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Hopf Bifurcation Theorem

Consider ODE' = f(\,z), A € R,z € R", andf is smooth.

(i) Suppose that fok near), the system has a family of equilibrig ().

(i) Assume that its Jacobian matu \) = f, (), z°()\)) has one pair of
complex eigenvalueg(\) + iw(A), u(Ag) = 0, w(Ag) > 0, and all other
eigenvalues ofA(\) have non-zero real parts for allnear).

If ' (No) # 0, then the system has a family of periodic solutionss), z(s))
for s € (0,9) with periodT'(s), such that\(s) — Ao, T(s) — 27 /w(Ag), and
|z(s) — 2%(N\g)|| — 0 ass — 0.
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Predator-prey system with functional response

[ du
|
dt

\

= u(a — bu) — co(u)v,
= —dv + fo(u)v.

¢(u): predator functional response
#(u) = u (Lotka-\Volterra)

d(u) = “ (Holling type I, m: the handling time of prey)

L Amu . . .
[Holling, 1959](Michaelis-Menton biochemical kinetics)

Biological work:
[Rosenzweig-MacArthurAmerican Naturalist963]
'[RosenzweigScience1971] (Paradox of enrichment)

May, Science1972] (Existence and uniqueness of limit cycle)
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Basic analysis of the model

du a1 ) muv dv p muv
— =u(l—u)— — = —qav
dt a+u dt a4 u
.. : 1 —
Nullcline(isocline):u = 0, v = -+ v =0,d= iy
m a—+ u
. d
Solvingd = my , one hava, = \ = iy
a—+u m—d
. . 1—A A
Equilibrium points:(0, 0), (1,0), (A, vx) wherevy = ( JatA)
m

Case 1\ > 1: (1,0) is globally asymptotically stable

Case 2(1 —a)/2 < XA < 1: (1,0) is a saddle, an@\, v, ) is a locally stable
equilibrium

Case30 < A< (1—a)/2: (1,0) is a saddle, and\, v, ) is a locally unstable
equilibrium

(A = (1 — a)/2 is a Hopf bifurcation point)
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Phase portrait

Left: (1 —a)/2 < XA < 1:(1,0) is a saddle, an@]\, v, ) is a locally stable
equilibrium

Right: 0 < A < (1 —a)/2: (1,0) is a saddle, an@\, vy ) is a locally unstable
equilibrium; there exists a limit cycle

A subcritical Hopf bifurcation occurs.
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Global stability

[Hsu, Math. Biosci, 1978](\, vy) is globally asymptotically stable if > 1,
or0<a<landl —a<\<1.

[Ardito et.al. J. Math. Biol, 1995](\, vy ) is asymptotically globally stable
(I1—a)/2<A<1—a.

[Cheng,SIAM J. Math. Anal, 1981]If 0 < A < (1 — a)/2, then(\, vy ) is
unstable, and there is a unique periodic orbit which is dlgl@symptotically
stable.

More on uniqueness of limit cycle:
[Zhang, 1986], [Kuang-Freedman, 1988], [Sugie et.al. 1997

[Hsu et.al. 2001], [Xiao-Zhang, 2003]
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Summary

du (1 — ) muv dv p muv
e i — —_ —_ _— = — ’U
dt a+u dt a—+u
.. : 1 —
Nullcline(isocline):u = 0, v = -+ v=0,d= i
m a—+ u

. d

Solvingd = my , one hava, = \ = iy
a+u m—d

. . 1—A A

Equilibrium points:(0, 0), (1,0), (A, vx) Wherevy = ( Je+ )
m

We take\ as a bifurcation parameter

Case 1)\ > 1: (1,0) is globally asymptotically stable
Case2(1—a)/2 < X< 1: (A vy) is agloballyasymptotically stable
Case 30 < A < (1 — a)/2: unique limit cycle is globallyasymptotically
stable

(A = (1 — a)/2 is a Hopf bifurcation point)
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New result of thisODE

[Hsu-Shi, 2008 Relaxation oscillator profile of limit cycle in predatorgyr
system. Submitted. (Motivated by numerical observation)




Graph of limit cycle

Parametersa = 0.5, m =1,d =0.1, A = 1/18 =~ 0.056, periodT =~ 37.
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Small d
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Graph of limit cycle

Parametersa = 0.5, m =1,d = 0.01, A = 1/198 = 0.005, periodT =~ 336.




|llustration of limit cycle
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Relaxation oscillation

Theorem JHsu-Shi, 2008]f 0 < a < 1 andm > 0 are fixed, and ag — 0
(thus\ — 0), thenCi A~ < T(0105) < CoA™1, T(0203),

T(0401) = O(|In A]), andT'(O304) = O(1). In particular, the period

T — oo asd — 0. The shape of the graph of the limit cycle is a relaxation
oscillator.

Other known relaxation oscillators:
Van der Pol oscillator in electrical circuits employing vaen tubes,
Fitzhugh-Nagumo oscillator in action potentials of newon

Theorem PHsu-Shi, 2008]f m > d > 0 are fixed, and ag — 0 (thus

A — 0), thenCi A1 < T(0:105), T(0304) < Cox™ 1,

T(0203) = O(|In A|), andT'(0401) = O(1). In particular, the period

T — oo asa — 0. The shape of the graph of the limit cycle is a nearly a
Heaviside function.
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Reaction-diffusion predator-prey model

( U Muv
—d G = (1 — _) — ) ) ) )
uy — diu u ,ﬁnuv - x e (0,4m), t >0
<vt—d21}m:—91}+u+1, x € (0,4m), t >0,
U (0,t) = v,(0,t) =0, u,(bm,t) = v.(dm,t) =0, t >0,
k’U/(Cl?,O) — uO(x) > Oa U(SU,O) — UO(x) > 07 S (Oagﬂ-)

All bifurcations for ODE still occurs for PDE as spatial hogemeous
solutions.

Case 1)\ > k: (1,0) is globally asymptotically stable

Case2k —1 < A < k: (A vy) is globallyasymptotically stable

(when(k —1)/2 < A < k —1, (X, vy) is locally asymptotically stable)
Case 30 < A < (k —1)/2: there is a spatial homogeneous periodic orbit
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Determine the bifurcation points

Linearization af \, vy ):

0% Mk —1-2))

— —0
[ “a2T " BEen
L()‘) '_ E— )\ 32 y
do ——
k(L +\) ? 922
2 _1_
e o
and L, (\) := E) don?
k(1+)) 2
- () = Mk —1-2X) (di+da)n?
SR 16 DY 02 ’

< ok —)) [dg)\(k - 2>\)] n?2  dydgnd

PN =2y TSy N RT
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Existence of spatial non-nomogeneous periodic orbits

Condition for Hopf bifurcation:
Tn()\()) = 0, Dn()\o) > 0, and TJ()\O) 7é 0, DJ()\O) 7& 0 forj 7é n.
Theorem BShi-Wei-Yi, 2008]Supposel;, d>, 0 > 0 andk > 1 satisfy

di  maxh()\)

di A2(k — 1 —2)\)2
ds 49

EK(L+ M) (k—=X)

where A(\) :=

Then there existg, > 0, such that any in (¢,,, /,,11], there exist@n points
AL (0),1 < j < n, satisfying
H H H H k—1

0<AT_(£) <A _(£) < - <X, (f) <A, (f) < —5
such that the system undergoes a Hopf bifurcatiok at)\fi, and the
bifurcating periodic solution at = )\fi IS In form of
(u,v) = (AL, v(AL)) + s(ao, bo) cos (%) cos(w; +t) + h.o.t.
(There is no spatial non-homogeneous steady state saudifurcating for
these parameters.)
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More bifurcation: periodic orbits and steady states

Theorem 4Shi-Wel-Yi, 2008] [Peng-Shi, in preparation]
Supposel;, ds, 6 > 0 andk > 1 satisfy

dl max h()\)

_ AN (k—1—2))?
do 40

ATESNESY)

where A(\) :=
Then there exist,, . such that if for eacti € (¢,, ;, ¢, _) excepta
finite many exceptional, there exists exactly two poinﬁe,‘f,i such that
a smooth curvé’,, 1 of positive solutions of the system bifurcating
from (\, u,v) = ()\n n )\n £ UAS ) andl’,, 1 is contained in a global
branchC,, 4 of the posmve solutlons. Near

(A u,0) = (A5 4,25 1,038 ),

Pnt = 1(A(s), u(s),v(s)) : s € (=€, €)}, where

(u(s),v(s) = ()\gi,v)\s ) + s(an, by) cos(nx/l) + h.o.t.. Moreover
eachC,, + contains anothe(r)\‘7 Pt UAS, ).
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Bifurcation points. periodic orbits and steady states

Bifurcation diagramid; = d, = 1, kK = 3, 0 = 0.003 and/ = 30.
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Remarks

1. We rigorously show the existence of spatial non-homogesmpeuodic
orbits in an autonomous and homogeneous reaction-difiusietem, which
IS rarely achieved previously. In general there are manyfldog steady state
bifurcations entangled fox € (0, (k — 1)/2), which indicates complicated
spatiotemporal dynamics.

(Numerical evidence: Medvinsky, Li, et.al., Spatiotempamnplexity of
plankton and fish dynamic$SIAM Review2002)

2. Near bifurcation points, these patterned solutions areratable, since

(A, vx) has lost the stability at = (k — 1) /2 to spatial homogenous periodic
orbit.

3. These bifurcations are not Turing bifurcations since thikision
coefficients can be chosen arbitrarily.
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Rich spatial patternsin diffusive predator-prey system

Patterns generated by diffusive predator-prey system

Our results show that the system does have many periodit@mand
steady state solutions.
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Diffusive logistic equation (Fisher-K PP eguation)
[Fisher, 1937] [Kolmogoroff-Petrovsky-Piscounoff, 1937

(
W Autu(l—w), weQ >0
\ u(z,t) =0, x € o), t>0,

\u(a:,()) = ug(x) > 0, x € Q.

Minimal patch sizefor A > \q, there is a unique steady state which is

globally asymptotically stable.
Traveling wave (1-D and2 = R) traveling wave in formu(x, t) = v(x — ct)

exists forc > 2\/UX.
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Some ideas for the global stability

1. The unigueness of positive steady state solution dinee: is a
decreasing function.

2. The system is a monotone dynamical system which presdrgesder
of the solution. (Ifuy(x,0) > ua(x,0), thenuy (z,t) > ua(x,t).)
3. The system is a gradient system with a Lyapunov functional
[( ) (1/2) [, IVul*dz — X [, F(u)dz, where
= [" s(1 — s)ds. Along a solution orbit(-, ¢),
d/dt[ (u(+,t))] < 0. Thus the orbit must converge to the set of steady
state solutions.
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An advection-Reaction-Diffusion eqguation

[Shi-Zeng, in preparation]

(ut:um—kxux—kDu(l—u), reR, t>0,
) | 1|im u(x,t) =0, t >0,
L u(z,0) = uo(z) > 0, r € R.
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An advection-Reaction-Diffusion eqguation

[Shi-Zeng, in preparation]

(ut:um—kajux—kDu(l—u), reR, t>0,
{ | 1|im u(x,t) =0, t >0,
L u(z,0) = uo(z) > 0, r € R.

® Advection-Reaction-Diffusion equation models chemiagabiological
reaction in a fluid flow with stirring
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An advection-Reaction-Diffusion eqguation

[Shi-Zeng, in preparation]

(ut:um—ka:ux—kDu(l—u), reR, t>0,
{ | 1|im u(x,t) =0, t >0,
L u(z,0) = uo(z) > 0, r € R.

® Advection-Reaction-Diffusion equation models chemiagabiological
reaction in a fluid flow with stirring

® Logistic growth rate models the autocatalytic chemicattiea:
A+ B — 24
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Thederivation of the moddl (1)

The spatiotemporal dynamics of interacting biological lmemical substances
IS governed by the system of reaction-advection-diffugqnations:

0C;

o +v-V(C,; = Dafz-(Cl, S ,ON) —+ Pe_lAC'Z-,

where; =1,--- , N.
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Thederivation of the moddl (1)

The spatiotemporal dynamics of interacting biological lmemical substances
IS governed by the system of reaction-advection-diffugqnations:

0C;

By +v-V(C,; = Dafz-(Cl, - ,ON) +P6_1AC¢,

where; = 1,--- , N. Here the equation is in dimensionless form, whBre
and Pe are the Damkdéhler and the Péclet number respectively.
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Thederivation of the moddl (1)

The spatiotemporal dynamics of interacting biological lmemical substances
IS governed by the system of reaction-advection-diffugqnations:

0C;
ot

4+ V- VCZ = Dafz-(Cl, .o ,CN) + Pe_lACz':

where; = 1,--- , N. Here the equation is in dimensionless form, whBre
andPe are the Damkdhler and the Péclet number respectively. The
Damkdohler number characterizes the ratio between the agwend the
reaction time scales; and the Péclet number is a measure dflttive
strength of the advective and diffusive transport.
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Thederivation of the modd (2)

® At any point in 2-D domain, there is a stable direction whée=gpatial
pattern is squeezed, and there is an unstable directiorevithepattern
converges to
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Thederivation of the modd (2)

® At any point in 2-D domain, there is a stable direction whée=gpatial
pattern is squeezed, and there is an unstable directiorevithepattern
converges to

® The stirring process smoothes out the concentration ofdiecied
tracer along the stretching direction, whilst enhanciregdbncentration
gradients in the convergent direction.
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Thederivation of the modd (2)

® At any point in 2-D domain, there is a stable direction whée=gpatial

pattern is squeezed, and there is an unstable directiorevithepattern
converges to

® The stirring process smoothes out the concentration ofdiecied
tracer along the stretching direction, whilst enhanciregdbncentration
gradients in the convergent direction.

® In the convergent direction we have the following one dinnemes
equation for the average profile of the filament represerhng
evolution of a transverse slice of the filament in a Lagramgederence

frame (following the motion of a fluid element):

oC oC 0%C
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Numerical ssimulations. stretching of the patterns

Neufeld, et alChaos, Vol 12, 426-438, 2002.
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A function space and a linear oper ator

The equation can be rewritten as
up =e % /2(e* 2u,), + Du(l — u)

W, *(R) ={u : w andu’ are measurable R,

/ ™ 2 dy < oo,/ " /2(u)2dz < oo}
R R

We define a linear operatotg(z) = —e* /2 <e$2/2gbx) .Aisa

self-adjoint densely defined linear operatorLi?g(R), and the domain
D(A) =W, *(R)N W, .(R). The spectruna(A) consists of simple
eigenvalues\; = k, k € N, and the corresponding eigenfunction

dr(x) = e_x2/2Pk(a:) whereP;, is a polynomial of degreg — 1 which can
be defined recursively.¢x (x)} is an orthonormal basis cﬁ?b(R).
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Global stability

Theorem 5 Consider

{ut:uerxuerDu(l—u), reR, t>0,
4 | llim u(x,t) =0, t >0, (1)
L u(z,0) =up(x) > 0, r € R.

1. WhenD < 1, (1) has only the trivial steady state solutior= 0, and
whenD > 1, (1) has a unique positive steady stétg(x), which
satisfied/p(—x) = Up(x);

2. ForanyD > 0,uo € W,*(R) andug > (#)0, (1) has a unique
solutionu(zx,t) > 0 fort > 0 andx € R.

3. WhenD < 1, for anyuy € W, *(R) andug > 0, u(z,t) — 01in

W, *(R) ast — oo, and whenD > 1, for anyu, € W, *(R) and

¢
ug > (£)0, u(z,t) — Up in W(;Q(R) ast — oo.

Bifurcation — p. 28/34



Shape of steady state

Theorem 6 Let (D, Up) be the unique steady state solution. ket be the
unique point inR™ such thal/p (zp) = 1/2. Then asD — oo,

1.
2.

3.

Up(x) — 1 uniformly for z in any compact subsét of R;

lim xDD_1/2 = 2;
D—o0

Up(zp + D~Y2y) — v(y) uniformly for anyy in any compact subset
of R, wherev(y) is a solution of

v +cv'+ov(l-v) =0, v'(y) <0, lim v(y)=1, lim v(y) =0,

y——00 y—00

wherec = 2.

Hence the steady statg, has a “plateau top” near = 1 with width about
4+/D, and the sharp interface has the widthD—1/2) whenD is large.
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Comparison with classical results

Classical Fisher equatian = u,, + Du(1l — u)
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Comparison with classical results
Classical Fisher equatian = u,, + Du(1l — u)

Critical patch sizeAssume a bounded spatial domain L) with zero

boundary condition, then whed < D, = 7?/L?, u(x,t) — 0, and when

D > D., u(x,t) — wp(x), which is the unique steady state of the boundary
value problem.

connection with Theorem 5
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Comparison with classical results
Classical Fisher equatian = u,, + Du(1l — u)

Critical patch sizeAssume a bounded spatial domain L) with zero

boundary condition, then whed < D, = 7?/L?, u(x,t) — 0, and when

D > D., u(x,t) — wp(x), which is the unique steady state of the boundary
value problem.

connection with Theorem 5

Asymptotic propagation speed [Kolmogoroff-Petrovskgdeunoff, 1937]
Assume spatial domaiR with compact support initial value. Interfaces
betweenu = 0 andu = 1 are developed, and they are moving towaisb
with asymptotic speed = 2v/D, which is the minimal speed or all possible
traveling waves.

connection with Theorem 6
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Numerical illustrations D = 40

* u(x,0) = exp(—(z — 2)?) + exp(—(z + 2)°)

* u(x,0) = 2exp(—2(z — 2)?) + exp(—(x + 2)?) + 3exp(—(x — 5)?)
simulation

® u(x,0) = cos(mx/40) when|z| < 20 andu(x,0) = 0 when|z| > 20
simulation

* wu(x,0) = exp(—(x — 2)?) + exp(—(z + 2)?) Fisher equation
simulation
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Effect of delay: diffusive Hutchingson equation

( t

augi, ) _ Au(z, t) + Mu(z, 6)(1 —u(z,t — 7)), z€Q, t>0,
Y u(x,t) =0, z €N, t>0,
ku(:l?,s):n(x,s)ZO, reQ, —7<s<0.

It has the same unique steady state solution as diffusivstiogquation, but
IS it stable?

[Busenberg-Huang, 1996¢ase ofn = 1) The unique positive steady statg
may not be stable. For > \; but near\, u, is locally stable for small

T > 0, but is unstable for large > 0. A supercritical Hopf bifurcation occurs
at a sequence of, > 0, and a periodic orbit exists far > 7.
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Delay induced different Hopf bifurcation

( t
augi, ) _ Au(z, t) + Mu(z, ) f(u(z,t — 7)), z€Q, t>0,
Y u(z,t) =0, z €00, t>0,
| u(z, s) = n(z,s) >0, reQ, —1<s<0.

f(u) is a decreasing function (Logistic growth rate)

[Su-Wei-Shi, in preparationifhe unigue positive steady statg may not be
stable. For\ > \; but near\q, u, is locally stable for smal > 0, but is
unstable for large- > 0. A Hopf bifurcation occurs at a sequencemf> 0.
The bifurcation is always supercritical.
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