ( - o c ,  oe) (the 
integrals converging because of the asymptotic behavior of U'). Thus 

~ C Z  t t 

(5.6) (e U , y , ) =  - ( e � 8 9  U') 
+O((U' ,ye))+O(l le~Zrl l  Ile~= U'lr ). 

Differentiating the relation 
(c ~" U', y) = 0 

we get 
(e ~c~ U', yt) = ~'(e ~c~ U", y), 
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and the scalar product  on the right is seen to decay exponentially by use of the 
Cauchy-Schwarz inequality and (5.3). Also 

(e *~cz U', Ly) = (L(e ~cz U'), y) = O, 

and the remainder terms in (5.6) also decay exponentially. We can therefore 
conclude from (5.6) that 

~' = O(e- ~'), 

and so a=O(e-V'). This completes the proof of Theorem 3.1. 

Proof of Lemma 5.1. Given 6>0,  let x o be such that If(Xo) I > f o - &  There is 
no loss of generality in supposing f(Xo)>0, so that f(xo)>fo-6. Then 

f ( x )  =f(Xo) + i f ' (s  d~ > fo - 6 -Lx - Xolfl, 
XO 

for Ix - Xol =< (fo - 6)/fl = I. Thus 

x o +  l x o +  l 

f2dx> S f2dx>= i (fo-a-lX- olYl):d = lfo-a) /f  
- o o  x o -  l x o -  l 

Letting 6 ~ 0 yields the assertion of the lemma. 

6. Proofs of Theorems 3.2 and 3.3 

The following is the basic lemma we shall need for Theorem 3.2. 

Lemma 6.1. Under the hypotheses of  Theorem 3.2 there exist constants 
zl, z2, qo and # ( the last two positive) such that 

U ( x - c t -  zl) + U ( -  x - c t -  z l ) -  1 - q o  e-"t  
(6.1) 

~U(X, t)<= U(x-ct -22)+ U ( - x - c t - z 2 ) -  1 +qo e-ut. 

Proofi First note that (3.3) implies c<0 .  The right-hand inequality of (6.1) 
then follows from the proof of Lemma4.1. More precisely, that proof shows that 

u(x , t )<  U ( x - c t -  za)+ ql e-U~ 

for some z2,ql  and #o. The same argument applied to u ( - x ,  t) reveals as well 

that u(x, t) <= U( - x - ct - z'2) + q'l e-  not. 

Since decreasing z 2 and z~ and increasing ql and q~ strengthens the inequality, 
we may assume z2=z '  2 <0, ql =q'l. Hence 

(6.2) u(x, t) < Min [U ( x - c t -  z2), U ( -  x - c t -  z2) ] + ql e -u~ 

If x >0, then the monotonicity of U and its exponential rate of convergence to 
its limits at +_ oo imply 

1 - U ( x - - c t - - z 2 ) ~  1 - U ( - c t - z 2 ) ~ K e  -vlc t+z21 
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for some positive constants v and K. Furthermore 

U ( x - c t - z E ) > U ( - x - c t - z 2 )  for x > 0 .  

Hence from (6.2), 

u(x,t)< U ( - x - c t - z 2 ) + q l e - U O t  

<= U(-- x - c t -  z2) + U ( x - c t -  z2 ) -1  + ql e-U~ + K e- ~l" +z~l 

<= U ( -  x - c t -  z2) + U ( x - c t -  z2 ) -1  + qo e-u~ 

if we choose qo>ql and further require #0 to be small enough and ( - z 2 )  large 
enough. A similar argument may be used for the range x < 0. 

We next prove the left-hand inequality of (6.1). Let 

u_(x, t) = U+ (x, t) + U (x, t) - 1 - q(t), 

where ( + = x - c t - ~ ( t ) ,  ( = - x - c t - ( ( t ) ,  U+(x,t)=U((+), for some q(t)>O 
and ~(t)<O (with ~'(t)>O) to be determined. Then 

Nu=u__ t - u xx -f(u_) 

= - r  u v _ ) ) - ( u " ( ~ + ) +  u"(~_))  

-c(U'(~+)+ U'(~_))-q ' ( t ) - f (U+ + U - 1 -q) .  

Since U " + c U ' + f (U)=O we have 

U u =  - ~'(t) (U'(~+) + U'(~_))+f(U+)+U(U_) (6.3) 
- f (U+ + U - 1 -q ) -q ' ( t ) .  

Let q~ and q2 be such that 

~1 < 1 - q 2  < 1 - q ~  <ct 1 +q,  

and let 3 be as in the proof  of Lemma4.1.  As in that proof, we then see that for 
some #1 > 0, 

f ( U _ ) - f ( U  - ( 1  - U+ + q ) ) <  -~1(1  - U§ +q)  

for 1 - b _ < U  <1,  O<_l-U++q<=q 2. The latter inequality will hold if0_< < ' 
- - - q = q o ,  

x > 0, and ( - 4 )  is sufficiently large, for then 

1 - U+ +q< 1 - U(-~)+q'o<q'o+Ke-'qr <=qz. 

We finally note that U'(~_+)>0 and f(U+)<__b(1- U+) for some b > 0 .  There- 
fore we see from (6.3) that for 1 -  b_< U _< 1, 0__<q < q~, x >__0, ( - 4 )  sufficiently 
large, and ~' > 0, 

N u <  -#1(1  - U+ + q) + b(1 - U + ) - q '  = ( b - # l ) ( 1  - U+) -#1  q - q '  

<=bKe-~lr +ctl--i~lq--q'. 

Setting q=q'oe -"~t for 0<#2  < P l ,  we obtain for the above range, 

N u<-b K e- ~lr -(Pa - p2) qoe, -u2t <=0, 

provided #2 <vc and ( - 4 )  is sufficiently large. 
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A similar a rgument  holds for O< U <6, O<q<q'o, x>O,  provided tha t  u > 0 .  
Final ly for 6 < U < 1 - 6, x > 0, we have 

t U+ + U'_ > f l > 0 ,  

f ( U _ ) ' T ( U +  + U_ - 1 -q)<= C(1 - U+ +q),  

f (U+)<b(1  - U + ) < b K e  -~1~ +C0, 

so that  f rom (6.3), 

N u <  - f l ~ ' ( t ) + ( C  + b ) K e  -~l~+ctl + (C  +#2) q'oe -u2'. 

We now choose ~(t) so that  

- f i~ ' ( t )  +( C + b) Ke-~lcl'  +( C + ltz)q'oe-U2'=O, 

with ~(0)--~ o sufficiently large and negative. Then f rom the above  we obta in  
N u=< 0 for all (x, t) with x > 0, u(x, t )>  0. A similar a rgument  shows that  N u =< 0 
for x _< 0 as well. 

N o w  Max[0 ,  u(x, t)] will be a subsolut ion if we can show that  r u(x, 0). 
But 

u_(x, 0) = U ( x - ~ o ) +  U ( - x - ~ o  ) - 1 - q • <  1 --q{) <~1 + r /= (p(X) 

for Ixl _-< L, and 
u_(x, 0) < 0 < ~o(x) 

for [xl>M, for some M depending on ~0. Therefore  if L > M ,  we shall have 
u(x,O)<~o(x) for all x. 

With  this condi t ion on L, it now follows that  

u(x, t)>=u_(x, t)>= U ( x - c t - ~ ( o o ) ) +  U ( - x - c t - ~ ( o o ) ) -  1 -q 'oe  -u2t. 

N o w  set z 1 = ~(oo) and # = Min [#2, #o] ; this completes  the proof.  

L e m m a  6.2. Let  f and ~o satisfy the hypotheses of  Theorem 3.2. There exist 
functions co(e) and T(8), defined for small positive e and satisfying l im co(e)= 0, such 
that if ~ + o 

(6.4) lu(x, to) - U(x - c t o - Xo) I < 8 

for some Xo, some t o > T(8), and all x < O, then 

]u(x, t ) -  U ( x - c t -  Xo) I < co(e) 

for all t > to, x < 0 .  

Proof.  Consider  the subsolut ion _v(z, t) used in the p roof  of  Lemma4 .1 .  We 
express it in the original coordinates  as 

(6.5) u(x, t) = v(x - ct, t) = U(x - c t - ~( t)) - qo e-  "', 

where ~=~1  +~2 e-ut. It  was shown that  if # is sufficiently small  (positive) and 
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~2=Auq0 for a certain constant A t depending only on # (see (4.4)), then for 
arbitrary ~1 and qo, 

Nu__= u_,- U_xx-f(u_)_-< 0. 

We shall now use u__ (with appropriate ~1, qo and/2) as a comparison func- 
tion in the region x < 0 ,  t>to .  If we can show that u < u  on the boundary 
{ x = O } w { t = t o } ,  then it will follow that u_(x,t)<u(x,t) in the quarter-plane 
under consideration. 

First, consider the portion {t= to} of the boundary. From (6.4) we have 

u(x, to) >= U ( x -  Cto - Xo)-  8. 

If we now set qo=ee  "*~ 42 = e A ,  eut~ and ~ = X o - e A  ", then 

u_(x, to)= U ( x - C t o -  Xo}-~ < u(x, to). 

Next, consider the portion {x=0}. From (6.1) and the exponential approach 
of U(z) to its limits, we have, for some v, M1, 

u(O, t )>_2U(_c t_zm)_  1 _  - , _ _ q'o e U t - l - q ' o e - U t - 2 ( 1 - U ( - c t - z , )  ) 

>= 1 -q 'oe -U ' t -  Ml e -~l~lt, 

the primes added to distinguish these constants from the constants qo and /2 
used in (6.5). On the other hand, for t > t  o, 

u_(0, t )= U ( - c t - ~ ( t ) ) - q o e - U ~ <  1 - q o e -  Ut = 1 - ~e - ~"-'~ 
Thus 

(6.6) u(0, t ) -  u(0, t) > ee -u" - t~  M1 e-~ Iclt_ q~e-U',. 

The constant p can be taken as small as desired. We choose it so that 
0<#</2 ' ,  #<v[cl. Then from (6.6), 

u (0,  t) - u (0,  t) _> ~ e -  . { t - to)  _ ( m  1 + q~)) e -  ut 

= ( ~ - ( M  1 +q'o)e-~t~176 

for sufficiently large t o (depending on e). 
This completes the comparison argument. We conclude that 

u (x, t) > u_ (x, t) = U (x - c t - ~ (t)) - e e-  u , -  to} 

> U ( x - c t - X o ) - ( ~ ( e )  
for t> to ,  x < 0 .  

A similar argument can be used to show that u(x, t)< U ( x - c t - x o ) + { o ( ~ ) .  
This completes the proof of the lemma. 

Proof  of Theorem 3.2. We define the "left truncation" 

fu(x ,  t), x < 0, 
ut (x ' t )=~l - -~(x ) (1  --u(x,t)), x>=O, 

where ~ ( x ) e C ~ ( - o o ,  oo), ~(x)_= 1 for x < 0 ,  ~(x)-:0 for x > l ,  and 

vl(z, t)=uz(x, t)=ul(z + ct, t). 
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Then with the aid of  Lemma6 .1  and essentially the same p roo f  as in 
Lemma4.3 ,  we conclude that  v z satisfies (4.5). Hence  (as in Lemma4 .4 )  the set 
{vt( . ,  t ) , t>6}  is relatively compac t  in C2( - 0% oo). 

Exact ly  as in L e m m a  4.5, we next establish that  

lim [v z(z , t) - U (z - Xo) L = 0 
t ~ o o  

for some Xo, uniformly in z. It  is now trivial to extend the p roof  in w 5 to show 
that  

Ivt(z, t) - U (z - Xo) [ < K e-  o,t, 

which proves  (3.5a). The  symmetr ica l  a rgument  establishes (3.5b), comple t ing  
the p roo f  of  T h e o r e m  3.2. 

The following l emmas  lead to the p roof  of  Theo rem 3.3. 

L e m m a  6.3. Under the hypotheses of  Theorem 3.3, the following inequality 
holds for some numbers al, a2, qo and It ( the last two positive): 

(6.7) U l ( X - C l t - a l ) - q o e - U t < = u ( x , t ) < = U 2 ( X - C E t - a 2 ) + q o  e-"t .  

Proof.  The  left-hand inequali ty follows at once f rom the left-hand inequali ty 
of  Lemma4 .1  applied to the u-interval (Ux,U2). The  r ight-hand inequali ty is 
p roved  similarly. 

Fo r  simplicity, we assume f rom now on that  c I < 0 < c 2. If  this is not  the case, 
we may  use a moving  coordinate  f rame to reduce the p rob lem to one for which 
it is so. 

As in the p roo f  of  T h e o r e m  3.2 above,  we define the left t runcat ion  

u~(x, t) = ~u(x, t), <0 ,  x 

tu2-~(x)(u2-u(x,t)), x>__0, 

and vl(z, t )=ul(x ,  t )=ut ( z  +cmt, t), where z = x - c i t .  

L e m m a  6.4. For some numbers al, a3, to, qo and It ( the last three positive), 

(6.8) U 1 (z - a l) - qo e -  m < v t(z, t) < U 1 ( z  - a3) + q o e -  ut 

for t > t o. 

Proof.  The  left inequali ty follows directly f rom Lemma6.3 ,  and so we need 
consider only the right one. Let  r/ be such that  l i m s u p ~ o ( x ) < r / < c q .  Fo r  some 

X ~ - - o O  

constants  Xo, 7, and k, to be de termined below, let 

V(x )=~  r/', , - ,2 
t .  

x ~ X o ,  

i t / +  7 t x -  ao~ , x > X o ,  

and f i ( x , t )=Min[u3 ,  V(x+k t ) ] .  First, it is clear that  V>q~ for large enough 
negative X o. 

Fo r  V=t/ ,  we have i = r /  and N i l = - f ( t / ) > 0 ,  since ~q is the first zero of f 
greater  than  u 1. 
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For  t /<  V<u3 ,  we have 

N f i = k  V ' -  V " -  f ( V ) =  Z k ~ -  Z y - f ( V ) ,  

where ( = x + k t - X  o. But 

f ( V ) <  f ( t l ) + m ( V - t l ) ( f o r  V>t l ,  some m > O ) = f ( t l ) + m T ~  2, 

so that  
N i l >  - f ( t l ) -  27 + 2 k T ~ - m y  ~ 2. 

We first choose y so small that  - f ( q ) - 2 7 > 0 ,  then k so large that  
2 k y ~ - r n y { 2 > 0  for ~ such that  V is in the indicated range. 

This shows that  fi is a supersolut ion,  whence u<fi .  In part icular ,  it follows 
that  at each value of t > 0, 

(6.9) u ( x , t ) < t l < ~  1 for ( - x )  large enough. 

Next  since U z ( z ) < u z + K e  -o' fzl  for z < 0 ,  the r ight-hand inequali ty in (6.7) 
implies 

(6.10) u(x, t) < u 2 + K e -  ~ '  

for x < l .  
We now consider the function 

~(x, t ) =  Ux (x - c  1 t + ~(t)) + qo e - " ~  

in the domain  x=< 1, t>=t o. With appropr ia te ly  chosen ~,qo,#2, and to, it will be 
a supersolut ion.  

First  of  all, f rom the p roof  in L e m m a 4 . l ,  where a similar compar i son  
function was used, we know that  NO_>0 provided  qo and P2 are sufficiently 
small  and ~ ' =  - r  -"2' for some appropr ia t e  ~t. 

We shall show that  fi(x, t )> u(x, t) for t = t o and /or  x = 1. First, with t o to be 
specified later, we choose qo so that  qoe-U2t~ . Taking  the constants  K and co 2 
f rom (6.10), we note  that  

(6.1l) u 2 + K e -~ < UI(1 - c  1 t) + ~le u21t~ 

for sufficiently large to, t > t o, and sufficiently small P2, by virtue of  the facts that  
c I < 0  and Ua(z )~  u 2 exponent ia l ly  as z ~ ~ .  We choose t o and P2 so that  (6.11) 
holds for t> to ,  and also so that  the last te rm in (6.10) satisfies 

(6.12) K e-~176 < q. 

Next,  we choose X so large that  (from (6.9)) u(x, to)<~l for x <  - X ,  and r 
so large that  

(6.13) U 1 (x - c 1 to + ~(to)) + qo e -  u2to 
= U 1 (x - c 1 t o + r ) + tl > u2 + K e -  o,~o, 

for x >  - X .  This is possible by virtue of  (6.12) and the fact that  U l ( ~ ) = u  z. 
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F o r  t=to, the re la t ions  (6.10) and (6.13) yield u(x, to)<=fi(X, to). F o r  x = l ,  
(6.10), (6.11), and  the fact tha t  r  imply  u(1, t)<=fi(1,t) for t> t  o. By the 
m a x i m u m  principle,  we conc lude  tha t  

u ( x , t ) < f i ( x , t ) < U l ( x - c l t - a 3 ) + q o  e-u:  for x < l ,  t > 0 .  

Since u(x , t )=vz (x -c l t ,  t) for x < 0 ,  this establ ishes the r ight  side of  (6.8)' for 
z < - c l t = l c l [ t .  But for small  # and  large t, 

Ul(Z-a3)+qoe-~t>u2>=vt(z,t) for z>lcllt.  

Thus  (6.8) is gua ran teed  by (if necessary) further reducing # and  increas ing t o. 
This  comple tes  the p r o o f  of  the lemma.  

P roo f  of  Theorem 3.3. Wi th  inequal i ty  (6.8) at hand,  it follows as in the p roo f  
of  Theorem3.1  that,  for some Xl, 

l im Ivl(z, t ) -  U l ( z -  x~)l =0 ,  
t~ct3 

uni formly  in z. Moreover ,  using once again  the a rgumen t  in w 5, we find tha t  

]vl(z, t ) -  Ul(Z-  Xl) ] < Ke  -~'t, 
and  hence 

(6.14) ]u(x, t ) -  U l ( x - c  1 t - x 1 )  ] <= K e -~  

for x < 0. A s imi lar  a rgumen t  using the r ight  t r u n c a t i o n  yields 

(6.15) ]u(x,  t) - U 2 ( x  - c 2 t - x2)  [ ~ K e -  ot 

for x > 0. C o m b i n i n g  (6.14) and  (6.15), we ob ta in  (3.7), comple t ing  the proof.  

Note: This research was sponsored in part by the United States Army under Contract No. 
DAAG29-75-C-0024, in part by the National Science Foundation under Grant MPS-74-06835-A01, 
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