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Earliest Bifurcation: Euler buckling

In engineering, buckling is a failure mode characterized bya sudden failure of

a structural member subjected to high compressive stresses, where the actual

compressive stresses at failure are greater than the ultimate compressive

stresses that the material is capable of withstanding. Thismode of failure is

also described as failure due to elastic instability.

φ′′ + λ sinφ = 0, x ∈ (0, π), φ(0) = φ(π) = 0

[Da Vinci, 1452-1519] [Euler, 1750]
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Bifurcation in predator-prey model

Predator-prey interaction

Classical examples: Hudson company lynx-hare data in 1800s, Volterra model

Alfred Lotka (1880-1949) Vito Volterra (1860-1940)

du

dt
= u(a− bu) − cuv,

dv

dt
= −dv + fuv.
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Bifurcation in predator-prey model

Paradox of enrichment:
dU

ds
= γU

(

1 −
U

K

)

−
CMUV

A+ U
,

dV

ds
= −DV +

MUV

A+ U
.

Environment is enriched ifK (carrying capacity) is larger, but whenK is

small, a coexistence equilibrium is stable; but whenK is larger, the

coexistence equilibrium is unstable, and a stable periodicsolution appears.

[Rosenzweig, 1971] Paradox of enrichment: destabilization of exploitation

ecosystems in ecological time.Science171.
[May, 1972] Limit cycles in predator-prey communities.Science, 177.
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Rich spatial patterns in diffusive predator-prey system

Patterns generated by diffusive predator-prey system






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


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















ut − d1∆u = u (1 − u) −
muv

u+ a
, x ∈ Ω, t > 0,

vt − d2∆v = −θv +
muv

u+ a
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

Patchiness (spatial heterogeneity) of plankton distributions in

phytoplankton-zooplankton interaction

[Medvinsky, Li, et.al., 2002] Spatiotemporal complexity of plankton and fish

dynamics.SIAM Review 44.
Bifurcation – p. 5/32



Spatial model: Bifurcation of grassland to desert

∂w

∂t
= a− w − wn2 + γ

∂w

∂x
,
∂n

∂t
= wn2 −mn+ ∆n, x ∈ Ω.

w(x, y, t):concentration of water;n(x, y, t): concentration of plant,

Ω: a two-dimensional domain.

a > 0: rainfall; −w: evaporation;−wn2: water uptake by plants; water flows

downhill at speedγ; wn2: plant growth;−mn: plant loss

[Klausmeier, 1999] Regular and Irregular Patterns in Semiarid Vegetation.

Science284.

[Rietkerk, et.al. 2004] Self-Organized Patchiness and Catastrophic Shifts in

Ecosystems.Science305. Bifurcation – p. 6/32



Models of differential (difference) equations

Ordinary differential equations:
dy

dt
= f(λ, y), y ∈ R

n

Matrix model:A(k + 1) = f(λ,A(k)), A(k) ∈ R
n

Partial differential equations (reaction-diffusion systems):







ut = d1∆u+ f(λ, u, v), x ∈ Ω, t > 0,

vt = d2∆v + g(λ, u, v), x ∈ Ω, t > 0,

Other effect: delay, non-local, age-structure, etc.

Delay Reaction-diffusion equation:

ut(x, t) = d∆u(x, t) + f(λ, u(x, t), u(x, t− τ))

Non-local Reaction-diffusion equation:

ut(x, t) = d∆u(x, t) + u(x, t)(1 −
∫

Ω
f(x, y)u(y, t)dy)
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Steady state solutions

Steady state solutions: solution independent of timet

Ordinary differential equations:f(λ, y) = 0, y ∈ R
n

Matrix model:A = f(λ,A), A ∈ R
n

Partial differential equations (reaction-diffusion systems):







d1∆u+ f(λ, u, v) = 0, x ∈ Ω,

d2∆v + g(λ, u, v) = 0, x ∈ Ω,

Abstract form:F (λ, u) = 0, u ∈ X (state space, or phase space for the

dynamics)

ODE and matrix models:X = R
n,

PDE:X = (infinite dimensional) function space (W 2,p(Ω), C2,α(Ω),etc.)

In generalX is a Banach space
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Bifurcation in R
1 (saddle-node bifurcation)

Annual catch of the Peruvian Anchovy Fishery from 1960-1990
dP

dt
= kP

(

1 −
P

N

)

−H, steady state:kP

(

1 −
P

N

)

−H = 0

WhenH > H0 ≡
kN

4
, the fishery collapses.

H0 is the maximum sustainable yield (MSY)
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Bifurcation in R
1 (hysteresis)

1 2345
678x

0 1 2 3 4 5 6 7r

A grazing system of herbivore-plant interaction
dV

dt
= V (1 − V ) −

rV p

hp + V p
, h, r > 0, p ≥ 1.

[Noy-Meir, 1975] Stability of Grazing Systems: An Application of

Predator-Prey Graphs.J. Ecology63.

[May 1975] Thresholds and breakpoints in ecosystems with a multiplicity of

stable states.Nature269.
Catastrophe theory: Thom, Arnold, Zeeman in 1960-70s

Potential catastrophes: Arctic sea, Greenland ice, Amazonrainforest, etc.
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Nonlinear equations in Banach space and derivatives

Equation:F (λ, u) = 0, F : R ×X → Y

Example:∆u+ λf(u) = 0, u ∈ X = W 2,p(Ω) ∩W 1,p
0

(Ω), andY = Lp(Ω).

Partial derivatives: (Frechét derivative)

Fu(λ, u)[φ] = lim
h→0

F (λ, u+ hφ) − F (λ, u)

h

Fλ(λ, u) = lim
h→0

F (λ+ h, u) − F (λ, u)

h

If F (λ, u) = ∆u+ λf(u), then

Fu(λ, u)[φ] = ∆φ+ λf ′(u)φ,

Fλ(λ, u) = f(u).

Fu(λ, u) is a linear mapping fromX to Y

N(Fu(λ, u)) ⊂ X is the null space (the space of solutions of

Fu(λ, u)[φ] = 0)

R(Fu(λ, u)) ⊂ Y is the range space
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Implicit function theorem: no bifurcation

Theorem 0AssumeX,Y are Banach spaces. Let(λ0, u0) ∈ R ×X and let

F be a continuously differentiable mapping of an open neighborhoodV of

(λ0, u0) into Y . LetF (λ0, u0) = 0 andFu(λ0, u0) is invertible

(Fu(λ0, u0)[φ] = 0 only has zero solution). Then the solutions ofF (λ, u) = 0

near(λ0, u0) form a curve(λ, u(λ)), u(λ) = u0 + (λ− λ0)w0 + z(λ), where

w0 = −[Fu(λ0, u0)]
−1(Fλ(λ0, u0)) andλ 7→ z(λ) ∈ X is a continuously

differentiable function nears = 0 with z(0) = z′(0) = 0.
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Basic Bifurcation in R
1

Consider

f(λ, u) = 0, λ ∈ R, u ∈ R.

Assumef(λ, u0) = 0 for λ ∈ R, andfu(λ0, u0) = 0.

Transcritical bifurcation:

fλu(λ0, u0) 6= 0, andfuu(λ0, u0) 6= 0.

Pitchfork Bifurcation

fuu(λ0, u0) = 0, fλu(λ0, u0) 6= 0, andfuuu(λ0, u0) 6= 0.
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Saddle-node bifurcation theorem

Theorem 1[Crandall-Rabinowitz, 1973]

Let F : R ×X → Y be continuously differentiable.F (λ0, u0) = 0, F

satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and

(F2) Fλ(λ0, u0) 6∈ R(Fu(λ0, u0)).

Then the solutions ofF (λ, u) = 0 near(λ0, u0) form a continuously

differentiable curve(λ(s), u(s)), (λ(0), u(0) = (λ0, u0), λ′(0) = 0 and

u′(0) = w0.

based on Implicit function theorem
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Saddle-node bifurcation theorem

Theorem 1[Crandall-Rabinowitz, 1973]

Let F : R ×X → Y be continuously differentiable.F (λ0, u0) = 0, F

satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and

(F2) Fλ(λ0, u0) 6∈ R(Fu(λ0, u0)).

Then the solutions ofF (λ, u) = 0 near(λ0, u0) form a continuously

differentiable curve(λ(s), u(s)), (λ(0), u(0) = (λ0, u0), λ′(0) = 0 and

u′(0) = w0.

based on Implicit function theorem

We will later consider the case

(F2’) Fλ(λ0, u0) ∈ R(Fu(λ0, u0)).
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Transcritical-Pitchfork bifurcation theorem

Theorem 2[Crandall-Rabinowitz, 1971]

Let F : R ×X → Y be continuously differentiable. Suppose that

F (λ, u0) = 0 for λ ∈ R, the partial derivativeFλu exists and is continuous.

At (λ0, u0), F satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and

(F3) Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)), wherew0 ∈ N(Fu(λ0, u0)),

Then the solutions ofF (λ, u) = 0 near(λ0, u0) consists precisely of the

curvesu = u0 and(λ(s), u(s)), s ∈ I = (−δ, δ), where(λ(s), u(s)) are

continuously differentiable functions such thatλ(0) = λ0, u(0) = u0,

u′(0) = w0.

N(Fu(λ0, u0)): the null space,R(Fu(λ0, u0)): the range space

[Chow-Hale, 1982] [Deimling, 1985]
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Assumptions

Assume thatF (λ0, u0) = 0, F satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and

(F2’) Fλ(λ0, u0) ∈ R(Fu(λ0, u0)).
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Assumptions

Assume thatF (λ0, u0) = 0, F satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and

(F2’) Fλ(λ0, u0) ∈ R(Fu(λ0, u0)).

Decomposition of spaces:

X = N(Fu(λ0, u0)) ⊕ Z

Y = R(Fu(λ0, u0)) ⊕ Y1

w0( 6= 0) ∈ N(Fu(λ0, u0))

Fu(λ0, u0)|Z : Z → R(Fu(λ0, u0)) is an isomorphism

there existsl ∈ Y ∗ such thatR(Fu(λ0, u0)) = {v ∈ Y : 〈l, v〉 = 0}
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Assumptions

Assume thatF (λ0, u0) = 0, F satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and

(F2’) Fλ(λ0, u0) ∈ R(Fu(λ0, u0)).

Decomposition of spaces:

X = N(Fu(λ0, u0)) ⊕ Z

Y = R(Fu(λ0, u0)) ⊕ Y1

w0( 6= 0) ∈ N(Fu(λ0, u0))

Fu(λ0, u0)|Z : Z → R(Fu(λ0, u0)) is an isomorphism

there existsl ∈ Y ∗ such thatR(Fu(λ0, u0)) = {v ∈ Y : 〈l, v〉 = 0}

There exists a uniquev1 ∈ Z such thatFλ(λ0, u0) + Fu(λ0, u0)[v1] = 0.
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Crossing curve bifurcation theorem

Theorem 3[Liu-Wang-Shi, 2007]

Let F : R ×X → Y be aC2 mapping, and assume conditions above. In

addition the matrix (all derivatives are evaluated at(λ0, u0))

H0 ≡





〈l, Fλλ + 2Fλu[v1] + Fuu[v1, v1]〉 〈l, Fλu[w0] + Fuu[w0, v1]〉

〈l, Fλu[w0] + Fuu[w0, v1]〉 〈l, Fuu[w0, w0]〉





is non-degenerate, i.e.,det(H0) 6= 0. LetS be the solution set ofF (λ, u) = 0

near(λ, u) = (λ0, u0).

1. If H0 is definite,i.e. det(H0) > 0, thenS is the singleton{(λ0, u0)}.

2. If H0 is indefinite,i.e. det(H0) < 0, thenS is the union of two

intersectingC1 curves, which are in form of

(λi(s), ui(s)) = (λ0 + µis+ sθi(s), u0 + ηisw0 + svi(s)), i = 1, 2,

wheres ∈ (−δ, δ) for someδ > 0, (µi, ηi) are non-zero linear

independent solutions of the equation
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Crossing curve bifurcation theorem (cont.)

〈l, Fλλ + 2Fλu[v1] + Fuu[v1, v1]〉µ
2 + 2〈l, Fλu[w0] + Fuu[w0, v1]〉ηµ

+ 〈l, Fuu[w0, w0]〉η
2 = 0,

θi(0) = θ′i(0) = 0, vi(s) ∈ Z, andvi(0) = v′i(0) = 0, i = 1, 2.
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Crossing curve bifurcation theorem (cont.)

〈l, Fλλ + 2Fλu[v1] + Fuu[v1, v1]〉µ
2 + 2〈l, Fλu[w0] + Fuu[w0, v1]〉ηµ

+ 〈l, Fuu[w0, w0]〉η
2 = 0,

θi(0) = θ′i(0) = 0, vi(s) ∈ Z, andvi(0) = v′i(0) = 0, i = 1, 2.

Remarks:

1. WhenFλ(λ0, u0) = 0, we havev1 = 0.

H1 ≡





〈l, Fλλ(λ0, u0)〉 〈l, Fλu(λ0, u0)[w0]〉

〈l, Fλu(λ0, u0)[w0]〉 〈l, Fuu(λ0, u0)[w0, w0]〉





and the equation of tangents of curves become

〈l, Fλλ(λ0, u0)〉µ
2+2〈l, Fλu(λ0, u0)[w0]〉µη+〈l, Fuu(λ0, u0)[w0, w0]〉η

2 = 0.
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More remarks

2. If F (λ, u0) ≡ 0, then Theorem 2 (classical transcritical and pitchfork

bifurcation theorem) follows from Theorem 3.
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More remarks

2. If F (λ, u0) ≡ 0, then Theorem 2 (classical transcritical and pitchfork

bifurcation theorem) follows from Theorem 3.

3. Theorem 3 is a natural complement Crandall-Rabinowitz saddle-node

bifurcation theorem (Theorem 2), where(F2) is imposed. Our result is based

on condition the opposite(F2′) and a generic second order non-degeneracy

conditiondet(H0) 6= 0.
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More remarks

2. If F (λ, u0) ≡ 0, then Theorem 2 (classical transcritical and pitchfork

bifurcation theorem) follows from Theorem 3.

3. Theorem 3 is a natural complement Crandall-Rabinowitz saddle-node

bifurcation theorem (Theorem 2), where(F2) is imposed. Our result is based

on condition the opposite(F2′) and a generic second order non-degeneracy

conditiondet(H0) 6= 0.

4. We also prove a secondary bifurcation theorem, which generalizes the one

in [Crandall-Rabinowitz, 1971]and[Deimling, 1985]. In the previous ones, a

solution curveΓ1 is given, and it is shown that another curveΓ2 exists and

intersects withΓ1 transversally. In our result, no any solution curve is given,

and we obtain the two curves simultaneously.
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Summary of Bifurcation Theorems

Let F : R ×X → Y be continuously differentiable.F (λ0, u0) = 0, F

satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and

(F2) Fλ(λ0, u0) 6∈ R(Fu(λ0, u0)).

Then a saddle-node bifurcation occurs.

If F satisfies(F1),
(F2’) Fλ(λ0, u0) ∈ R(Fu(λ0, u0)),

and additional non-degeneracy condition onD2F

Then a crossing curve bifurcation occurs. (include pitchfork and transcritical

bifurcations)
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What if kernel is 2-dimensional?

Let F : R ×X → Y be continuously differentiable.F (λ0, u0) = 0, F

satisfies

(F1-2)dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 2, and

(F2) Fλ(λ0, u0) 6∈ R(Fu(λ0, u0)).

and additional non-degeneracy condition onD2F

Then a saddle-node bifurcation of two curves occurs

[Liu, Shi, Wang, preprint]

If F satisfies(F1-2),
(F2’) Fλ(λ0, u0) ∈ R(Fu(λ0, u0)),

more complicated, depending on the symmetry of the problem

(example: two-dimensional surface, four curves)
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Proof of main result

1. Lyapunov-Schmidt reduction: reduceF (λ, u) = 0 to

G(λ, t) ≡ 〈l, F (λ, u0 + tw0 + g(λ, t))〉 = 0

2. A finite dimensional result (improving result based on Morse lemma)

Morse lemma: [Nirenberg, 1974]Suppose thatf : Rk → R is aCp function,

k ≥ 2. If f(0) = 0, fx(0) = 0, and the Hessianfxx(0) is a non-degenerate

k × k matrix. Then there exists a localCp−2 coordinate changey(x) defined

in a neighborhood of the origin withy(0) = 0, yx(0) = I such that

f(x) =
1

2
y(x)T fxx(0)y(x),

wherey(x)T is the transpose ofy(x), andy(x) is assumed to be column

vector inR
k. In particular ifk = 2 andfxx(0) is indefinite, then the set of

solutions off(x) = 0 near the origin consists of twoCp−2 curves intersecting

only at the origin.
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A finite dimensional theorem

[Liu-Wang-Shi, 2007]

Suppose that(x0, y0) ∈ R
2 andU is a neighborhood of(x0, y0). Assume that

f : U → R is aCp function forp ≥ 2, f(x0, y0) = 0, ∇f(x0, y0) = 0, and

the HessianH = H(x0, y0) is non-degenerate. Then

1. If H is definite, then(x0, y0) is the unique zero point off(x, y) = 0

near(x0, y0);

2. If H is indefinite, then there exist twoCp−1 curves(xi(t), yi(t)),

i = 1, 2, t ∈ (−δ, δ), such that the solution set off(x, y) = 0 consists

of exactly the two curves near(x0, y0), (xi(0), yi(0)) = (x0, y0).

Moreovert can be rescaled and indices can be rearranged so that

(x′1(0), y
′

1(0)) and(x′2(0), y
′

2(0)) are the two linear independent

solutions of

fxx(x0, y0)η
2 + 2fxy(x0, y0)ητ + fyy(x0, y0)τ

2 = 0.
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Proof of the “calculus problem”

Consider

x′ =
∂f(x, y)

∂y
, y′ = −

∂f(x, y)

∂x
, (x(0), y(0)) ∈ U.

Then it is a Hamiltonian system with potential functionf(x, y), (x0, y0) is the

only equilibrium point inU , and(x0, y0) is a saddle point. From the invariant

manifold theory of differential equations, the set{f(x, y) = 0} near(x0, y0)

is consisted of the1-dimensional stable and unstable manifolds at(x0, y0),

which areCp−1 sincef isCp.

Question: is there a proof without using invariant manifold theory butonly

elementary calculus?

another more general theorem:

splitting lemma[Kuiper, 1972] [Chang, 1993] [Li, Li, Liu, 2005]
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Global bifurcation

Theorem 4[Rabinowitz, 1971]

Suppose thatL is a compact operator onX , andH(λ, u) is a compact

operator onR ×X . If λ0 is a characteristic value ofL with odd algebraic

multiplicity, then(λ0, 0) is a bifurcation point of

F (λ, u) ≡ u− λLu−H(λ, u) = 0. Moreover, ifΣ is the set of the nontrivial

solutions ofF (λ, u) = 0, then there is a closed connected componentΣ1 of

Σ, such that(λ0, 0) ∈ Σ1, and either (i)Σ1 is unbounded; or (ii)Σ1 contains

(λ∗, 0), whereλ∗( 6= λ0) is also a characteristic value ofL.
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Global bifurcation

Theorem 4[Rabinowitz, 1971]

Suppose thatL is a compact operator onX , andH(λ, u) is a compact

operator onR ×X . If λ0 is a characteristic value ofL with odd algebraic

multiplicity, then(λ0, 0) is a bifurcation point of

F (λ, u) ≡ u− λLu−H(λ, u) = 0. Moreover, ifΣ is the set of the nontrivial

solutions ofF (λ, u) = 0, then there is a closed connected componentΣ1 of

Σ, such that(λ0, 0) ∈ Σ1, and either (i)Σ1 is unbounded; or (ii)Σ1 contains

(λ∗, 0), whereλ∗( 6= λ0) is also a characteristic value ofL.

It requires strong compactness. For applications in PDEs, it usually requires

to take inverse of∆ operators or more general elliptic operators. For some

applications with cross-diffusion or nonlinear boundary conditions, taking

inverse operators are not easy.

Bifurcation – p. 25/32



Global bifurcation from simple eigenvalue theorem

Theorem 5[Crandall-Rabinowitz, 1971]

Let F : R ×X → Y be continuously differentiable. Suppose that

F (λ, u0) = 0 for λ ∈ R, the partial derivativeFλu exists and is continuous.

At (λ0, u0), F satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and

(F3) Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)), wherew0 ∈ N(Fu(λ0, u0)),

Then the solutions ofF (λ, u) = 0 near(λ0, u0) consists precisely of the

curvesu = u0 and(λ(s), u(s)), s ∈ I = (−δ, δ), where(λ(s), u(s)) areC1

functions such thatλ(0) = λ0, u(0) = u0, u′(0) = w0.
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Global bifurcation from simple eigenvalue theorem

Theorem 5[Crandall-Rabinowitz, 1971]

Let F : R ×X → Y be continuously differentiable. Suppose that

F (λ, u0) = 0 for λ ∈ R, the partial derivativeFλu exists and is continuous.

At (λ0, u0), F satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and

(F3) Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)), wherew0 ∈ N(Fu(λ0, u0)),

Then the solutions ofF (λ, u) = 0 near(λ0, u0) consists precisely of the

curvesu = u0 and(λ(s), u(s)), s ∈ I = (−δ, δ), where(λ(s), u(s)) areC1

functions such thatλ(0) = λ0, u(0) = u0, u′(0) = w0.

[Pejsachowicz-Rabier, 1998] [Shi-Wang, 2008]

If in addition,Fu(λ, u) is a Fredholm operator for all(λ, u) ∈ R ×X , then

the curve{(λ(s), u(s)) : s ∈ I} is contained inC, which is a connect

component ofS = {(λ, u) ∈ R×X : F (λ, u) = 0, u 6= u0}; and eitherC is

not compact, orC contains a point(λ∗, 0) with λ∗ 6= λ0.
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Fredholm operators of index zero

Quasilinear elliptic systems with nonlinear boundary conditions areFredholm

operators of index zero

Theorem 6[Shi-Wang, 2008]

Suppose thatp > n, ∂Ω ∈ C3, and the regularity assumption above holds. Let

U be an open connected set ofR × (W 2,p(Ω))N . Assume that for each fixed

(λ, u) ∈ U ,DuT (λ, u) = (DuA(λ, u), DuB(λ, u)) is elliptic onΩ, and that

for a particular(λ0, u0) ∈ U ,DuT (λ0, u0) satisfies Agmon’s condition at a

θ0, then the Fredholm index ofDuT (λ, u) is 0 for all (λ, u) ∈ U .

It will have many applications in reaction-diffusion systems in mathematical

biology, physics, and chemistry.
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Example 1

Cross-diffusion system:















∆[(1 + α1u+ α2v)u] + u(λ− u− bv) = 0, x ∈ Ω,

∆[(1 + β1u+ β2v)v] + v(µ+ cu− v) = 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

Competing species with passive diffusion, self-diffusion, cross-diffusion.

[Shigesada, Kawasaki and Teramoto, 1979]

[Nakashima, Yamada, 1996] [Kuto, Yamada, 2004]: α1 = β2 = 0

Their idea: U = (1 + α2v)u, V = (1 + βu)v, then the system becomes

semilinear but with messy nonlinearities.

We prove the existence of a bounded branch of coexistence solutions which

connecting the two semi-trivial solution branches via our new global

bifurcation theorem. Our method is definitely more direct.
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Example 2

chemotactic diffusion system:



























u′′ − f(u)v = 0 x ∈ (0, 1),

λv′′ − χ(vψ′(u)u′)′ + (kf(u) − θ − βv)v = 0 x ∈ (0, 1),

u′(0) = 0, u′(1) = h(1 − u(1)),

λv′ − χvψ′(u)u′ = 0 atx = 0, 1.

[Wang, 2000]Idea: make an inverse of the main part of the differential

operator, then use Rabinowitz’s global bifurcation theorem.

We directly apply the new global bifurcation theorem for quasilinear systems.
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Final Remark

If we do not succeed in solving a mathematical problem then, very often, the

reason is that we did not yet discover the more general point of view from

which the given problem appears to be a link in a chain of related problems.

Having found this point of view, not only the given problem becomes more

accessible to our research, but we also gain a method which isapplicable to

related problems· · ·

In dealing with mathematical problems, specializing plays—as I believe—an

even more important role than generalizing. Perhaps in mostcases in which

we fail to find an answer, the reason for this failure is that wedid not solve, at

least not completely, problems simpler and easier than the given one.

Everything amounts to finding these easier problems and to solve them by

using tools which are as perfect as possible and concepts which are fit to be

generalized.

David Hilbert, lecture at the International Congress of Mathematicians in

Paris, 1900
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