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Summary of Bifurcation Theorems

Let F : R ×X → Y be continuously differentiable.F (λ0, u0) = 0, F

satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and

(F2) Fλ(λ0, u0) 6∈ R(Fu(λ0, u0)).

Then a saddle-node bifurcation occurs.

If F satisfies(F1),
(F2’) Fλ(λ0, u0) ∈ R(Fu(λ0, u0)),

and additional non-degeneracy condition onD2F

Then a crossing curve bifurcation occurs. (include pitchfork and transcritical

bifurcations)

The bifurcation from trivial solutions is global ifFu(λ, u) is always Fredholm

An equivalent form of(F2): Fu(λ, u0) has a simple real eigenvalueγ(λ) for λ

nearλ0, continuously differentiable inλ, with γ(λ0) = 0, andγ′(λ0) 6= 0.

All other eigenvalues ofFu(λ, u0) have non-zero real parts Bifurcation – p. 2/25



Single species: Logistic Model verses Allee effect


















∂u

∂t
= D∆u+ uf(x, u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω.

u(x, t): population density at positionx and timet

Ω: a bounded habitat,u = 0 on boundary∂Ω: hostile exterior environment

f(x, u): heterogeneous growth rate per capita
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f(x, u): (a) logistic; (b) weak Allee effect; (c) strong Allee effect.
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Bifurcation problem

∆u+ λuf(x, u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω.

u = 0 is always a solution for anyλ > 0, λ1(f,Ω) (minimal patch size) is the

principal eigenvalue of∆ψ + λf(x, 0)ψ = 0, x ∈ Ω, ψ = 0, x ∈ ∂Ω. We

consider positive solutions only.

Logistic case: a supercritical transcritical bifurcation occurs atλ1(f,Ω) > 0;

for λ > λ1, there is a unique steady state which is globally stable.

[Cantrell-Cosner, 2003]

λ

u

λ1(f,Ω)
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Weak Allee effect case

(A) a subcritical (backward) transcritical bifurcation occurs atλ1(f,Ω) > 0;

(B) for λ ∈ (λ∗, λ1), there are at least two steady state solutions (bistability);

(C) a saddle-node bifurcation occurs atλ∗ (at least whenΩ is a ball);

(D) for λ large, it is similar to logistic case.[Shi-Shivaji, 2006]

Allee effect caused by diffusion (ODE with weak Allee effectis similar to

logistic case); danger of hysteresis.

[Jiang-Shi, 2008, in Book edited by Cantrell-Cosner-Ruan]

λ

u

λ1(f,Ω)λ∗(f,Ω)
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Strong Allee effect case

(A) λ1(f,Ω) < 0, u = 0 is always stable, and there is no bifurcation from

u = 0;

(B) for λ > λ∗, there are at least two steady state solutions (bistability);

(C) a saddle-node bifurcation occurs atλ∗ (at least whenΩ is a ball);

(D) the basins of attraction ofu = 0 and large stable steady state

(“carrying-capacity”) is a codimension-one manifold (surface in infinite

dimensional space).

[Ouyang-Shi, 1998] [Jiang-Liang-Zhao, 2004], [Jiang-Shi, 2008]

λ

u

λ∗(f,Ω)
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Estimate of the breaking pointλ∗

∆u+ λu(1 − u)(u−M) = 0, x ∈ Ω, u(x) = 0, x ∈ ∂Ω.

0 < M < 1/2 (if 1/2 < M < 1, then there is no positive steady state)

Lower bound: λ∗ > λ1/f∗, wheref∗ = max
u∈[0,1]

f(u)/u

Upper bound: defineI(λ, u) = (1/2)
∫

Ω
|∇u|2dx− λ

∫

Ω
F (u)dx, then

λ∗ < λ0, wheremin I(λ0, u) < 0 (which implies0 is not the global minimum

of the energy functionI(λ, u))

n = 1, Ω = (0, L).

2π2

L2(1 +M)
< λ∗ <

48

L2(3 −M)
.

L = 1 andM = 0.2: 16.45 < λ∗ < 17.14

Numerical value ofλ∗: λ∗ ≈ 16.61.

[Jiang-Shi, 2008]
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Alan Turing (1912-1954)

• One of greatest scientists in 20th century

• Designer of Turing machine (a theoretical computer) in 1930s

• Designing electromechanical machine which breaks German U-boat

Enigma, helping the battle of the Atlantic

• Initiate nonlinear theory of biological growth

[Turing, 1952] The Chemical Basis of Morphogenesis.

Philosophical transaction Royal Society of London Series B, 237

http://www.turing.org.uk/
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Turing’s idea

ODE (1):u′ = f(u, v), v′ = g(u, v)

Reaction-diffusion system (2):ut = d1∆u+ f(u, v), vt = d2∆v + g(u, v)

Hereu(x, t) andv(x, t) are the density functions of two chemicals

(morphogen) or species which interact or react

• A constant solutionu(t, x) = u0, v(t, x) = v0 can be a stable solution

of (1), but an unstable solution of (2). Thus the instabilityis induced by

diffusion.

• On the other hand, there must be stable non-constant equilibrium

solutions, or stable non-equilibrium behavior, which havemore

complicated spatial-temporal structure.

http://en.wikipedia.org/wiki/Morphogen
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Turing bifurcation in 1-D problem



























ut = Duuxx + λf(u, v), x ∈ (0, π), t > 0,

vt = Dvvxx + λg(u, v), x ∈ (0, π), t > 0,

ux(t, 0) = ux(t, π) = vx(t, 0) = vx(t, π) = 0, t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, π).

Equilibrium point:f(u0, v0) = g(u0, v0) = 0

Eigenvalue problemφ′′ = µφ, 0 < x < π, φ′(0) = φ′(π) = 0

eigenvalueµk = −k2, eigenfunctionφk(x) = cos(kx).

Linearized equation:

L





φ

ψ



 =





φxx

dψxx



 + λ





fu fv

gu gv









φ

ψ
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Calculation of stability

Let





φ

ψ



 =





A

B



 cos(kx), andD =





1 0

0 d



 , then eigenvalues

of L are determined by

(λJ − k2D)





A

B



 =





λfu − k2 λfv

λgu λgv − k2d









A

B



 = µ





A

B





Tr(J − k2D) = λ(fu + gv) − k2(1 + d),

Det(J − k2D) = λ2(fugv − fvgu) − k2(dfu + gv)λ+ k4d

Stable w.r.t. ODE: D1 = fugv − fvgu > 0 andfu + gv < 0

ThusTr(J − k2D) < 0, and we must haveDet(J − k2D) < 0 if it is

unstable w.r.t. R-D system

Condition for Turing instability:fu < 0, gv > 0, 0 < d < 1,

0 < d <
λ[gvk

2 − λD1]

k2(k2 − λfu)
≡ dk(λ) (bifurcation point)
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(artificial) Example

J =





−3 2

−4 2



, fu < 0, gv > 0, fu + gv < 0, fugv − fvgu > 0,

dk(λ) =
λ(2k2 − 2λ)

k2(k2 + 3λ)
,

d1(λ) =
2λ(1 − λ)

1 + 3λ
, d2(λ) =

2λ(4 − λ)

4(4 + 3λ)
, d3(λ) =

2λ(9 − λ)

9(9 + 3λ)
,

x
0 2 4 6 8 10

0
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Global Turing Bifurcation

Theorem: Suppose thatf(u0, v0) = g(u0, v0) = 0, and at(u0, v0),

(A) fu < 0 (inhibitor), gv > 0 (activator);

(B) D1 = fugv − fvgu > 0 andfu + gv < 0.

For fixedλ > 0, if dk(λ) ≡
λ[gvk

2 − λD1]

k2(k2 − λfu)
6= dj(λ) for anyj 6= k, then

(i) d = dk is a bifurcation point where a continuumΣ of non-trivial solutions

of






uxx + λf(u, v) = 0, dvxx + λg(u, v) = 0, x ∈ (0, π),

ux(0) = ux(π) = vx(0) = vx(π) = 0,

bifurcates from the line of trivial solutions(d, u0, v0);

(ii) The continuumΣ is either unbounded in the space of(d, u, v), or it

connects to another(dj(λ), u0, v0);

(iii) Σ is locally a curve near(dk(λ), u0, v0) in form of

(d, u, v) = (d(s), u0 + sA cos(kx) + o(s), v0 + sB cos(kx) + o(s)), |s| < δ,

andd′(0) = 0 thus the bifurcation is pitchfork type (d′′(0) can be computed in

term ofD3(f, g)).
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Turing patterns in real experiment:

Lengyel-Epstein CIMA chemical reaction

The first experimental evidence of Turing pattern was observed in 1990,

nearly 40 years after Turing’s prediction, by the Bordeaux group in France, on

the chlorite-iodide-malonic acid-starch (CIMA) reactionin an open unstirred

gel reactor. This observation represents a significant breakthrough for one of

the most fundamental ideas in morphogenesis and biologicalpattern

formation.

[Castets, et.al., 1990] Experimental evidence of a sustained Turing-type

equilibrium chemical pattern.Phys. Rev. Lett.64.
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Reaction-diffusion system for CIMA reaction

Lengyel and Epstein simplify the reaction into a system of two equations:































ut = △u+ a− u−
4uv

1 + u2
, x ∈ Ω, t > 0,

vt = σ[c∆v + b(u−
uv

1 + u2
)], x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω,

[Lengyel-Epstein, 1991] Modeling of Turing Structures in the

Chlorite-Iodide-Malonic Acid-Starch Reaction System.Science251.
We considera = 5α, σ = b = 1, c = d andΩ = (0, lπ).

Steady state equation:



















uxx + 5α− u−
4uv

1 + u2
= 0, x ∈ (0, lπ),

dvxx + u−
uv

1 + u2
= 0, x ∈ (0, lπ),

ux(0) = ux(lπ) = vx(0) = vx(lπ) = 0.
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Bifurcation Analysis

Constant equilibrium:(u∗, v∗) = (α, 1 + α2)

Jacobian at(u∗, v∗): J =







3α2 − 5

α2 + 1
−

4α

α2 + 1
2α2

α2 + 1
−

α

α2 + 1






.

Assume0 < 3α2 − 5 < α

fu > 0, gv < 0,D1 = fugv − fvgu > 0 andfu + gv < 0.

Bifurcation points:dj =
α

1 + α2
·

5 + λj

λj(f0 − λj)
,

wheref0 =
3α2 − 5

1 + α2
, andλj = j2/l2.

[Ni-Tang, 2005] Turing patterns in the Lengyel-Epstein system for the CIMA

reaction.Trans. Amer. Math. Soc.357.
[Jang-Ni-Tang, 2004] Global bifurcation and structure of Turing patterns in

the 1-D Lengyel-Epstein model.J. Dynam. Differential Equations16.
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Global Turing Bifurcation for CIMA reaction

[Ni-Tang, 2005]:

(A) Ford > 0 small,(u∗, v∗) is the only steady state solution;

(B) All non-negative steady state solution satisfies0 < u(x) < 5α,

0 < v(x) < 1 + 25α2.

[Jang-Ni-Tang, 2004]:

(C) Each connected component bifurcated from(dj , u∗, v∗) is unbounded in

the space of(d, u, v), and its projection overd-axis covers(dj ,∞).

(D) For eachd 6= dk, there exists a non-constant solution.

More results for Lengyel-Epstein system: (Hopf bifurcation etc.)

[Yi-Wei-Shi, 2008] Diffusion-driven instability and bifurcation in the

Lengyel-Epstein system.Nonlinear Anal. Real World Appl.9.

[Yi-Wei-Shi, to appear] Global asymptotical behavior of the Lengyel-Epstein

reaction-diffusion system.Appl. Math. Lett.
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Generalization to cross-diffusion system

[Shi-Xie-Little, submitted] Cross-diffusion induced instability and stability in

reaction-diffusion systems.







ut = d11uxx + d12vxx + αf(u, v), t > 0, x ∈ R,

vt = d21uxx + d22vxx + αg(u, v), t > 0, x ∈ R,

Equilibrium point:f(u0, v0) = g(u0, v0) = 0

Following scenarios are possible:

(A) (u0, v0) is stable for ODE, still stable for (self)-diffusion system

(d12 = d21 = 0), but it is unstable for cross-diffusion system (d12, d21 6= 0).

(cross-diffusion induced instability)

(B) (u0, v0) is stable for ODE, unstable for (self)-diffusion system

(d12 = d21 = 0) (Turing instability), but it is stable for cross-diffusion system

(d12, d21 6= 0). (cross-diffusion induced stability)
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Another water-limited ecosystem

[von Hardenberg, et.al. 2001] Diversity of Vegetation Patterns and

Desertification.Phys. Rev. Lett.87, 198101.

nt =
γw

1 + σw
n− n2 − µn+ ∆n,

wt = p− (1 − ρn)w − w2n+ δ∆(w − βn) − v(w − αn)x,

We only consider the case whenv = 0 (flat land).

nt =
γw

1 + σw
n− n2 − µn+ ∆n,

wt = p− (1 − ρn)w − w2n+ δ∆(w − βn).
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Bifurcation with cross-diffusion effect

[Shi-Xie-Little, submitted]

(i) Suppose that0 < γ − µσ <
σ

ρ
, andw > ρ, then

(n∗, w∗) = (
γw

1 + σw
− µ,w) is an equilibrium point satisfying1 − ρn > 0,

and it is stable with respect to ODE dynamics.

(ii) (n∗, w∗) is still stable with diffusion added (butβ = 0, no cross-diffusion)

(iii) If β > β0 ≡
(δn+ pw−1 + wn+ 2

√

δDet(J))(1 + σw)2

δγn
, then

(n∗, w∗) is unstable. (cross-diffusion induced instability)

β = β0 is a bifurcation point where strip patterned solutions bifurcate from

spatial uniform equilibrium solution.
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Last example: an ODE model

[Shi, EJDE, problem section 2006-1]

Consider the differential equation

du(t)

dt
= u(t)[a− bu(t)] − h(t).

Herea andb are given positive constants, andh(t) is a given function of

periodT , called harvesting function. Prove that this equation possesses at

most twoT -periodic solutions. If there are two, they do not intersect.

[Lazer, 1980] Qualitative studies of the solutions of the equation of population

growth with harvesting, (Spanish) Mat. Ense nanza Univ. No.17, (1980),

29-39.
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Treat it as a bifurcation problem

Theorem Consider a bifurcation problem

du(t)

dt
= u(t)[a− bu(t)] − εh(t),

whereε ≥ 0. Leth(t) be a continuous function of periodT such that

h(t) ≥ 0. Then there exists aε0 > 0 such that it has exactly twoT -periodic

solutions whenε < ε0, exactly oneT -periodic solution whenε = ε0, and no

T -periodic solution whenε > ε0.

(i) Think the non-periodic case:

u′ = u(a− bu) − h, h0 =
a2

4b

(ii) ε0 <
a2h

4b
, whereh = T−1

∫ T

0
h(t)dt. Hence the maximum sustainable

yield with seasonal effect is smaller than the one without seasonal effect.
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Sketch of the proof (1)

DefineF : R × R → R by F (ε, ξ) = z(ε, T, ξ) − ξ, wherez is the solution

of z′ = f(ε, t, z), t > 0, z(0) = ξ.

T -periodic solution is equivalent toF (ε, ξ) = 0.

Notice thatFξ(ε, ξ) = A(ε, T, ξ) − 1, whereA satisfies

A′ = (a− 2bz(t))A, A(0) = 1, thusA(t) = exp(at− 2b
∫ t

0
z(s)ds).

(A) Whenε = 0, there are exactly two “T -periodic orbits”u(t) = 0 and

u(t) = a/b, and implicit function theorem implies that they persist for small

ε > 0. There is no periodic solution whenε > 0 is large.

(B) Repeatedly applying implicit function theorem until a degenerate solution

(ε∗, u∗(0)) is reached. At a degenerate solution,Fξ(ε, u∗(0)) = 0.

(C) We apply saddle-node bifurcation theorem at degenerate solution

(ε∗, u∗(0)).

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and

(F2) Fλ(λ0, u0) 6∈ R(Fu(λ0, u0)).
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Sketch of the proof (2)

(D) Need to show thatFε(ε∗, u∗) 6∈ R(Fξ(ε∗, u∗)).

Fε(ε∗, u∗) = ∂z(ε, T, u∗(0))/∂ε satisfies

B′ = (a− 2bu∗(t))B − h(t), t > 0, B(0) = 0. Then

B(t) = −A(t)
∫ t

0
[A(s)]−1h(s)ds, thusB(T ) < 0.

(E) Near a degenerate solution(ε∗, u∗), theT -periodic solutions form a curve

(ε(s), u(s)) such thatε(0) = ε∗, ε′(0) = 0, andε′′(0) = −ε∗
Fξξ(ε∗, u∗)

Fε(ε∗, u∗)
.

Fξξ(ε∗, u∗) = C(T ), andC(t) satisfies

C′ = (a− 2bu∗(t))C − 2bA2, C(0) = 0, thus

C(t) = −2bA(t)
∫ t

0
A(s)ds < 0 henceC(T ) < 0. Soε′′(0) < 0.

Every critical point is a local maximum, so there is only one critical point!

More of such results for Reaction-diffusion models:

[Korman-Li-Ouyang, 1996, 1997] [Ouyang-Shi, 1998, 1999]

[Oruganti-Shi-Shivaji, 2002]
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