

Examples of stationary bifurcations: Turing bifurcation, fold bifurcation

JUNPING SHI 史峻平

College of William and Mary Williamsburg, Virginia 23187

Mathematical Applications in Ecology and Evolution Workshop Center for Computational Sciences Mississippi State University August 5, 2008

Summary of Bifurcation Theorems

Let $F : \mathbf{R} \times X \to Y$ be continuously differentiable. $F(\lambda_0, u_0) = 0, F$ satisfies

(**F1**) $dimN(F_u(\lambda_0, u_0)) = codimR(F_u(\lambda_0, u_0)) = 1$, and (F2) $F_{\lambda}(\lambda_0, u_0) \notin R(F_u(\lambda_0, u_0)).$

Then a saddle-node bifurcation occurs.

If F satisfies (F1), (**F2'**) $F_{\lambda}(\lambda_0, u_0) \in R(F_u(\lambda_0, u_0)),$ and additional non-degeneracy condition on D^2F

Then a crossing curve bifurcation occurs. (include pitchfork and transcritical bifurcations)

The bifurcation from trivial solutions is global if $F_u(\lambda, u)$ is always Fredholm

An equivalent form of (F2): $F_u(\lambda, u_0)$ has a simple real eigenvalue $\gamma(\lambda)$ for λ near λ_0 , continuously differentiable in λ , with $\gamma(\lambda_0) = 0$, and $\gamma'(\lambda_0) \neq 0$. All other eigenvalues of $F_u(\lambda, u_0)$ have non-zero real parts

Single species: Logistic Model verses Allee effect

$$\begin{cases} \frac{\partial u}{\partial t} = \mathcal{D}\Delta u + uf(x, u), & x \in \Omega, \quad t > 0, \\ u(x, t) = 0, & x \in \partial\Omega, \quad t > 0, \\ u(x, 0) = u_0(x) \ge 0, & x \in \Omega. \end{cases}$$

u(x, t): population density at position x and time t Ω : a bounded habitat, u = 0 on boundary $\partial \Omega$: hostile exterior environment f(x, u): heterogeneous growth rate per capita

f(x, u): (a) logistic; (b) weak Allee effect; (c) strong Allee effect.

Bifurcation problem

 $\Delta u + \lambda u f(x, u) = 0, \ x \in \Omega, \ u = 0, \ x \in \partial \Omega.$

u = 0 is always a solution for any $\lambda > 0$, $\lambda_1(f, \Omega)$ (minimal patch size) is the principal eigenvalue of $\Delta \psi + \lambda f(x, 0)\psi = 0$, $x \in \Omega$, $\psi = 0$, $x \in \partial \Omega$. We consider positive solutions only.

Logistic case: a supercritical transcritical bifurcation occurs at $\lambda_1(f, \Omega) > 0$; for $\lambda > \lambda_1$, there is a unique steady state which is globally stable. [Cantrell-Cosner, 2003]

Weak Allee effect case

(A) a subcritical (backward) transcritical bifurcation occurs at λ₁(f, Ω) > 0;
(B) for λ ∈ (λ_{*}, λ₁), there are at least two steady state solutions (bistability);
(C) a saddle-node bifurcation occurs at λ_{*} (at least when Ω is a ball);
(D) for λ large, it is similar to logistic case. [Shi-Shivaji, 2006]

Allee effect caused by diffusion (ODE with weak Allee effect is similar to logistic case); danger of hysteresis.

[Jiang-Shi, 2008, in Book edited by Cantrell-Cosner-Ruan]

Strong Allee effect case

(A) $\lambda_1(f, \Omega) < 0, u = 0$ is always stable, and there is no bifurcation from u = 0;

(B) for $\lambda > \lambda_*$, there are at least two steady state solutions (bistability);

(C) a saddle-node bifurcation occurs at λ_* (at least when Ω is a ball);

(D) the basins of attraction of u = 0 and large stable steady state

("carrying-capacity") is a codimension-one manifold (surface in infinite dimensional space).

[Ouyang-Shi, 1998] [Jiang-Liang-Zhao, 2004], [Jiang-Shi, 2008]

Estimate of the breaking point λ_*

 $\Delta u + \lambda u(1-u)(u-M) = 0, \quad x \in \Omega, \quad u(x) = 0, \quad x \in \partial\Omega.$ 0 < M < 1/2 (if 1/2 < M < 1 , then there is no positive steady state)Lower bound: $\lambda_* > \lambda_1/f_*$, where $f_* = \max_{u \in [0,1]} f(u)/u$ Upper bound: define $I(\lambda, u) = (1/2) \int_{\Omega} |\nabla u|^2 dx - \lambda \int_{\Omega} F(u) dx$, then $\lambda_* < \lambda_0$, where min $I(\lambda_0, u) < 0$ (which implies 0 is not the global minimum of the energy function $I(\lambda, u)$)

 $n = 1, \Omega = (0, L).$

$$\frac{2\pi^2}{L^2(1+M)} < \lambda_* < \frac{48}{L^2(3-M)}.$$

L = 1 and M = 0.2: $\overline{16.45} < \lambda_* < 17.14$ Numerical value of λ_* : $\lambda_* \approx 16.61$. [Jiang-Shi, 2008]

Alan Turing (1912-1954)

- One of greatest scientists in 20th century
- Designer of Turing machine (a theoretical computer) in 1930s
- Designing electromechanical machine which breaks German U-boat Enigma, helping the battle of the Atlantic
- Initiate nonlinear theory of biological growth [Turing, 1952] The Chemical Basis of Morphogenesis.
 Philosophical transaction Royal Society of London Series B, 237

http://www.turing.org.uk/

Turing's idea

ODE (1): u' = f(u, v), v' = g(u, v)

Reaction-diffusion system (2): $u_t = d_1 \Delta u + f(u, v), v_t = d_2 \Delta v + g(u, v)$

Here u(x,t) and v(x,t) are the density functions of two chemicals (morphogen) or species which interact or react

- A constant solution u(t, x) = u₀, v(t, x) = v₀ can be a stable solution of (1), but an unstable solution of (2). Thus the instability is induced by diffusion.
- On the other hand, there must be stable non-constant equilibrium solutions, or stable non-equilibrium behavior, which have more complicated spatial-temporal structure.

http://en.wikipedia.org/wiki/Morphogen

Turing bifurcation in 1-D problem

$$\begin{cases} u_t = D_u u_{xx} + \lambda f(u, v), & x \in (0, \pi), \ t > 0, \\ v_t = D_v v_{xx} + \lambda g(u, v), & x \in (0, \pi), \ t > 0, \\ u_x(t, 0) = u_x(t, \pi) = v_x(t, 0) = v_x(t, \pi) = 0, & t > 0, \\ u(0, x) = u_0(x), \ v(0, x) = v_0(x), & x \in (0, \pi). \end{cases}$$

Equilibrium point: $f(u_0, v_0) = g(u_0, v_0) = 0$ Eigenvalue problem $\phi'' = \mu \phi, 0 < x < \pi, \quad \phi'(0) = \phi'(\pi) = 0$ eigenvalue $\mu_k = -k^2$, eigenfunction $\phi_k(x) = \cos(kx)$.

Linearized equation:

$$L\begin{pmatrix}\phi\\\psi\end{pmatrix} = \begin{pmatrix}\phi_{xx}\\d\psi_{xx}\end{pmatrix} + \lambda\begin{pmatrix}f_u & f_v\\g_u & g_v\end{pmatrix}\begin{pmatrix}\phi\\\psi\end{pmatrix}$$

Calculation of stability

Let
$$\begin{pmatrix} \phi \\ \psi \end{pmatrix} = \begin{pmatrix} A \\ B \end{pmatrix} \cos(kx)$$
, and $D = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$, then eigenvalues
of L are determined by
 $(\lambda J - k^2 D) \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} \lambda f_u - k^2 & \lambda f_v \\ \lambda g_u & \lambda g_v - k^2 d \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \mu \begin{pmatrix} A \\ B \end{pmatrix}$
 $Tr(J - k^2 D) = \lambda(f_u + g_v) - k^2(1 + d),$
 $Det(J - k^2 D) = \lambda^2(f_u g_v - f_v g_u) - k^2(df_u + g_v)\lambda + k^4 d$
Stable w.r.t. ODE: $D_1 = f_u g_v - f_v g_u > 0$ and $f_u + g_v < 0$
Thus $Tr(J - k^2 D) < 0$, and we must have $Det(J - k^2 D) < 0$ if it is

unstable w.r.t. R-D system

Condition for Turing instability: $f_u < 0, g_v > 0, 0 < d < 1,$ $0 < d < \frac{\lambda[g_v k^2 - \lambda D_1]}{k^2(k^2 - \lambda f_u)} \equiv d_k(\lambda)$ (bifurcation point)

(artificial) Example

$$J = \begin{pmatrix} -3 & 2 \\ -4 & 2 \end{pmatrix}, f_u < 0, g_v > 0, f_u + g_v < 0, f_u g_v - f_v g_u > 0,$$
$$d_k(\lambda) = \frac{\lambda(2k^2 - 2\lambda)}{k^2(k^2 + 3\lambda)},$$

$$d_1(\lambda) = \frac{2\lambda(1-\lambda)}{1+3\lambda}, d_2(\lambda) = \frac{2\lambda(4-\lambda)}{4(4+3\lambda)}, d_3(\lambda) = \frac{2\lambda(9-\lambda)}{9(9+3\lambda)},$$

Horizontal axis: λ , vertical axis: d.

Global Turing Bifurcation

Theorem: Suppose that $f(u_0, v_0) = g(u_0, v_0) = 0$, and at (u_0, v_0) , (A) $f_u < 0$ (inhibitor), $g_v > 0$ (activator); (B) $D_1 = f_u g_v - f_v g_u > 0$ and $f_u + g_v < 0$. For fixed $\lambda > 0$, if $d_k(\lambda) \equiv \frac{\lambda [g_v k^2 - \lambda D_1]}{k^2 (k^2 - \lambda f_u)} \neq d_j(\lambda)$ for any $j \neq k$, then (i) $d = d_k$ is a bifurcation point where a continuum Σ of non-trivial solutions of

$$\begin{cases} u_{xx} + \lambda f(u, v) = 0, & dv_{xx} + \lambda g(u, v) = 0, \\ u_x(0) = u_x(\pi) = v_x(0) = v_x(\pi) = 0, \end{cases} \quad x \in (0, \pi), \end{cases}$$

bifurcates from the line of trivial solutions (d, u_0, v_0) ;

(ii) The continuum Σ is either unbounded in the space of (d, u, v), or it connects to another $(d_j(\lambda), u_0, v_0)$;

(iii) Σ is locally a curve near $(d_k(\lambda), u_0, v_0)$ in form of $(d, u, v) = (d(s), u_0 + sA\cos(kx) + o(s), v_0 + sB\cos(kx) + o(s)), |s| < \delta,$ and d'(0) = 0 thus the bifurcation is pitchfork type (d''(0) can be computed in term of $D^3(f, g)).$ Bifurcation - p. 13/25

Turing patterns in real experiment:

Lengyel-Epstein CIMA chemical reaction

The first experimental evidence of Turing pattern was observed in 1990, nearly 40 years after Turing's prediction, by the Bordeaux group in France, on the chlorite-iodide-malonic acid-starch (CIMA) reaction in an open unstirred gel reactor. This observation represents a significant breakthrough for one of the most fundamental ideas in morphogenesis and biological pattern formation.

[Castets, et.al., 1990] Experimental evidence of a sustained Turing-type equilibrium chemical pattern. *Phys. Rev. Lett.* **64**.

Reaction-diffusion system for CIMA reaction

Lengyel and Epstein simplify the reaction into a system of two equations:

$$\begin{cases} u_{t} = \Delta u + a - u - \frac{4uv}{1 + u^{2}}, & x \in \Omega, t > 0, \\ v_{t} = \sigma [c\Delta v + b(u - \frac{uv}{1 + u^{2}})], & x \in \Omega, t > 0, \\ \partial_{\nu} u = \partial_{\nu} v = 0, & x \in \partial\Omega, t > 0, \\ u(x, 0) = u_{0}(x) > 0, v(x, 0) = v_{0}(x) > 0, & x \in \Omega, \end{cases}$$

[Lengyel-Epstein, 1991] Modeling of Turing Structures in the Chlorite-Iodide-Malonic Acid-Starch Reaction System. *Science* 251. We consider $a = 5\alpha$, $\sigma = b = 1$, c = d and $\Omega = (0, l\pi)$. Steady state equation:

$$\begin{cases} u_{xx} + 5\alpha - u - \frac{4uv}{1 + u^2} = 0, & x \in (0, l\pi), \\ dv_{xx} + u - \frac{uv}{1 + u^2} = 0, & x \in (0, l\pi), \\ u_x(0) = u_x(l\pi) = v_x(0) = v_x(l\pi) = 0. \end{cases}$$

Bifurcation – p. 15/25

Bifurcation Analysis

Constant equilibrium: $(u_*, v_*) = (\alpha, 1 + \alpha^2)$ Jacobian at (u_*, v_*) : $J = \begin{pmatrix} \frac{3\alpha^2 - 5}{\alpha^2 + 1} & -\frac{4\alpha}{\alpha^2 + 1} \\ \frac{2\alpha^2}{\alpha^2 + 1} & -\frac{\alpha}{\alpha^2 + 1} \end{pmatrix}$.

Assume $0 < 3\alpha^2 - 5 < \alpha$

 $f_u > 0, g_v < 0, D_1 = f_u g_v - f_v g_u > 0$ and $f_u + g_v < 0$.

Bifurcation points: $d_j = \frac{\alpha}{1+\alpha^2} \cdot \frac{5+\lambda_j}{\lambda_j(f_0-\lambda_j)}$, where $f_0 = \frac{3\alpha^2-5}{1+\alpha^2}$, and $\lambda_j = j^2/l^2$.

[Ni-Tang, 2005] Turing patterns in the Lengyel-Epstein system for the CIMA reaction. *Trans. Amer. Math. Soc.* 357.
[Jang-Ni-Tang, 2004] Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model. *J. Dynam. Differential Equations* 16.

Global Turing Bifurcation for CIMA reaction

[Ni-Tang, 2005]:

(A) For d > 0 small, (u_{*}, v_{*}) is the only steady state solution;
(B) All non-negative steady state solution satisfies 0 < u(x) < 5α, 0 < v(x) < 1 + 25α².

[Jang-Ni-Tang, 2004]:

(C) Each connected component bifurcated from (d_j, u_{*}, v_{*}) is unbounded in the space of (d, u, v), and its projection over d-axis covers (d_j, ∞).
(D) For each d ≠ d_k, there exists a non-constant solution.

More results for Lengyel-Epstein system: (Hopf bifurcation etc.)

[Yi-Wei-Shi, 2008] Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. *Nonlinear Anal. Real World Appl.* 9.
[Yi-Wei-Shi, to appear] Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system. *Appl. Math. Lett.*

Generalization to cross-diffusion system

[Shi-Xie-Little, submitted] Cross-diffusion induced instability and stability in reaction-diffusion systems.

$$\begin{cases} u_t = d_{11}u_{xx} + d_{12}v_{xx} + \alpha f(u, v), & t > 0, \ x \in \mathbf{R}, \\ v_t = d_{21}u_{xx} + d_{22}v_{xx} + \alpha g(u, v), & t > 0, \ x \in \mathbf{R}, \end{cases}$$

Equilibrium point: $f(u_0, v_0) = g(u_0, v_0) = 0$

Following scenarios are possible:

(A) (u_0, v_0) is stable for ODE, still stable for (self)-diffusion system $(d_{12} = d_{21} = 0)$, but it is unstable for cross-diffusion system $(d_{12}, d_{21} \neq 0)$. (cross-diffusion induced instability)

(B) (u_0, v_0) is stable for ODE, unstable for (self)-diffusion system $(d_{12} = d_{21} = 0)$ (Turing instability), but it is stable for cross-diffusion system $(d_{12}, d_{21} \neq 0)$. (cross-diffusion induced stability)

Another water-limited ecosystem

[von Hardenberg, et.al. 2001] Diversity of Vegetation Patterns and Desertification. *Phys. Rev. Lett.* **87**, 198101.

$$n_t = \frac{\gamma w}{1 + \sigma w} n - n^2 - \mu n + \Delta n,$$

$$w_t = p - (1 - \rho n) w - w^2 n + \delta \Delta (w - \beta n) - v (w - \alpha n)_x,$$

We only consider the case when v = 0 (flat land).

$$n_t = \frac{\gamma w}{1 + \sigma w} n - n^2 - \mu n + \Delta n,$$

$$w_t = p - (1 - \rho n) w - w^2 n + \delta \Delta (w - \beta n)$$

Bifurcation – p. 19/25

Bifurcation with cross-diffusion effect

[Shi-Xie-Little, submitted] (i) Suppose that $0 < \gamma - \mu \sigma < \frac{\sigma}{\rho}$, and $w > \rho$, then $(n_*, w_*) = (\frac{\gamma w}{1 + \sigma w} - \mu, w)$ is an equilibrium point satisfying $1 - \rho n > 0$, and it is stable with respect to ODE dynamics.

(ii) (n_*, w_*) is still stable with diffusion added (but $\beta = 0$, no cross-diffusion)

(iii) If
$$\beta > \beta_0 \equiv \frac{(\delta n + pw^{-1} + wn + 2\sqrt{\delta Det(J)})(1 + \sigma w)^2}{\delta \gamma n}$$
, then (n_*, w_*) is unstable. (cross-diffusion induced instability)

 $\beta = \beta_0$ is a bifurcation point where strip patterned solutions bifurcate from spatial uniform equilibrium solution.

Last example: an ODE model

[Shi, EJDE, problem section 2006-1] Consider the differential equation

$$\frac{du(t)}{dt} = u(t)[a - bu(t)] - h(t).$$

Here a and b are given positive constants, and h(t) is a given function of period T, called harvesting function. Prove that this equation possesses at most two T-periodic solutions. If there are two, they do not intersect.

[Lazer, 1980] Qualitative studies of the solutions of the equation of population growth with harvesting, (Spanish) Mat. Ense nanza Univ. No. 17, (1980), 29-39.

Treat it as a bifurcation problem

Theorem Consider a bifurcation problem

$$\frac{du(t)}{dt} = u(t)[a - bu(t)] - \varepsilon h(t),$$

where $\varepsilon \ge 0$. Let h(t) be a continuous function of period T such that $h(t) \ge 0$. Then there exists a $\varepsilon_0 > 0$ such that it has exactly two T-periodic solutions when $\varepsilon < \varepsilon_0$, exactly one T-periodic solution when $\varepsilon = \varepsilon_0$, and no T-periodic solution when $\varepsilon > \varepsilon_0$.

(i) Think the non-periodic case: u' = u(a - bu) - h, $h_0 = \frac{a^2}{4b}$ (ii) $\varepsilon_0 < \frac{a^2\overline{h}}{4b}$, where $\overline{h} = T^{-1}\int_0^T h(t)dt$. Hence the maximum sustainable yield with seasonal effect is smaller than the one without seasonal effect.

Sketch of the proof (1)

Define $F : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ by $F(\varepsilon, \xi) = z(\varepsilon, T, \xi) - \xi$, where z is the solution of $z' = f(\varepsilon, t, z), t > 0, z(0) = \xi$. T-periodic solution is equivalent to $F(\varepsilon, \xi) = 0$. Notice that $F_{\xi}(\varepsilon, \xi) = A(\varepsilon, T, \xi) - 1$, where A satisfies A' = (a - 2bz(t))A, A(0) = 1, thus $A(t) = \exp(at - 2b\int_0^t z(s)ds)$.

(A) When $\varepsilon = 0$, there are exactly two "*T*-periodic orbits" u(t) = 0 and u(t) = a/b, and implicit function theorem implies that they persist for small $\varepsilon > 0$. There is no periodic solution when $\varepsilon > 0$ is large.

(B) Repeatedly applying implicit function theorem until a degenerate solution $(\varepsilon_*, u_*(0))$ is reached. At a degenerate solution, $F_{\xi}(\varepsilon, u_*(0)) = 0$.

(C) We apply saddle-node bifurcation theorem at degenerate solution $(\varepsilon_*, u_*(0)).$

(F1) $dim N(F_u(\lambda_0, u_0)) = codim R(F_u(\lambda_0, u_0)) = 1$, and (F2) $F_\lambda(\lambda_0, u_0) \notin R(F_u(\lambda_0, u_0))$.

Sketch of the proof (2)

(D) Need to show that $F_{\varepsilon}(\varepsilon_*, u_*) \notin R(F_{\xi}(\varepsilon_*, u_*))$. $F_{\varepsilon}(\varepsilon_*, u_*) = \partial z(\varepsilon, T, u_*(0)) / \partial \varepsilon$ satisfies $B' = (a - 2bu_*(t))B - h(t), \quad t > 0, \quad B(0) = 0.$ Then $B(t) = -A(t) \int_0^t [A(s)]^{-1}h(s)ds$, thus B(T) < 0. (E) Near a degenerate solution (ε_*, u_*) , the *T*-periodic solutions form a curve $(\varepsilon(s), u(s))$ such that $\varepsilon(0) = \varepsilon_*, \varepsilon'(0) = 0$, and $\varepsilon''(0) = -\varepsilon_* \frac{F_{\xi\xi}(\varepsilon_*, u_*)}{F_{\varepsilon}(\varepsilon_*, u_*)}$. $F_{\xi\xi}(\varepsilon_*, u_*) = C(T)$, and C(t) satisfies $C' = (a - 2bu_*(t))C - 2bA^2, \quad C(0) = 0$, thus $C(t) = -2bA(t) \int_0^t A(s)ds < 0$ hence C(T) < 0. So $\varepsilon''(0) < 0$.

Every critical point is a local maximum, so there is only one critical point!

More of such results for Reaction-diffusion models: [Korman-Li-Ouyang, 1996, 1997] [Ouyang-Shi, 1998, 1999] [Oruganti-Shi-Shivaji, 2002]

