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Summary of Bifurcation Theorems

Let F: R x X — Y be continuously differentiable? (g, ug) = 0, F

satisfies
(F1) dimN (F (Ao, ug)) = codimR(F, (Ao, up)) = 1, and
(F2) F)\()\O, UQ) Q R(FU(AO, UO))

Then a saddle-node bifurcation occurs.

If F satisfieqF1),
(Fz’) F)\()\Oa U()) S R(FU()\()) ’LL())),
and additional non-degeneracy conditionohF

Then a crossing curve bifurcation occurs. (include pitdhfnd transcritical
bifurcations)

The bifurcation from trivial solutions is global &, (), u) is always Fredholm

An equivalent form ofF2): F,(\, ug) has a simple real eigenvalgée)) for A
near)y, continuously differentiable in, with v(\y) = 0, and~y’(Ag) # 0.
All other eigenvalues of’, (A, ug) have non-zero real parts T ——




Single species: Logistic Model verses Allee effect

6——DAu—|—uf(:1: u), x €, t>0,

ot
u(z,t) = xeof), t>0,
L u(z,0) = u(az)ZO, x € €.

L\

u(x,t): populatlon density at positian and timet
(2. a bounded habitat, = 0 on boundary(2: hostile exterior environment
f(x,u): heterogeneous growth rate per capita

f(xz,u): (a) logistic; (b) weak Allee effect; (c) strong Allee effec
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Bifurcation problem

Au+ Muf(x,u) =0, x€Q, u=0, x¢& .

u = 0 is always a solution for any > 0, A1 (f, 2) (minimal patch size) is the
principal eigenvalue oAy + A f(x,0)y =0, x € Q, ¥ =0, x € 9. We
consider positive solutions only.

Logistic casea supercritical transcritical bifurcation occursat f, 2) > 0;
for A > \q, there is a unique steady state which is globally stable.
[Cantrell-Cosner, 2003]

u

Al(f7 Q)
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Weak Allee effect case

(A) a subcritical (backward) transcritical bifurcation occat\ (f, 2) > 0;

(B) for A € (A, A1), there are at least two steady state solutions (bistaRility
(C) a saddle-node bifurcation occurs)at(at least whef2 is a ball);

(D) for X large, it is similar to logistic cas¢Shi-Shivaji, 2006]

Allee effect caused by diffusion (ODE with weak Allee effexsimilar to
logistic case); danger of hysteresis.

[Jiang-Shi, 2008, in Book edited by Cantrell-Cosner-Ruan]
Uu

A, 02) A(f, )
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Strong Allee effect case

(A) A\1(f, ) < 0,u = 0is always stable, and there is no bifurcation from
u = 0;

(B) for A > \,, there are at least two steady state solutions (bistapility
(C) a saddle-node bifurcation occurs)at(at least whef is a ball);

(D) the basins of attraction of = 0 and large stable steady state
(“carrying-capacity”) is a codimension-one manifold (sge in infinite
dimensional space).

[Ouyang-Shi, 1998] [Jiang-Liang-Zhao, 2004], [Jiang;2008]

u

A(f, )
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Estimate of the breaking point \,

Au+du(l —u)(u—M)=0, z€Q, ulx)=0, =€ Q.
0< M <1/2(f 1/2 < M < 1, then there is no positive steady state)

I A > A1/ f+, Wheref, = m[ax f(u)/u

Upper bounddefinel (A, u) = (1/2) [, |Vul?*dz — X [, F(u)dz, then
Ax < Ao, Wheremin I (Ao, u) < 0 (which implies0 is not the global minimum
of the energy functiord (A, u))

n=1Q=(0,L).

272 )\ < 48
L21+M) """ T L2(3—-M)

L=1andM =0.2:16.45 < \, < 17.14
Numerical value of\,: A\, ~ 16.61.
[Jiang-Shi, 2008]
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Alan Turing (1912-1954)

® One of greatest scientists in 20th century
® Designer of Turing machine (a theoretical computer) in 5930

® Designing electromechanical machine which breaks Germbaoai
Enigma, helping the battle of the Atlantic

® Initiate nonlinear theory of biological growth
[Turing, 1952] The Chemical Basis of Morphogenesis.
Philosophical transaction Royal Society of London SerieB3H

Bifurcation — p. 8/25



Turing’s iIdea
ODE (1): v = f(u,v), v = g(u,v)
Reaction-diffusion system (2); = d1Au + f(u,v), vy = doAv + g(u, v)

Hereu(x,t) anduv(z,t) are the density functions of two chemicals
(morphogen) or species which interact or react

® A constant solution(t, z) = ug, v(t, x) = vy can be a stable solution

of (1), but an unstable solution of (2). Thus the instabiltynduced by
diffusion.

® On the other hand, there must be stable non-constant equntb
solutions, or stable non-equilibrium behavior, which henare
complicated spatial-temporal structure.

http://en.w ki pedi a. org/ w ki / Mor phogen
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Turing bifurcation in 1-D problem

/

Ur = Dytige + Af(u,v), r e (0,7), t >0,
vy = Dyvgr + Ag(u, v), r € (0,7), t >0,
Ug (t,0) = ug(t, ) = v.(t,0) = v (t, w) = 0, t >0,

L u(0,2) = uo(z), v(0,7) = vo(x), z € (0,m).

Equilibrium point: f(ug, vg) = g(ug,v9) =0
Eigenvalue problem” = p¢, 0 <z < 7w, ¢'(0) =¢'(7m) =0
eigenvalueu, = —k?, eigenfunctionpy (z) = cos(kz).

Linearized equation:

() )= (2 o) ()
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Calculation of stability

0 A 1 0 .
Let = cos(kx), andD = , then eigenvalues
W B 0 d

of L are determined by

o) () () ()
B Ay gy, — k2d B B

Tr(J —k*D) = A(fu + g0) — E*(1 + d),
Det(J — k?D) = N(fugo — fogu) — k2(dfy + go )\ + k*d

Stable w.r.t. ODED; = f,9, — fvg. > 0andf, + g, <0
ThusTr(J — kD) < 0, and we must hav®et(J — k°D) < 0 ifitis
unstable w.r.t. R-D system

Condition for Turing instabllity:f, < 0,9, > 0,0 < d < 1,

2 _
g AU () )

d
N Y
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(artificial) Example

~3 2

J = L y fu<0,9, >0, fu+9, <0, fugo — fogu >0,
(22 — 2))

d )\ — y

k() k2 (k2 + 3)\)

201 =) 204 =) 209 - ))
)= 14+ 3\ (M) = 4(4 +3)\)° 3(N) = 9(9 + 3\’

Horizontal axis:)\, vertical axis:d. Bifurcation — p. 12/25



Global Turing Bifurcation

Theorem: Suppose thaf (ug, vg) = g(ug, vo) = 0, and at(ug, vy ),
(A) fu < 0 (inhibitor), g, > 0 (activator);

(B) D1 = fugy — fogu > 0andf, + g, < 0.

2
— AD
For fixed\ > 0, if dx(\) = )\k[gz’; — >)\\f ;] #+ d;(\) foranyj # k, then

() d = di 1s a bifurcation point where a continuumof non-trivial solutions
of

Uge + Af(u,v) =0, dvge +Ag(u,v) =0, x € (0,m),
Uz (0) = ug(m) = v5(0) = vi () = 0,

bifurcates from the line of trivial solution@l, ug, vo);
(i) The continuun®: is either unbounded in the space(dfu, v), or it
connects to anothérl; (), ug, vo);

(i) X is locally a curve neafdy (), ug, vg) in form of

(d,u,v) = (d(s),ug + sAcos(kx) + o(s), vy + sBcos(kx) + o(s)), |s| < 9,
andd’(0) = 0 thus the bifurcation is pitchfork typel((0) can be computed in
term of D3(f, g)).
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Turing patterns in real experiment:
Lengyel-Epstein CIMA chemical reaction

The first experimental evidence of Turing pattern was olesemr 1990,
nearly 40 years after Turing’s prediction, by the Bordearoug in France, on
the chlorite-iodide-malonic acid-starch (CIMA) reactiomnan open unstirred
gel reactor. This observation represents a significankbmeaugh for one of
the most fundamental ideas in morphogenesis and biologatédrn
formation.

[Castets, et.al., 1990] Experimental evidence of a sustiaiiring-type

equilibrium chemical patterrPhys. Rev. Lett64.
L A B
LA BN
XA E XK J
(LR B R
AR R R
LR AR

Bifurcation — p. 14/25



Reaction-diffusion system for CIMA reaction
Lengyel and Epstein simplify the reaction into a system af éguations:

( Auv

ur =Au+a—u— : xeQt>0,
bRy
<vt:a[cAv—kb(u—1_|_u2)], reQt>0,
o,u=0,v=0, x € 00, t >0,
L u(z,0) = up(x) >0, v(z,0) =vo(z) >0, z€Q,

[Lengyel-Epstein, 1991] Modeling of Turing Structures et
Chlorite-lodide-Malonic Acid-Starch Reaction Systeftience251
We consider = 5o, 0 =b =1, c = d and2 = (0,Ir).

Steady state equation:

o

i~

8

&

1k

S
|

\/U’QJ (O) — u$ (lﬂ-) — Uﬂ? (O) — Ux (lﬂ-) — O Bifurcation — p. 15/25



Bifurcation Analysis

Constant equilibrium(u,,v,) = (o, 1 + o?)

3a® — 5 4o
Jacobian afu,,v,): J = | @2%1 a?+1
204 o

a2+ 1 a? +1

Assume) < 30?2 — 5 < «

fu > 0, gv < 0, D, = fugv _fvgu > Oandfu"'gv < 0.

87 5—|—)\j
1—|—042 )\j(fo —)\j),

and); = j2/I°.

Bifurcation points:d,; =

3a® — 5
where fy = 1a+ ~h

[NiI-Tang, 2005] Turing patterns in the Lengyel-Epsteinteys for the CIMA
reaction.Trans. Amer. Math. So@57.

[Jang-Ni-Tang, 2004] Global bifurcation and structure afimg patterns in
the 1-D Lengyel-Epstein model. Dynam. Differential Equationsb.
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Global Turing Bifurcation for CIMA reaction

[NI-Tang, 2005]

(A) Ford > 0 small,(u,, v.) is the only steady state solution;
(B) All non-negative steady state solution satisfies u(x) < 5,
0 <wv(x) <1+ 25a2.

[Jang-Ni-Tang, 2004]

(C) Each connected component bifurcated frai u.., v.) is unbounded in
the space ofd, v, v), and its projection oved-axis covergd;, co).

(D) For eachd # d, there exists a non-constant solution.

More results for Lengyel-Epstein system: (Hopf bifurcateic.)

[Yi-Wei-Shi, 2008] Diffusion-driven instability and bifgation in the
Lengyel-Epstein systeniNonlinear Anal. Real World AppB.

[Yi-Wei-Shi, to appear] Global asymptotical behavior o thengyel-Epstein
reaction-diffusion systemAppl. Math. Lett.
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Generalization to cross-diffusion system

[Shi-Xie-Little, submitted] Cross-diffusion induced ta®ility and stability in
reaction-diffusion systems.

Ut = dlluaca: =+ dlZUa:az =+ CVf(u, U)a t > 07 T € R7
vy = do1Uge + dooUzy + ag(u,v), t>0, z € R,

Equilibrium point: f(ug, vg) = g(ug,v9) =0

Following scenarios are possible:

(A) (ug,v) Is stable for ODE, still stable for (self)-diffusion system

(d12 = do1 = 0), but it is unstable for cross-diffusion systet{, d>1 # 0).

( )

(B) (ug,vp) Is stable for ODE, unstable for (self)-diffusion system

(d12 = do1 = 0) ( ), but it is stable for cross-diffusion system

(d127d21 7é O) ( )
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Another water-limited ecosystem

[von Hardenberg, et.al. 2001] Diversity of Vegetation Eats and
Desertification.Phys. Rev. Lett87, 198101.

YW
14+ ow
Wy =P — (1 — pn)w — w?n aF 5A(w — Bn) — ’U(’w — Om)x,

ng = ———n —n’ — un + An,

We only consider the case when= 0 (flat land).

Yw
1—|—aw
w; =p — (1 — pn)w — w?n + §A(w — Bn).

—  n—n°—un+ An,
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Bifurcation with cross-diffusion effect

[Shi-Xie-Little, submitted]

() Suppose thal < v — uo < Z’ andw > p, then
P

_(w
(s ) = (1+0w

and it is stable with respect to ODE dynamics.

— u,w) IS an equilibrium point satisfying — pn > 0,

(i) (n«,w,) is still stable with diffusion added (bt = 0, no cross-diffusion)

(i) If 8> B = Ot pw +52755D6W))(1 tow)

(4, wy) IS unstable. )

, then

6 = [y Is a bifurcation point where strip patterned solutions ftmfie from
spatial uniform equilibrium solution.
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Last example: an ODE model

[Shi, EJDE, problem section 2006-1]
Consider the differential equation

du(t)
dt

= w(t)[a — bu(t)] — h(t).

Herea andb are given positive constants, ah(t) is a given function of
periodT’, called harvesting function. Prove that this equation pssss at
most twoT-periodic solutions. If there are two, they do not intersect

[Lazer, 1980] Qualitative studies of the solutions of thaatpn of population
growth with harvesting, (Spanish) Mat. Ense nanza Univ. INGQ.(1980),
29-39.
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Treat it as a bifurcation problem

Theorem Consider a bifurcation problem

du(t)
dt

= u(t)|a — bu(t)] — h(?),

wherees > 0. Let i(t) be a continuous function of periad such that

h(t) > 0. Then there exists& > 0 such that it has exactly twb-periodic
solutions wher < ¢, exactly onérl’-periodic solution whem = ¢y, and no
T-periodic solution whem > .

(i) Think the non-periodic case:

CL2

u' = u(a — bu) — h, h0:4—b
2h .
(i) €0 < a4—b, whereh = T~ [" h(t)dt. Hence the maximum sustainable

yield with seasonal effect is smaller than the one withoateaal effect.
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Sketch of the proof (1)

DefineF : R x R — R by F(e,&) = 2(¢,T,&) — £, wherez is the solution
of 2/ = f(e,t,z), t>0, z(0)=¢&.

T-periodic solution is equivalent tB'(e, &) = 0.

Notice thatF¢ (e, &) = A(e, T, &) — 1, whereA satisfies

A’ = (a—2b2(t))A, A(0) = 1, thusA(t) = exp(at — 2b [, 2(s)ds).

(A) Whene = 0, there are exactly twoT-periodic orbits™u(¢) = 0 and
u(t) = a/b, and implicit function theorem implies that they persistsmall
e > 0. There is no periodic solution when> 0 is large.
(B) Repeatedly applying implicit function theorem until a degete solution
(¢4, u«(0)) is reached. At a degenerate solutiéia(e, u.(0)) = 0.
(C) We apply saddle-node bifurcation theorem at degenerai¢@ol
(€4, u+(0)).
(F1) dimN (Fy (Ao, ug)) = codimR(F, (Ao, up)) = 1, and
(F2) F\(M\o,up) € R(Fy (Ao, ug))-
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Sketch of the proof (2)

(D) Need to show thafy (c., us) € R(Fe(ex, us)).

F.(ex,uy) = 0z(e, T, u.(0))/0c satisfies

B’ = (a — 2bu*( ))B h( ), t >0, B(0)=0.Then

B(t fo h(s)ds, thusB(T) < 0.

(E) Near a degenerate soluti¢,, u. ), theT-periodic solutions form a curve

(e(s),u(s)) such thae(0) = e,, €/(0) = 0, ande”(0) = —e, Fee(Ex, us)

Fo(ex,uy)
Fee(ex,uy) = C(T), andC(t) satisfies
C" = (a — 2bu,(t ))C 20A%, C(0) =0, thus
C(t) = —2bA(¢ fo s)ds < 0 henceC(T) < 0. Soe”(0) < 0.

Every critical point is a local maximum, so there is only on#ical point!

More of such results for Reaction-diffusion models:
[Korman-Li-Ouyang, 1996, 1997] [Ouyang-Shi, 1998, 1999]
[Oruganti-Shi-Shivaji, 2002]

Bifurcation — p. 24/25



Bifurcation — p. 25/25



	includegraphics *[height=0.3in]{wm.eps}hspace {3in}
	{small Summary of Bifurcation Theorems}
	{small Single species: Logistic Model verses Allee effect}
	{small Bifurcation problem}
	{small Weak Allee effect case}
	{small Strong Allee effect case}
	{small Estimate of the breaking point $la _*$}
	{small Alan Turing (1912-1954)}
	{small Turing's idea}
	{small Turing bifurcation in 1-D problem }
	{small Calculation of stability}
	{small (artificial)
Example}
	{small Global Turing Bifurcation}
	{small Turing patterns in real experiment: \ Lengyel-Epstein CIMA chemical reaction}
	{small Reaction-diffusion system for CIMA reaction}
	{small Bifurcation Analysis}
	{small Global Turing Bifurcation for CIMA reaction}
	{small Generalization to cross-diffusion system}
	{small Another water-limited ecosystem}
	{small Bifurcation with cross-diffusion effect}
	{small Last example: an ODE model}
	{small Treat it as a bifurcation problem}
	{small Sketch of the proof (1)}
	{small Sketch of the proof (2)}

