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ABSTRACT. We study semilinear elliptic equations on general bounded do-
mains with concave semipositone nonlinearities. We prove the existence of the
maximal solutions, and describe the global bifurcation diagrams. When a param-
eter is small, we obtain the exact global bifurcation diagram. We also discuss the
related symmetry breaking bifurcation when the domains have certain symmetries.

1 INTRODUCTION

We study the boundary value problem:
{

∆u + λf(u) = 0 in Ω,

u = 0 on ∂Ω,
(1.1)

where λ is a positive parameter, and Ω is a smooth bounded region in Rn for n ≥ 1.
We assume that the nonlinear function f in this paper satisfies

(f1) f ∈ C2[0,∞), f(0) < 0, f(u)(u − b) > 0 for u ∈ (0,M)\{b} for some b > 0,
where either M = ∞ or M < ∞, f(M) = 0 and f ′(M) < 0;

(f2) f ′′(u) < 0 for u ≥ 0;
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(f3)
∫ M

0
f(u)du > 0;

(f4) If M = ∞, then lim
u→∞

f(u)

u
= 0.

The semilinear problem (1.1) arises in population biology, where g(u) = f(u) −
f(0) > 0 is the growth rate, and ε = −f(0) is the harvesting effort. An example for
the case of M < ∞ in (f1) is the logistic growth g(u) = au − bu2 for some a, b > 0,
and examples for the case of M = ∞ are g(u) = au/(1 + bu) for a, b > 0 and
g(u) = 1 − e−au for a > 0, which are sublinear functions modeling the saturating
effect. With the nonlinearity f(u) satisfying f(0) < 0, we call it a semipositone
problem (see [4]) to compare with the positone case of f(0) ≥ 0.

Semilinear semipositone problems have been studied for more than a decade,
see [4] for a survey of the results. The complete bifurcation diagrams of the equation
(1.1) with f satisfying conditions similar to (f1)-(f4) for Ω being a ball have been
obtained in [1], [2], [5], and [14]. In this paper, we study the bifurcation diagram with
Ω being a general bounded smooth domain in Rn. Here we are mainly concerned
with bifurcation diagrams with λ as the bifurcation parameter. (Note that λ can
be interpreted as the reciprocal of the diffusion coefficient.) In a separate paper,
the authors and Oruganti [12] study bifurcation diagrams with the harvesting effort
as the bifurcation parameter. Also in [12] the harvesting effort is allowed to be
nonhomogeneous.

To state our results, we recall a few commonly used definitions. Suppose that
(λ, u) is a solution of (1.1). (λ, u) is a stable solution if the principal eigenvalue
µ1(u) of {

∆ψ + λf ′(u)ψ = −µψ in Ω,

ψ = 0 on ∂Ω,
(1.2)

is positive, otherwise it is unstable. When µi(u) = 0 for some i ≥ 1, (λ, u) is
a degenerate solution. The solutions of (1.1) are also the solutions of operator
equation F (λ, u) = 0 where

F (λ, u) = ∆u + λf(u), λ ∈ R, u ∈ X, (1.3)

and X = {u ∈ C2,α(Ω) : u = 0 on ∂Ω}. Thus (λ, u) is degenerate solution if the
linearized operator Fu(λ, u) = ∆+λf ′(u) is not an invertible operator. We call v(x)
a maximal solution of (1.1) if for any solution u(x) of (1.1), we have v(x) ≥ u(x)
for all x ∈ Ω.

Our first result proves that (1.1) has a unique stable nonnegative solution, which
is also the maximal solution among all solutions:

THEOREM 1.1. Suppose that f satisfies (f1)-(f4). Then there exists λ∗ > 0 such
that

(i) (1.1) has at least one positive solution uλ for λ > λ∗, and has no nonnegative
solution for 0 < λ < λ∗;

(ii) For λ > λ∗, (1.1) has a maximal positive solution uλ, and uλ is increasing
with respect to λ;

(iii) At λ = λ∗, (1.1) has a maximal non-negative solution uλ∗
;
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(iv) The principal eigenvalue µ1(uλ) ≥ 0 when λ > λ∗ and µ1(uλ∗
) = 0. If in

addition Ω is star-shaped, then µ1(uλ) > 0 and uλ is a stable solution for
λ > λ∗;

(v) If Ω is star-shaped, then for λ > λ∗, uλ(x) > 0 for any x ∈ Ω, and
∂uλ(x)

∂ν
< 0

for any x ∈ ∂Ω;

(vi) If for some λ ≥ λ∗, (1.1) has another nonnegative solution wλ, then µ1(wλ) <
0.

The existence of a positive solution for f satisfying (f1), (f3) and (f4) and large
λ was proved in [3] for the case of M = ∞, and in [7] for the case of M < ∞.
Here with the extra condition (f2), we show that the branch of maximal solutions
can be extended to a critical λ∗, which is the minimum λ for which one can have a
nonnegative solution. Since f(0) < 0, it is not known whether uλ∗

satisfies (v) in
Theorem 1.1. But we will show that in the case ε = −f(0) is small, uλ∗

will satisfy
(v).

In Section 4, we study the behavior of the bifurcation diagrams in (λ, u) space
when ε = −f(0) is small, for both positive and sign-changing solutions. Here the
definition of f(u) is extended to R, and we assume that f satisfies

(f1’) f ∈ C2(R), f(0) < 0, f(u)(u − b) > 0 for u ∈ (−∞,M)\{b} for some b > 0,
where either M = ∞ or M < ∞, f(M) = 0 and f ′(M) < 0;

(f2’) f ′′(u) < 0 for u ∈ R;

and (f3), (f4) are as defined before. In this part we continue some discussions started
in Shi [16]. To state the results, we rewrite the equation (1.1) in the form:

{
∆u + λ[g(u) − ε] = 0 in Ω,

u = 0 on ∂Ω,
(1.4)

where g(u) = f(u) − f(0), and ε = −f(0). We denote by λk the k-th eigenvalue of
{

∆φ + λφ = 0 in Ω,

φ = 0 on ∂Ω.
(1.5)

It is well-known that λ1 is simple, and its eigenfunction does not change sign. We
define λ0

k = λk/g′(0).

THEOREM 1.2. Suppose that f(u) = g(u) − ε satisfies (f1’), (f2’), (f3) and (f4).
We assume that λ2 is a simple eigenvalue of (1.5) and

∫

Ω

φ2(x)dx ·

∫

Ω

φ3
2(x)dx > 0, (1.6)

where φ2 is an eigenfunction corresponding to λ2. Let Σ = {(λ, u) ∈ R × X :
(λ, u) solves (1.4)}, and T (a, b, c) = {(λ, u) : a < λ < b, ||u||X < c}. Then for any
small δ1, δ2 > 0, there exists ε1 = ε1(δ1, δ2, g) such that for any ε ∈ (0, ε1),

Σ0 ≡ Σ
⋂

T (λ0
1 − δ1, λ

0
2 + δ1, δ2) =

3⋃

i=1

Σi,

3



where Σi is a connected component of Σ0, (i = 1, 2, 3). Moreover,

(i) Each Σi (i = 1, 2, 3) is a smooth curve in R × X;

(ii) Σ1 is exactly ⊃-shaped, there is a unique degenerate solution on Σ1, and each
solution on Σ1 is negative;

(iii) Σ3 is exactly ⊂-shaped, there is a unique degenerate solution on Σ3, and each
solution on Σ3 is sign-changing;

(iv) Σ2 is exactly S-shaped, and there are exactly two degenerate solutions on Σ2;
Σ2 can be parameterized as (λ(s), u(s)), s ∈ (s1, s4), such that for s ∈ (s1, s2),
u(s) is positive, and for s ∈ (s3, s4), u(s) is sign-changing, where s1 < s2 <
s3 < s4; The portion of Σ2 with s ∈ (s1, s2) contains the degenerate solution
on the left, and the portion of Σ2 with s ∈ (s3, s4) contains the degenerate
solution on the right (see Fig. 1);

(v) There exist δi = δi(ε) > 0, (i = 3, 4, 5, 6) such that

projΣ1 = [λ0
1−δ1, λ

0
1−δ3], projΣ2 = [λ0

1+δ4, λ
0
2−δ5], projΣ3 = [λ0

2+δ6, λ
0
2+δ1],

where projΣi is the projection of Σi into R = (λ).

λ

u

λ0
1 λ0

2

Σ1

Σ3

Σ2

Fig. 1: Precise bifurcation diagram when (1.6) holds for ||u|| small

solid curve: small ε > 0, dashed curve: ε = 0

The diagrams in Fig. 1 are well-known as the imperfect bifurcation under small
perturbation. Here we emphasize on a rigorous proof of the exactness of the shape
of the bifurcation diagrams. If (1.6) is changed to

∫

Ω

φ2(x)dx ·

∫

Ω

φ3
2(x)dx < 0, (1.7)

then the diagram in Fig. 1 becomes the one in Fig. 2. More explanation is given
in Section 4. For all connected bounded smooth domains except for a zero measure
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set, either (1.6) or (1.7) holds, so the diagrams in Fig. 1 and Fig. 2 are generic. But
we should comment that for domains with symmetry, the second eigenvalue may
not be simple (example: balls), and even when it is simple, (1.6) or (1.7) may not be
true (example: rectangles). We will briefly discuss the structure of the bifurcation
diagrams for these symmetric domains in Section 5.

λ

u

λ0
1 λ0

2

Σ1
Σ3

Σ2

Fig. 2: Precise bifurcation diagram when (1.7) holds for ||u|| small

solid curve: small ε > 0, dashed curve: ε = 0

We remark that Theorem 1.2 not only shows an interesting bifurcation diagram,
but also implies the following fact:

COROLLARY 1.3. Suppose that the domain Ω has a simple second eigenvalue λ2,
and satisfies (1.6) or (1.7). Then when ε > 0 is sufficiently small, (1.4) has a non-
negative solution (λ, u) satisfying either (i) there exists x1 ∈ Ω such that u(x1) = 0;
or (ii) there exists x2 ∈ ∂Ω such that ∂u(x2)/∂ν = 0.

In the description of Theorem 1.2, such a solution is on the middle part of the
S-shaped curve when s ∈ [s2, s3]. We do not know if such solution is unique.
A nontrivial nonnegative solution of (1.4) is always positive if f(0) ≥ 0 and thus
satisfies the strong maximum principle and the Hopf boundary lemma, i.e. u(x) > 0
for x ∈ Ω and ∂u(x)/∂ν < 0 for x ∈ ∂Ω. For the case of f(0) < 0, it is easy to
show the existence of a solution with zero derivative at the boundary points when
n = 1 by the quadrature method. When Ω is a ball in Rn, the existence of such a
solution (zero gradient on the boundary) is also well-known (see [20], [14] and [11].)
Corollary 1.3 confirms the existence of such a solution for a large class of domains.

In Section 2, we study the bifurcation diagram of the positone concave equation,
which will be used in later proofs. In Section 3, we prove Theorem 1.1, and in
Section 4, we prove Theorem 1.2. We discuss the bifurcation diagrams for symmetric
domains in Section 5.
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2 BIFURCATION DIAGRAM OF LOGISTIC TYPE EQUATIONS

For f satisfying (f1), (f2) and (f4), the existence of a non-negative solution for (1.1)
for λ large was established in [3], for the case M = ∞, and in [7] for the case of
M < ∞:

LEMMA 2.1. Assume that f satisfies (f1), (f2) and (f4). Then there exists λa > 0
such that if λ > λa then (1.1) has a non-negative solution uλ.

Next we recall the well-known bifurcation diagram when ε = −f(0) = 0. First
we quote Lemma 3 in [19], which will be repeatedly used in our proofs:

LEMMA 2.2. Suppose that f : Ω × R+ → R is a continuous function such that
f(x, s)

s
is strictly decreasing for s > 0 at each x ∈ Ω. Let w, v ∈ C(Ω) ∩ C2(Ω)

satisfy
(a) ∆w + f(x,w) ≤ 0 ≤ ∆v + f(x, v) in Ω,
(b) w, v > 0 in Ω and w ≥ v on ∂Ω,
(c) ∆v ∈ L1(Ω).
Then w ≥ v in Ω.

By using Lemma 2.2 and bifurcation theory, we prove the following result: (recall
that λ0

1 = λ1/g′(0))

THEOREM 2.3. Assume that g ∈ C1[0,∞) satisfies

g(0) = 0, g′(0) > 0,
d

du

(
g(u)

u

)
< 0 for all u > 0, (2.1)

and, either g(u) > 0 for all u > 0 and lim
u→∞

g(u)

u
= 0, or g(M) = 0 for some

M > 0. Then {
∆v + λg(v) = 0 in Ω,

v = 0 on ∂Ω,
(2.2)

has no positive solution if λ ≤ λ0
1, and has exactly one positive solution vλ if λ > λ0

1.
Moreover, all vλ’s lie on a smooth curve, vλ is stable and vλ is increasing with respect
to λ.

Proof. Suppose that (λ, v) is a positive solution of (2.2), and (λ1, φ1) is the principal
eigen-pair of (1.5). Then from (2.2) and (1.5), we have

(
λ −

λ1

g′(0)

)
g′(0)

∫

Ω

u(x)φ1(x)dx

+λ

∫

Ω

[
g(u(x))

u(x)
− g′(0)

]
u(x)φ1(x)dx = 0.

(2.3)

Since g(u)/u is decreasing, the second term in the equality is negative. This implies
(2.2) has no positive solution if λ ≤ λ0

1.
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λ

u

λ0
1

Fig. 3: Precise bifurcation diagram for the Logistic type equation

Next we apply the bifurcation from simple eigenvalue result by Crandall and
Rabinowitz [8]: (λ, u) = (λ0

1, 0) is a bifurcation point; near (λ0
1, 0), the solutions of

(2.2) are on two branches Σ0 = {(λ, 0)} and Σ1 = {(λ(s), v(s)) : |s| ≤ δ}, where
λ(0) = 0, v(s) = sφ1 + O(s2). We assume that φ1 > 0, then v(s) is a positive
solution when s ∈ (0, δ). Moreover, from (2.3), positive solutions only exist for
λ > λ0

1. Therefore there exists ε > 0 such that for λ ∈ (λ0
1, λ

0
1 + ε), (2.2) has a

positive solution vλ. We prove that any positive solution (λ, v) of (2.2) is stable.
Let (µ1, ψ1) be the principal eigen-pair of (1.2) for g(u) and (λ, v). Then by (2.2)
and (1.2), we have

−µ1

∫

Ω

ψ1vdx =

∫

Ω

(∆v · ψ1 − ∆ψ1 · v)dx

= λ

∫

Ω

[g′(v)v − g(v)]ψ1dx.

(2.4)

Since g(v)/v is decreasing, then g′(v)v − g(v) < 0 for v > 0. Thus µ1 > 0. In
particular, any positive solution (λ, v) is non-degenerate. Therefore, at any positive
solution (λ∗, v∗), we can apply the implicit function theorem to F (λ, u) = 0, and all
the solutions of F (λ, u) = 0 near (λ∗, v∗) are on a curve (λ, v(λ)) with |λ− λ∗| ≤ ε
for some small ε > 0. Hence the portion of Σ1 with s > 0 can be extended to a
maximal set

Σ1 = {(λ, vλ) : λ ∈ (λ0
1, λM )}, (2.5)

where λM is the supreme of all λ > λ0
1 such that vλ exists. We claim that λM = ∞.

Suppose not, then λM < ∞, and there are two possibilities: (a) lim
λ→λ

−

M

||vλ|| = ∞,

or (b) lim
λ→λ

−

M

vλ = 0, otherwise we can extend Σ1 further beyond λM . The case

(a) is impossible since if either g(M) = 0 for some M > 0 or lim
u→∞

g(u)

u
= 0, then

the solution curve cannot blow up at finite λM (see details in [17] Theorem 1.3.)
The case (b) is not possible either, since if so, λ = λM must be a point where a
bifurcation from the trivial solutions v = 0 occurs. That is λMg′(0) must be an
eigenvalue λi of (1.5) with i ≥ 2, and the eigenfunction φi is not of one sign. But
the positive solution vλ satisfies vλ/||vλ|| → φi as λ → λ−

M , which is a contradiction.
Thus λM = ∞.
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We prove vλ is increasing with respect to λ. Since vλ is differentiable with respect

to λ (as a consequence of the implicit function theorem),
dvλ

dλ
satisfies ∆

dvλ

dλ
+

λg′(vλ)
dvλ

dλ
= −g(vλ) ≤ 0, and vλ is stable, hence µ1(vλ) > 0. Then by a standard

variant of the maximum principle (see for example Lemma 2.16 in [10]),
dvλ

dλ
≥ 0.

Finally, by Lemma 2.2, (2.2) has at most one positive solution for any possible
λ > 0, which completes the proof.

REMARK. If g satisfies lim
u→∞

g(u)

u
= k > 0, the proof of Theorem 2.3 still works

except that the solution curve (λ, vλ) exists only for λ ∈ (λ0
1, λ

∞

1 ), where λ∞

1 = λ1/k.
(λ∞

1 ,∞) is a point where a bifurcation from infinity occurs. (see [14] or [17] for
details.)

3 THE BRANCH OF MAXIMAL SOLUTIONS

Proof of Theorem 1.1 Let vλ be the unique positive solution of (2.2) for λ > λ0
1.

First we prove that if (1.1) has a solution (λ, u), then λ > λ0
1 and vλ ≥ u. Indeed,

if (λ, u) is a positive solution of (1.1), then similar to (2.3), we have (using f(u) =
g(u) − ε)

(
λ −

λ1

g′(0)

)
g′(0)

∫

Ω

u(x)φ1(x)dx − λε

∫

Ω

φ1(x)dx

+λ

∫

Ω

[
g(u(x))

u(x)
− g′(0)

]
u(x)φ1(x)dx = 0.

(3.1)

So λ > λ0
1. On the other hand,

∆vλ + λg(vλ) = 0 < λε = ∆u + λg(u),

and u = vλ = 0 on the boundary. By Lemma 2.2, vλ(x) ≥ u(x) for x ∈ Ω.
By Lemma 2.1, (1.1) has a non-negative solution uλ for λ > λa. From the last

paragraph, vλ ≥ uλ. For fixed λ we define a sequence {un(λ)}: u0(λ) = vλ, and for
n ≥ 1 {

−∆un + Kun = λf(un−1) + Kun−1 in Ω,

un = 0 on ∂Ω,
(3.2)

where K > 0 is a constant such that |λf ′(u)| ≤ K for all u ∈ [0,M ] (from (f2)).
Then it is standard to show that vλ ≡ u0(λ) ≥ u1(λ) ≥ · · · ≥ un(λ) ≥ un+1(λ) ≥
· · · . On the other hand, we claim that un(λ) ≥ uλ for n ≥ 0. It is true when n = 0.
Suppose it is true for n = k, then when n = k + 1,

∆(uk+1 − uλ) − K(uk+1 − uλ) = f1(uλ) − f1(uk) ≤ 0,

where f1(u) = λf(u) + Ku, and f ′

1(u) > 0. And uk+1 − uλ = 0 on the boundary,
thus uk+1 − uλ ≥ 0 by the maximum principle. Define uλ(x) = limn→∞ un(λ)(x).
It is standard to verify that uλ ∈ C2,α(Ω) and uλ is a non-negative solution of (1.1)
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such that uλ ≥ uλ. Since we can use any solution u in the place of uλ, uλ is the
maximal solution of (1.1).

Define

H = {λ > 0 : (1.1) has at least one non-negative solution},

and λ∗ = inf{λ ∈ H}. Then λ∗ ≥ λ0
1 > 0. We claim that H ⊃ (λ∗,∞). Suppose

that λb ∈ H, then for λc > λb, uλb
≤ vλb

≤ vλc
. Thus the iteration sequence with

u0(λc) = vλc
and defined as in (3.2) has uλb

as lower bound similar to the proof in
the last paragraph. Therefore the maximal solution uλc

for λ = λc also exists, and

H ⊃ ∪λ∈H(λ,∞) = (λ∗,∞).

Moreover, we have also proved that uλ is increasing with respect to λ.
Next we prove that λ∗ > λ0

1. We have established that λ∗ ≥ λ0
1. In fact, if λ∗ = λ0

1,
then 0 ≤ lim

λ→λ
+
∗

max
x∈Ω

uλ(x) ≤ lim
λ→λ

+
∗

max
x∈Ω

vλ(x) = 0. But it is well-known that each

solution u of (1.1) satisfies maxx∈Ω
u(x) > b (from the maximum principle). So we

reach a contradiction. Thus λ∗ > λ0
1.

We now prove that uλ is stable for λ > λ∗ if Ω is a star-shaped domain. Since
uλ is obtained via the iteration from a supersolution, then from [15] pg. 992, the
principal eigenvalue µ1(uλ) ≥ 0. We exclude the possibility of µ1(uλ) = 0. Suppose
there exists λd > λ∗ such that µ1(uλd

) = 0. Then the principal eigenfunction ψ1 > 0
satisfies {

∆ψ + λdf
′(uλd

)ψ = 0 in Ω,

ψ = 0 on ∂Ω.
(3.3)

At (λd, uλd
), we apply a bifurcation theorem by Crandall and Rabinowitz [9].

Since 0 is the principal eigenvalue of (1.2), so it must be a simple eigenvalue. By
Lemma 2.3 in [13], we have

∫

Ω

f(uλd
)ψ1dx =

1

2λ

∫

∂Ω

|∇uλd
| · |∇ψ1|(x · ν)ds, (3.4)

where ν is the outer unit normal vector. If Ω is star-shaped, then
∫
Ω

f(uλd
)ψ1dx > 0

since
∂uλd

∂n
(x) < 0 and

∂ψ1

∂n
(x) < 0 for x ∈ ∂Ω. Hence by the result of [9], the

solutions near (λd, uλd
) form a curve {(λ(s), u(s)) : |s| ≤ δ} such that λ(0) = λd,

λ′(0) = 0, u(s) = uλd
+ sψ1 + o(|s|). Moreover, (see [16] pg. 506)

λ′′(0) =
−λd

∫
Ω

f ′′(uλd
)ψ3

1dx∫
Ω

f(uλd
)ψ1dx

. (3.5)

λ′′(0) > 0 since f ′′(u) ≤ 0, and the solution curve is ⊂-shaped near (λd, uλd
).

Therefore for λ ∈ (λd − ε, λd), ||uλ − uλd
|| ≥ δ > 0. But on the other hand, uλ

is continuous with respect to λ since uλ is obtained from a family of continuous
supersolution vλ. This is a contradiction. So µ1(uλ) > 0 for λ > λ∗.

Now we are able to prove that if Ω is star-shaped, then for λ > λ∗, uλ(x) > 0 for

any x ∈ Ω, and
∂uλ(x)

∂ν
< 0 for any x ∈ ∂Ω. Indeed since µ1(uλ) > 0, we obtain

this result by a variant of the maximum principle (see Theorem 2.1 in [12], or [6].)
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Finally we use an idea of [10] to prove that all other nonnegative solutions of (1.1)
must be unstable. Suppose that for some λ ≥ λ∗, (1.1) has another nonnegative
solution wλ such that µ1(wλ) ≥ 0. Since f is concave, for any τ ∈ [0, 1],

∆(τwλ + (1 − τ)uλ) + λf(τwλ + (1 − τ)uλ) ≥ 0. (3.6)

But since at τ = 0, (3.6) is an identity, the derivative of the left hand side of (3.6)
with respect to τ at τ = 0 is non-negative, that is

∆(wλ − uλ) + λf ′(uλ)(wλ − uλ) ≥ 0. (3.7)

Similarly, at τ = 1, we get

∆(wλ − uλ) + λf ′(wλ)(wλ − uλ) ≤ 0. (3.8)

From Lemma 2.26 of [10], if µ1(uλ) > 0 and µ1(wλ) > 0, then wλ − uλ ≤ 0 and
wλ − uλ ≥ 0, thus wλ ≡ uλ. If one of µ1(uλ) and µ1(wλ) is zero, say µ1(uλ) = 0,
then (3.7) is an identity, and the second derivative of the left hand side of (3.6) with
respect to τ at τ = 0 must be non-negative, that is

λf ′′(uλ)(wλ − uλ)2 ≥ 0.

But λ > 0 and f ′′ < 0, so wλ ≡ uλ. Hence for any nonnegative solution wλ of (1.1)
other than uλ, µ1(wλ) < 0.

At λ = λ∗, uλ∗
still exists as the iteration of vλ∗

and uλ∗
is non-negative since

uλ∗
= limλ→λ

+
∗

uλ. Now µ1(uλ∗
) ≥ 0 and if it is positive, it contradicts the definition

of λ∗. Hence µ1(uλ∗
) = 0.

4 IMPERFECT BIFURCATION NEAR U = 0

In this section, we prove Theorem 1.2. We assume
∫
Ω

φ3
2(x)dx > 0, and the case

when
∫
Ω

φ3
2(x)dx < 0 can be shown similarly. First we show that the bifurcation

diagram when ε = 0 (equation (2.2)) is as described by the dashed curves in Fig. 1.
From our assumptions, λ1 and λ2 are both simple eigenvalues. Thus we can apply
the result of [8] to conclude that near (λ0

i , 0), (i = 1, 2), the solutions of (2.2) are
on two branches Σ0 = {(λ, 0)} and Σi = {(λi(s), vi(s)) : |s| ≤ δ}, where λi(0) = λ0

i ,
vi(s) = sφi + o(s2), and λ′

i(0) satisfies the expression (see [16] page 507)

λ′

i(0) = −

∫
Ω

g′′(0)φ3
i (x)dx

2
∫
Ω

g′(0)φ2
i (x)dx

> 0. (4.1)

From the positivity of φ1 and
∫
Ω

φ3
2(x)dx > 0, λ′

i(0) > 0, thus both bifurcation are
transcritical, and can be drawn as the dashed curves in Fig.1.

Next we recall the discussion of (1.4) in [16] Theorem 2.5 and subsection 6.1. In
fact, we show that, when ε ∈ (−ε0, ε0) for some small ε0 > 0, the local bifurcation
picture near (λ0

1, 0) is as in the following diagrams:

ε < 0 ε = 0 ε > 0

Fig. 4: Bifurcation of solution curves in a transcritical bifurcation

10



The rigorous proof of the diagrams relies on an abstract theorem (Theorem 2.5
in [16]), in which the degenerate solutions of (1.4) are tracked when ε varies. Indeed,
the degenerate solutions of (1.4) form a curve {(ε(s), λ(s), u(s), w(s)) : |s| ≤ δ},
λ′(0) = 1, ε′(0) = 0 and

ε′′(0) =
[g′(0)]2

(∫
Ω

φ2
1(x)dx

)2

2(λ0
1)

2(
∫
Ω

φ3
1(x)dx) · (

∫
Ω

φ1(x)dx)
> 0. (4.2)

Hence there are two degenerate solutions near (λ0
1, 0) when ε > 0, and no degenerate

solution when ε < 0. These arguments are still valid near (λ0
2, 0) as long as λ2 is

simple and (1.6) holds. Therefore we obtain the parts of the bifurcation diagram in
Fig. 1 when λ is near λ0

1 and λ0
2. Moreover, since the solutions near (λ0

1, 0) are all
in a form (λ, tφ1 + o(|t|)), then the solutions on ⊃-branch are all negative, and the
solutions on ⊂-branch are all positive. Similarly since the solutions near (λ0

2, 0) are
all in a form (λ, tφ2 + o(|t|)), then the solutions on both ⊃-branch and ⊂-branch
are sign-changing solutions.

To be more precise, we select δ̃1 > 0 and ε2 > 0 such that when ε ∈ (0, ε2), (1.4)
has exactly two degenerate solutions in each of the cube Ci = {(λ, u) : |λ − λ0

i | ≤

δ̃1, ||u||X ≤ δ̃1}, (i = 1, 2), from Theorem 2.5 in [16]. Then the portion of the
bifurcation diagram in each cube is exactly same as the third diagram in Fig. 4.
Note that there is a gap on the λ-axis between the projections of two connected
components. This follows from the fact that for the curve of degenerate solutions
{(ε(s), λ(s), u(s), w(s)}, λ(0) = λ0

i and λ′(0) = 1, thus λ(s) < λ0
i for s < 0 and

λ(s) > λ0
i for s > 0.

Let δ̃2 = δ̃1/2. For λ ∈ [λ0
1 + δ̃2, λ

0
2 − δ̃2], the trivial solution (λ, 0) for (1.4) with

ε = 0 is nondegenerate. We choose δ̃3 > 0 such that the solutions on the line (λ, 0)

are the only solutions of (1.4) when ε = 0 in the cube {(λ, u) : λ0
1 + δ̃2 < λ <

λ0
2 − δ̃2, ||u||X ≤ δ̃3}. Thus by the implicit function theorem, there exists ε3 > 0

such that when ε ∈ (0, ε3), for each λ ∈ [λ0
1 + δ̃2, λ

0
2 − δ̃2], (1.4) has exactly one

solution (λ, u(λ)) such that ||u(λ)||X ≤ δ̃3, and they are all nondegenerate. From
the nondegeneracy of the solutions, we can see that the curve (λ, u(λ)) joins the
lower branch of ⊂-branch in C1. We can use the Morse index of the solutions to
conclude that (λ, u(λ)) joins the lower branch but not the upper branch, since the
solutions on the upper branch have Morse index 0 and the ones on the lower branch
have Morse index 1. All solutions on (λ, u(λ)) have Morse index 1 since they are
perturbations of (λ, 0) when ε = 0, which have Morse index 1. Similarly, (λ, u(λ))
joins the ⊃-branch in C2, and here the terms “lower” and “upper” branches are not
appropriate as the solutions are not ordered. But (λ, u(λ)) will connect with the
branch with Morse index 1 and smaller X-norm. Therefore the ⊃-branch in C2 and
the ⊂-branch in C1 are connected, and it forms a S-shaped curve in a cube near
(λ, 0). Let ε1 = min(ε2, ε3), δ2 = min(δ̃1, δ̃3), and δ1 = δ̃1. Then we obtain the
results claimed in Theorem 1.2.

Since any solution on the ⊂-branch in C1 is positive, and any solution on the
⊃-branch in C2 is sign-changing, then there exists λ ∈ (λ0

1 + δ̃2, λ
0
2 − δ̃2) such that

the solution (λ, u(λ, ·)) satisfies u(λ, x) ≥ 0 for all x ∈ Ω but either there exists
x0 ∈ Ω such that u(x0) = 0 or there exists x1 ∈ ∂Ω such that ∂u(x1)/∂ν = 0.

11



Finally if we replace (1.6) by (1.7), and assume that

∫

Ω

φ3
2(x) > 0 and

∫

Ω

φ2(x)dx < 0,

then from (4.2) and (4.1), we will obtain the first diagram in Fig. 4 for ε > 0, and
using the exact arguments above, we will obtain Fig. 2.

5 SYMMETRY BREAKING BIFURCATIONS

For the domains with certain symmetry, it is often that φ2 is an odd function with
respect to the symmetry, thus

∫
Ω

φ2(x)dx =
∫
Ω

φ3
2(x)dx = 0 and Theorem 1.2 is not

applicable. Here we describe the bifurcation diagrams for two typical symmetric
domains: a simple rectangle and a ball in Rn.

When Ω = R ≡ Πn
i=1(0, ai), and ai/aj is irrational when i 6= j, Ω is called a

simple rectangle. Without loss of generality, we assume that a1 > a2 > · · · > an.
Then the second eigenvalue and corresponding eigenfunction of R are

λ2 =
4π2

a2
1

+

n∑

i=2

π2

a2
i

, φ2 = sin

(
2πx1

a1

) n∏

i=2

sin

(
2πxi

ai

)
. (5.1)

Thus
∫

R
φ2(x)dx = 0. Since λ2 is a simple eigenvalue, then we can apply the result

of [9] to obtain a curve of nontrivial solutions of (2.2) Σ2 = {(λ2(s), u2(s)) : |s| ≤ δ}.
But from (4.1), λ′

2(0) = 0 since
∫
Ω

φ3
2(x)dx = 0. In fact, the bifurcation at λ2

cannot be transcritical and the branch Σ2 must be entirely on the side of λ < λ0
2

or λ > λ0
2, because when (λ, u(x1, x

′)) is a solution of (2.2), so is (λ, u(a1 − x1, x
′)).

Here x′ = (x2, x3, · · · , xn). Thus a pitchfork bifurcation occurs at λ2. It is not
possible to determine whether the bifurcation is subcritical or supercritical with
only conditions (f1)-(f4). But if we assume that g ∈ C3[0,m) for some m > 0 and
g′′′(0) ≥ 0, then from the arguments in page 525 of [16], we can show that λ′′

2(0) > 0,
hence the bifurcation is supercritical.

Now we consider the perturbed problem (1.4). We can show that when ε > 0
is small, there is a unique degenerate solution (λ(ε), u(ε)) near (λ2, 0). Moreover
u(ε) is positive in R but ∂u(ε)/∂n = 0 when x1 = 0 or x = a1. Thus a pitchfork
bifurcation occurs at (λ(ε), u(ε)). If we assume g′′′(0) > 0 as in the last paragraph,
then for λ < λ(ε), (1.4) has exactly one solution in a neighborhood of (λ(ε), u(ε)),
which is positive and symmetric with respect to x1 = a1/2. And for λ > λ(ε), (1.4)
has exactly three solutions in a neighborhood of (λ(ε), u(ε)), and none of them
are positive. In fact, among these three solutions, one is still symmetric with three
nodal domains, and the other two are not symmetric with two nodal domains. Thus
(λ(ε), u(ε)) is where the symmetry breaking bifurcation occurs. The detail proof of
this bifurcation diagram will appear in [18] under a more general framework.

The bifurcation diagram for Ω = Bn, the unit ball in Rn, is similar to that
of R. In this case, λ2 is an eigenvalue with multiplicity n. But when ε > 0
is small, there is still a unique degenerate solution (λ(ε), u(ε)) near (λ0

2, 0), and
it is where the symmetry breaking bifurcation occurs. The symmetry breaking
bifurcation in this particular case (f satisfying (f1)-(f4)) has been studied by Smoller
and Wasserman [20], Korman [11] and others (references can be found in [11]). In

12



this case instead of a curve of nonsymmetric solutions, an n-parameter family of
non-radial solutions bifurcates out, while a sign-changing radial solution still exists
for λ > λ(ε). Here we show that the symmetry breaking bifurcation can result
from a perturbation of the bifurcation at the second eigenvalue. On the other hand,
we also show that the bifurcation of non-radial solutions should be supercritical if
g′′′(0) > 0, since when g′′′(0) > 0 and ε = 0, the bifurcation of non-trivial solutions
from the trivial solutions is supercritical.
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