Approximate integrals

\[\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(y_i) \Delta x \] (limit of Riemann sum)

where \(\Delta x = \frac{(b - a)}{n} \), \(x_0 = a \), \(x_1 = x_0 + \Delta x \), \(x_{k+1} = x_k + \Delta x \), \(x_n = b \), and \(x_{i-1} \leq y_i \leq x_i \).

Geometric idea: use rectangle with similar height to approximate irregular but almost rectangular shape.
Approximate Rules

Left endpoint rule (L_n): in $[x_{i-1}, x_i]$, choose $y_i = x_{i-1}$.

$$L_n = \sum_{i=1}^{n} f(x_{i-1})\Delta x.$$

Right endpoint rule (R_n): in $[x_{i-1}, x_i]$, choose $y_i = x_i$.

$$R_n = \sum_{i=1}^{n} f(x_i)\Delta x.$$

Midpoint rule (M_n): in $[x_{i-1}, x_i]$, choose $y_i = (x_{i-1} + x_i)/2$.

$$M_n = \sum_{i=1}^{n} f((x_{i-1} + x_i)/2)\Delta x.$$
Trapezoidal rule

Trapezoidal rule \((T_n) \): \[T_n = \sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_i)}{2} \Delta x = \frac{L_n + R_n}{2} \]; it is the average of the Left endpoint and Right endpoint rules.

The approximate unit is not a rectangle, but a trapezoid with a side connecting \((x_{i-1}, f(x_{i-1}))\) and \((x_i, f(x_i))\)

\[T_n = \frac{1}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n)] \Delta x \]

Example 1: Consider \(\int_{0}^{1} \cos(x) \, dx \). Find \(L_4, R_4, M_4, \) and \(T_4 \).
Example 2: Consider \(\int_0^1 \cos(x) \, dx \). Determine \(L_4, R_4, M_4, \) and \(T_4 \) are over-estimate or under-estimate without solving them.

\(L_n \) and \(R_n \): is \(f(x) \) increasing or decreasing?
- \(f \) increasing: \(L_n \) under, \(R_n \) over
- \(f \) decreasing: \(L_n \) over, \(R_n \) under

\(M_n \) and \(T_n \): is \(f(x) \) concave up or concave down?
- \(f \) concave up: \(T_n \) over, \(M_n \) under
- \(f \) concave down: \(T_n \) under, \(M_n \) over

Example 3: Consider \(I = \int_0^1 \cos(x) \, dx \). List the numbers \(I, L_4, R_4, M_4, \) and \(T_4 \) in increasing order.
Error estimate: which approximation is good?

\[
\int_0^1 \cos(x) \, dx: \text{ True value}\,=\, \sin x\big|_0^1 = \sin 1 = .8415
\]

\[L_4 = .89455, \ R_4 = .779625, \ M_4 = .843675, \ T_4 = .8370625.\]

Error\,=\,|\text{True value}-\text{Approximation}|

\[E_L = 0.05305 \approx 0.05, \ E_R = 0.0618 \approx 0.06, \ E_M = 0.002175 \approx 0.002, \ E_T = 0.0034 \approx 0.003.\]

Conclusions:
1. Approximation is more accurate when you increase \(n \)
2. \(M_n \) and \(T_n \) are more accurate than \(L_n \) and \(R_n \)
The approximate unit is not a rectangle or a trapezoid, but a parabola connecting
$(x_{i-1}, f(x_{i-1}))$, $(x_i, f(x_i))$, and $(x_{i-1} + x_i)/2, f((x_{i-1} + x_i)/2))$ (left endpoint, right end point and midpoint);

$$S_{2n} = \sum_{i=1}^{n} \frac{f(x_{i-1}) + 4f((x_{i-1} + x_i)/2) + f(x_i)}{6} \Delta x$$

$$S_n = \frac{1}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) \cdots 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)] \Delta x$$

Example 4 $\int_{0}^{1} \cos(x)dx$. Find S_4, and the error.

$E_S = 0.000021$

$E_L = 0.05305 \approx 0.05$, $E_R = 0.0618 \approx 0.06$,

$E_M = 0.002175 \approx 0.002$, $E_T = 0.0034 \approx 0.003$.

Summary
1. Approximation is more accurate when you increase n
2. M_n and T_n are more accurate than L_n and R_n, but S_n is the best, so in practice, use Simpson rule is most efficient

Error: $E_L, E_R \leq \frac{C}{n}$, $E_M, E_T \leq \frac{C}{n^2}$, and $E_S \leq \frac{C}{n^4}$.