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Earliest Bifurcation: Euler buckling

In engineering, buckling is a failure mode characterize@ lsydden failure of
a structural member subjected to high compressive streskese the actual
compressive stresses at failure are greater than the tétcoanpressive
stresses that the material is capable of withstanding. mbide of failure is
also described as failure due to elastic instability.

"+ Asing =0,z € (0,7), $(0) = ¢(m) =0

[Da Vinci, 1452-1519] [Euler, 1750]
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Bifurcation in predator-prey model

Predator-prey interaction
Classical examples: Hudson company lynx-hare data in 18@0®&rra model

)

i
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Bifurcation in predator-prey model

Paradox of enrichment

dU U CMUV dV MUV
—=Vl|ll-=)|-——, — =-D ——.

ds | ( K) A+U ' ds iy
Environment is enriched iK (carrying capacity) is larger, but whefii is
small, a coexistence equilibrium is stable; but wiéms larger, the

coexistence equilibrium is unstable, and a stable persaliction appears.

[Rosenzwelg, 1971] Paradox of enrichment: destabilipadioexploitation
ecosystems in ecological tim8&ciencel 71
[May, 1972] Limit cycles in predator-prey communitiesciencel’7.
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Rich spatial patterns in diffusive predator-prey system

[

diAu =u (1 —u) x e t>0,
muvu+a
— doAv = —0v + xe t>0,
< u+a’
d,u = 0,v=0, x €00, t >0,
ul@,0) = up(2) > 0, v(z,0) = vo(x) 20, z €

Patchiness (spatial heterogeneity) of plankton distiaimgtin
phytoplankton-zooplankton interaction

[Medvinsky, Li, et.al., 2002] Spatiotemporal complexityppankton and fish
dynamics.SIAM Review44.
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Spatial model: Bifurcation of grassland to desert

ow ;
— =a—w—wn"- +7

ot

w(x, y, t):concentration of watem (x, y,t): concentration of plant,

(2. a two-dimensional domain.

a > 0: rainfall; —w: evaporation—wn?: water uptake by plants; water flows
downhill at speedy; wn?: plant growth;—mn: plant loss

[Klausmeler, 1999] Regular and Irregular Patterns in Sathiegetation.
Science284

[Rietkerk, et.al. 2004] Self-Organized Patchiness an@$iadphic Shifts in
EcosystemsScience305. Bifurcation  p. 6/32
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Models of differential (difference) equations

. . . . d
Ordinary differential equatlonsc:l—?z =f(\y), yeR"”

Matrix model: A(k + 1) = f(\, A(k)), A(k) e R"

Partial differential equations (reaction-diffusion gyss):

ur = diAu~+ f( A u,v), €, t>0,
v = doAv + g\, u,v), x€Q, t>0,
Other effect: delay, non-local, age-structure, etc.

Delay Reaction-diffusion equation:
Ut(x, t) — dA'U;(CB, t) —|_ f()\7 U(x, t)? ’U,(.Clj,t o 7-))

Non-local Reaction-diffusion equation:
u(2,t) = dAu(z,t) + u(z, t)(1 — [, fz, y)uly, t)dy)
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Steady state solutions

Steady state solutions: solution independent of time
Ordinary differential equationsf(\,y) =0, y € R"
Matrix model: A = f(\, A), A€ R"

Partial differential equations (reaction-diffusion syss):

diAu+ f( N\ u,v) =0, x €,
doAv + g\, u,v) =0, 1z €,

Abstract form:F'(\,u) = 0, u € X (State space, or phase space for the
dynamics)

ODE and matrix modelsX = R",
PDE: X = (infinite dimensional) function spac&{*?(Q), C%%(Q),etc.)
In generalX is a Banach space
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Bifurcation in R' (saddle-node bifurcation)
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Annual catch of the Peruvian Anchovy Fishery from 1960-1990

dP P P
i I _ |- H=
- kP (1 N) H, steady statetP (1 N) 0

kN .
WhenH > Hy = > the fishery collapses.

H, is the maximum sustainable yield (MSY)
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Bifurcation in R! (hysteresis)

A grazing system of herbivore-plant interaction

1% rVP

E:V(l—V)— TV h,r >0, p>1.
[Noy-Meir, 1975] Stability of Grazing Systems: An Applicaa of
Predator-Prey Graphd. Ecology63.

[May 1975] Thresholds and breakpoints in ecosystems witlhulaphcity of
stable statedVature269.

1 ’”Thom, Arnold, Zeeman in 1960-70s
Potential catastrophes: Arctic sea, Greenland ice, Ameaioforest, etc.
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Nonlinear equations in Banach space and derivatives

Equation:F(A\,u) =0, F : Rx X =Y
Example:Au + \f(u) = 0,u € X = W2P(Q) N W, P(Q), andY = LP(Q).

Partial derivatives: (Frechét derivative)
F(\ ho) — F (A

h—0 h
FA+ h,u) — F(\ u)

h—0 h

I
>
S
_I_
>
=
&
=
-y
@D
>

F, (A, u) is alinear mapping fronX to Y

N(Fy(A u)) C X is the null space (the space of solutions of
(A, u)[¢] = 0)

R(F,(\,u)) C Y is the range space
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Implicit function theorem: no bifurcation

Theorem OAssumeX, Y are Banach spaces. Lety, ug) € R x X and let
F' be a continuously differentiable mapping of an open neighboad " of
(Ao, ug) INto Y. Let F'(Ag,up) = 0 andF,, (Mg, ug) is invertible
(Fu(Xo,up)[¢] = 0 only has zero solution). Then the solutionsFgf\, ) = 0
near(\g, ug) form a curve( A, u(\)), u(A) = ug + (A — Ag)wo + z(A), where
wo = —[Fy (Mo, uo)] " H(E\(Xg, ug)) andX — z(\) € X is a continuously
differentiable function neas = 0 with z(0) = 2’(0) = 0.
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Basic Bifurcation in R!

Consider
fu)=0, AXeR,ueR.

Assumef (X, ug) = 0for A € R, andf, (Ao, ug) = 0.
Transcritical bifurcation:

fAU(A07uO) 7é 07 andfuu()\o,’U,O) 7é 0.

Pitchfork Bifurcation

fuu()‘()a uO) — Oa f)\u()\()) UO) 7é 07 andfuuu()\m UO) 7é 0.
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Saddle-node bifurcation theorem

Theorem 1[Crandall-Rabinowitz, 1973]

Let F: R x X — Y be continuously differentiable?(\g, ug) = 0, F’
satisfies

(F1) dimN (Fy (Ao, ug)) = codimR(F, (Ao, up)) = 1, and
(F2) Fx(Xo,uwo) & R(Fu(Xo, uo))-
Then the solutions of'(\, u) = 0 near(\g, ug) form a continuously

differentiable curve \(s), u(s)), (A(0),u(0) = (Ao, up), A'(0) = 0 and
u'(0) = wy.

based on Implicit function theorem
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Saddle-node bifurcation theorem

Theorem 1[Crandall-Rabinowitz, 1973]
Let F: R x X — Y be continuously differentiable?(\g, ug) = 0, F’
satisfies

(F1) dimN (Fy (Ao, ug)) = codimR(F, (Ao, up)) = 1, and

(F2) Fix(Ao, ug) & R(Fy(Ao,ug)).

Then the solutions of'(\, u) = 0 near(\g, ug) form a continuously
differentiable curve \(s), u(s)), (A(0),u(0) = (Ao, up), A'(0) = 0 and
u'(0) = wy.

based on Implicit function theorem

We will later consider the case
(F2') Fx(Ao, uo) € R(Fu(Ao,uo))-
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Transcritical-Pitchfork bifurcation theorem

Theorem ZCrandall-Rabinowitz, 1971]
Let F': R x X — Y be continuously differentiable. Suppose that
F(X\ ug) = 0for A € R, the partial derivative"y,, exists and is continuous.
At (Ao, ug), F satisfies

(F1) dimN (Fy (Ao, ug)) = codimR(F, (Ao, up)) = 1, and

(F3) Fu( Ao, up)|wo] € R(Fy(Ao,up)), Wwherewg € N (Fy (Ao, ug)),
Then the solutions of’'(\, u) = 0 near(\g, ug) consists precisely of the
curvesu = ug and(A(s), u(s)), s € I = (—4,9), where(A(s),u(s)) are
continuously differentiable functions such thdD) = A\g, u(0) = wuy,
u'(0) = wy.

N (Fy (Ao, ug)): the null spaceR(F, (Ao, ug)): the range space

[Chow-Hale, 1982] [Deimling, 1985]
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Assumptions

Assume that’(\g, ug) = 0, F satisfies
(F1) dimN (Fy (Ao, ug)) = codimR(F, (A, up)) = 1, and
(F2') Fx(Ao, uo) € R(Fu(Ao,uo))-
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Assumptions

Assume that’(\g, ug) = 0, F satisfies
(F1) dimN (Fy (Ao, ug)) = codimR(F, (A, up)) = 1, and
(F2') Fx(Ao, uo) € R(Fu(Ao,uo))-

Decomposition of spaces:

X = N(Fy,(\o,u0)) & Z

Y = R(F, (Mo, u0)) ® Y3

wo(#£ 0) € N(F, (Mo, up))

Fu(Xo,u0)|z : Z — R(Fy (Ao, ug)) IS an isomorphism

there exists € Y* such thatR(F,, (Ao, up)) = {v € Y : (I,v) = 0}
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Assumptions

Assume that’(\g, ug) = 0, F satisfies
(F1) dimN (Fy (Ao, ug)) = codimR(F, (A, up)) = 1, and
(F2') Fx(Ao, uo) € R(Fu(Ao,uo))-

Decomposition of spaces:

X = N(Fy,(\o,u0)) & Z

Y = R(F, (Mo, u0)) ® Y3

wo(#£ 0) € N(F, (Mo, up))

Fu(Xo,u0)|z : Z — R(Fy (Ao, ug)) IS an isomorphism

there exists € Y* such thatR(F,, (Ao, up)) = {v € Y : (I,v) = 0}

There exists a unique, € Z such thatf'y (Ao, ug) + Fi (Ao, ug)|v1] = 0.
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Crossing curve bifurcation theorem

Theorem 3[Liu-Wang-Shi, 2007]
Let F : R x X — Y be aC”? mapping, and assume conditions above. In
addition the matrix (all derivatives are evaluated.af, u())

<l7 F)x)x + 2F)\u[vl] + Fuu[vla U1]> <la F)\u[wO] + Fuu[wOa U1]>
<Z,F)\U[UJ0] —+ Fuu[wg,vl]> <l,Fuu[w0,w0]>

IS non-degenerate, i.elet(Hy) # 0. Let S be the solution set af'(\, u) = 0
near(\, u) = (Mg, ug).
1. If Hy is definite,i.e. det(Hp) > 0, thenS is the singletor{ (Ao, uo) }-
2. If Hyis indefinite,i.e. det(Hy) < 0, thenS is the union of two
intersectingC'! curves, which are in form of
(Ni(s),ui(s)) = (Ao + pis + s6;(s), ug + n;swo + sv;(s)), i = 1,2,
wheres € (-4, ) for somed > 0, (u;,n;) are non-zero linear
Independent solutions of the equation
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Crossing curve bifurcation theorem (cont.)

<l7 F)\A + 2F)\u[v1] =+ Fuu[vla U1]>,u2 + 2<l7 FAu[wO] =+ Fuu[w07 vl]>77ﬂ
+ <l7Fuu[w07w0]>772 — 07

0;(0) = 84(0) = 0, vi(s) € Z, andw;(0) = v(0) = 0, = 1, 2.
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Crossing curve bifurcation theorem (cont.)

<la F)\)\ + 2F)\u[vl] =+ Fuu[vla U1]>,LL2 + 2<l7 FAu[wO] =+ Fuu[wOa v1]>77ﬂ
+ <l7Fuu[w07wO]>772 — 07

0;(0) = 84(0) = 0, vi(s) € Z, andw;(0) = v(0) = 0, = 1, 2.

Remarks:

1. WhenF) (Ao, up) = 0, we havev; = 0.

( I, Fax(osuo)) (L Fau (Ao, o) fwo]) )
(

L, Fxu(Xo, uo)[wol]) (I, Fuu(Xo, uo)[wo, wo))
and the equation of tangents of curves become

Hi

<l, F)\)\()\O, U0)>,LL2—|—2<Z, F)\u(>\07 UQ)[UJQ]>M77—|—<Z, Fuu()\Oy Uo)[’wo, ZUQ]>7]2 = 0.
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\VICREINEE

2. If F'(\,ug) = 0, then Theorem 2 (classical transcritical and pitchfork
bifurcation theorem) follows from Theorem 3.
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\VICREINEE

2. If F'(\,ug) = 0, then Theorem 2 (classical transcritical and pitchfork
bifurcation theorem) follows from Theorem 3.

3. Theorem 3 is a natural complement Crandall-Rabinowizlisanode
bifurcation theorem (Theorem 2), whe(E2) is imposed. Our result is based
on condition the oppositeF'2’) and a generic second order non-degeneracy
conditiondet(Hy) # 0.
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\VICREINEE

2. If F'(\,ug) = 0, then Theorem 2 (classical transcritical and pitchfork
bifurcation theorem) follows from Theorem 3.

3. Theorem 3 is a natural complement Crandall-Rabinowizlisanode
bifurcation theorem (Theorem 2), whe(E2) is imposed. Our result is based
on condition the oppositeF'2’) and a generic second order non-degeneracy
conditiondet(Hy) # 0.

4. We also prove a secondary bifurcation theorem, whichrgdimes the one
in [Crandall-Rabinowitz, 1971and[Deimling, 1985] In the previous ones, a
solution curvd’, is given, and it is shown that another cuiveexists and
intersects witl'; transversally. In our result, no any solution curve is gjven
and we obtain the two curves simultaneously.
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Summary of Bifurcation Theorems

Let F: R x X — Y be continuously differentiable? (g, ug) = 0, F
satisfies

(F1) dimN (F (Ao, ug)) = codimR(F, (Ao, up)) = 1, and

(F2) Fx(Xo, uo) & R(Fu(Xo, uo)).

Then a saddle-node bifurcation occurs.

If F satisfieqF1),
(Fz’) F)\()\Oa ’LLO) S R(FU()\()) ’LLO)),
and additional non-degeneracy conditionohF

Then a crossing curve bifurcation occurs. (include pitdhfnd transcritical
bifurcations)
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What if kernel is 2-dimensional?

Let F: R x X — Y be continuously differentiable? (g, ug) = 0, F
satisfies

(F1-2) dimN (F, (Ao, ug)) = codimR(F, (Ao, up)) = 2, and

(F2) F\( Mo, up) € R(Fy (Ao, ug))-

and additional non-degeneracy conditionohF

Then a saddle-node bifurcation of two curves occurs
[Liu, Shi, Wang, preprint]

If F satisfieqF1-2),

(Fz’) F)\()\Oa ’LLO) S R(FU()\()) ’LLO)),
more complicated, depending on the symmetry of the problem
(example: two-dimensional surface, four curves)
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Proof of main result

1. Lyapunov-Schmidt reduction: redu¢& X, v) = 0 to

G\ t) = ([, F(A\ ug +two + g(A, 1)) =0

2. A finite dimensional result (improving result based on B&olemma)

21 [Nirenberg, 1974Buppose thaf : R* — R is aC? function,
k>2.1f f(0)=0, f.(0) =0, and the Hessialfi...(0) is a non-degenerate
k x k matrix. Then there exists a locaP—2 coordinate changg(z) defined
in a neighborhood of the origin witia(0) = 0, y,.(0) = I such that

£(#) = 5u(@) fur (O)y(a),

wherey(z)! is the transpose af(x), andy(z) is assumed to be column
vector inR*. In particular ifk = 2 and f,.,.(0) is indefinite, then the set of
solutions off(x) = 0 near the origin consists of twG”~2 curves intersecting
only at the origin.
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A finite dimensional theorem

[Liu-Wang-Shi, 2007]

Suppose thatzg, 1) € R? andU is a neighborhood ofzg, 719). Assume that
f:U — RisaCP? function forp > 2, f(xo,y0) =0, Vf(x9,y0) = 0, and
the Hessiarf = H(xq, yo) is non-degenerate. Then

1. If H is definite, ther(zq, yo) is the unique zero point of(x,y) = 0
near(zo, yo);

2. If H is indefinite, then there exist tw@?~! curves(z;(t), y;(t)),
i =1,2,t € (—9,6), such that the solution set ¢fx, y) = 0 consists
of exactly the two curves neét, yo), (;(0),y;(0)) = (zg, yo)-
Moreovert can be rescaled and indices can be rearranged so that
(27(0),y1(0)) and(x5(0), y5(0)) are the two linear independent
solutions of

00 90)772 + 2 foy (0, Yo)NT + fyy (2o, y0)7'2 = 0.
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Proof of the “calculus problem”

Consider

r_ 8fgl; y)’ Y = _afgi:y), (2(0),y(0)) € U.

X

Then it is a Hamiltonian system with potential functiéte, v), (xo, yo) is the
only equilibrium point inU, and(zq, y0) is a saddle point. From the invariant
manifold theory of differential equations, the g¢t(x, y) = 0} near(zq, yo)

IS consisted of thé-dimensional stable and unstable manifoldsm@t v ),
which areC?~! sincef is CP.

IS there a proof without using invariant manifold theory baoty
elementary calculus?

another more general theorem:
splitting lemmgKuiper, 1972] [Chang, 1993] [Li, Li, Liu, 2005]
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Global bifurcation

Theorem 4[Rabinowitz, 1971]

Suppose thatk is a compact operator ok, andH (A, u) is a compact
operator orR x X. If Ay Is a characteristic value df with odd algebraic
multiplicity, then(\g, 0) is a bifurcation point of

F(\u) =u— ALu— H(\ u) = 0. Moreover, ifX is the set of the nontrivial
solutions of (A, u) = 0, then there is a closed connected compoigndf

Y, such that \y, 0) € X1, and either (i)2; is unbounded; or (ii}2; contains
(A«,0), whereA,(# \o) is also a characteristic value bf
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Global bifurcation

Theorem 4[Rabinowitz, 1971]

Suppose thatk is a compact operator ok, andH (A, u) is a compact
operator orR x X. If Ay Is a characteristic value df with odd algebraic
multiplicity, then(\g, 0) is a bifurcation point of

F(\u) =u— ALu— H(\ u) = 0. Moreover, ifX is the set of the nontrivial
solutions of (A, u) = 0, then there is a closed connected compoigndf

Y, such that \y, 0) € X1, and either (i)2; is unbounded; or (ii}2; contains
(A«,0), whereA,(# \o) is also a characteristic value bf

It requires strong compactness. For applications in POksually requires
to take inverse ofA operators or more general elliptic operators. For some
applications with cross-diffusion or nonlinear boundaoyditions, taking
iInverse operators are not easy.
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Global bifurcation from simple eigenvalue theorem

Theorem 5[Crandall-Rabinowitz, 1971]
Let ' : R x X — Y be continuously differentiable. Suppose that
F(X\ ug) = 0for A € R, the partial derivativey,, exists and is continuous.
At (Ao, ug), F' satisfies

(F1) dimN (Fy (Ao, ug)) = codimR(F, (Ao, up)) = 1, and

(F3) Fxu( Ao, ug)|wo] & R(Fyu(Xo,up)), Wwherewy € N (Fy (Ao, ug)),
Then the solutions of'(\, u) = 0 near(\g, ug) consists precisely of the
curvesu = ug and(\(s),u(s)), s € I = (=4,6), where(\(s), u(s)) areC!
functions such thak(0) = Ag, u(0) = ug, u'(0) = wy.
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Global bifurcation from simple eigenvalue theorem

Theorem 5[Crandall-Rabinowitz, 1971]
Let ' : R x X — Y be continuously differentiable. Suppose that
F(X\ ug) = 0for A € R, the partial derivativey,, exists and is continuous.
At (Ao, ug), F' satisfies

(F1) dimN (Fy (Ao, ug)) = codimR(F, (Ao, up)) = 1, and

(F3) Fxu( Ao, ug)|wo] & R(Fyu(Xo,up)), Wwherewy € N (Fy (Ao, ug)),
Then the solutions of'(\, u) = 0 near(\g, ug) consists precisely of the
curvesu = ug and(\(s),u(s)), s € I = (=4,6), where(\(s), u(s)) areC!
functions such thak(0) = Ag, u(0) = ug, u'(0) = wy.

[Pejsachowicz-Rabier, 1998] [Shi-Wang, 2008]

If in addition, F, (A, u) is a Fredholm operator for al\, u) € R x X, then
the curve{(\(s),u(s)) : s € I} is contained irC, which is a connect
component oS = {(\,u) € R x X : F(\,u) = 0,u # up}; and eitheC is
not compact, o€ contains a point., 0) with A, # .
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Fredholm operators of index zero

Quasilinear elliptic systems with nonlinear boundary abads are

Theorem 6[Shi-Wang, 2008]

Suppose that > n, 9Q € C?, and the regularity assumption above holds. Let
U be an open connected setRfx (WW?22(Q))Y. Assume that for each fixed
(N, u) € U, D, T(\,u) = (D, A\ u), D,B(X\ u)) is elliptic onQ, and that

for a particulan \g, ug) € U, D,/ T(\g, ug) satisfies Agmon’s condition at a

0o, then the Fredholm index db, T'(\, ) is O for all (A, u) € U.

It will have many applications in reaction-diffusion sysigin mathematical
biology, physics, and chemistry.
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Example 1
Cross-diffusion system:

’

A1+ aqu+ asv)u] +u(A —u —bv) =0, x €,
Al(1 4+ fru+ Bav)v] +v(p+cu—v) =0, x €,
lu=v=0, x € 0f).

_/\

Competing species with passive diffusion, self-diffusioross-diffusion.
[Shigesada, Kawasaki and Teramoto, 1979]

[Nakashima, Yamada, 1996] [Kuto, Yamada, 2004] = 5, = 0
Theiridea U = (1 + asv)u, V = (1 + Bu)v, then the system becomes
semilinear but with messy nonlinearities.

We prove the existence of a bounded branch of coexistenag@s® which
connecting the two semi-trivial solution branches via oewmglobal
bifurcation theorem. Our method is definitely more direct.
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Example 2

chemotactic diffusion system:

(u”—f(u)v:() xz e (0,1),
A" —x (o' (w)u')" + (kf(u) =0 — Bv)v =0 z € (0,1),

uw' (0) =0, w'(1)=h(1—u(l)),

A —xv'(u)u' =0 atx =0,1.

[Wang, 2000]ldea: make an inverse of the main part of the differential
operator, then use Rabinowitz’s global bifurcation theare

We directly apply the new global bifurcation theorem for gjlinear systems.
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Final Remark

If we do not succeed in solving a mathematical problem theny, gften, the
reason is that we did not yet discover the more general pbwew from
which the given problem appears to be a link in a chain of eelaroblems.
Having found this point of view, not only the given problentbees more
accessible to our research, but we also gain a method whagpigable to
related problems:. -

In dealing with mathematical problems, specializing ptays | believe—an
even more important role than generalizing. Perhaps in oas#s in which
we fail to find an answer, the reason for this failure is thatregenot solve, at
least not completely, problems simpler and easier thanitiea @ne.
Everything amounts to finding these easier problems andve ftem by
using tools which are as perfect as possible and concepthwahe fit to be
generalized.

David Hilbert, lecture at the International Congress of Mamhaticians in
Paris, 1900
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