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In this paper, we revisit a reaction–diffusion autocatalytic chemical reaction model
with decay. For higher-order reactions, we prove that the system possesses at least
two positive steady-state solutions; hence, it has bistable dynamics similar to the
system without decay. For the linear reaction, we determine the necessary and
sufficient condition to ensure the existence of a solution. Moreover, in the
one-dimensional case, we prove that the positive steady-state solution is unique. Our
results demonstrate the drastic difference in dynamics caused by the order of
chemical reactions.

1. Introduction

Autocatalytic chemical reactions are important in many biochemical processes, and
various mathematical models of the reactions have been proposed [1, 15, 16, 24, 25,
30, 35]. In this paper we continue the studies of a reaction–diffusion model of an
autocatalytic chemical reaction with decay of the catalyst, which can be written as

A + pB → (p + 1)B with rate k1abp, B → C with rate k2b
q, (1.1)

where p, q � 1, a and b are the concentrations of reactant A and autocatalyst B,
respectively, and C is an inert product as a kinetic mimic of heat loss. Based on the
autocatalytic reaction (1.1), Jakab et al . [17,18] considered the following reaction–
diffusion model [18]:

at = dA∆a − k1abp, bt = dB∆b + k1abp − k2b
q, x ∈ Ω, (1.2)

where dA and dB are the diffusion coefficients of A and B, respectively, and Ω is
the reactor in R

n for n � 1. The reaction–diffusion system (1.2) is subject to a
constant Dirichlet boundary condition

a(x, t) = a1 > 0, b(x, t) = 0, x ∈ ∂Ω, (1.3)
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(representing the reactant A being supplied from outside the reaction zone but the
catalyst B not existing outside the boundary ∂Ω) and to the initial condition

a(x, 0) = a0(x) � 0, b(x, 0) = b0(x) � 0. (1.4)

For the case without decay (k2 = 0), the existence of positive steady-state solutions
and threshold dynamics of (1.2) was studied by Shi and Wang [33] (for Ω = R

n)
and Jiang and Shi [19] (for bounded Ω), while the dynamics of the problem in the
whole space R

n with zero boundary condition was considered in [3, 20]. Moreover,
the existence and properties of the travelling wave solution in one-dimensional space
were studied by Chen and Qi [6–8], and the stability of the travelling wave solution
was recently considered by Li and Wu [21].

The system with decay (k2 > 0) is considerably harder to analyse due to the
asymmetry of the nonlinearity. Recently, Zhao et al . [37] considered the existence,
non-existence and bifurcation of positive steady-state solutions as well as basic
dynamical properties of (1.2). The aim of this paper is to continue the investigation
in [37] to further reveal the structure of the set of positive steady-state solutions
of (1.2) with boundary condition (1.3).

With a rescaling ā = a/a1, b̄ = b/a1, t̄ = dA/t, and dropping the bars of the new
variables, the steady-state solutions of (1.2) satisfy

∆a − λabp = 0, x ∈ Ω,

d∆b + λabp − kbq = 0, x ∈ Ω,

a(x) = 1, b(x) = 0, x ∈ ∂Ω

⎫⎪⎬
⎪⎭ (1.5)

(see [37]), where

d =
dB

dA
, λ =

k1a
p
1

dA
and k =

k2a
q−1
1

dA
,

Ω ⊂ R
n (n � 1) is a bounded domain with smooth boundary ∂Ω and the parame-

ters d, λ, k > 0 and p, q � 1.
Because of the non-homogeneous boundary condition of a, sometimes it is more

convenient to consider the equivalent problem with homogeneous boundary condi-
tion. Let u1 = 1 − a, u2 = b; then (u1, u2) satisfies

−∆u1 = λ(1 − u1)u
p
2 := f1(u1, u2), x ∈ Ω,

−d∆u2 = λ(1 − u1)u
p
2 − kuq

2 := f2(u1, u2), x ∈ Ω,

u1(x) = u2(x) = 0, x ∈ ∂Ω.

⎫⎪⎬
⎪⎭ (1.6)

Problems (1.5) and (1.6) were studied by Zhao et al . [37] for the case p, q > 1.
They obtained the non-existence and existence of non-trivial steady-state solutions
by using energy estimates, the upper–lower solution method and bifurcation theory.
Furthermore, they studied the effect of decay order, decay rate and diffusion rates
on the dynamical behaviour. Here, we cite one of their results about the existence
of positive solutions of problem (1.6) (see [37, theorem 3.4]).

Theorem 1.1. Suppose that 1 < p < q and k, λ > 0. There then exists d∗ > 0 such
that, for 0 < d < d∗, (1.6) possesses at least one positive solution.
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It has been suggested (see [17–19,33]) that the dynamics of (1.2) is bistable, with
two stable non-negative steady-state solutions (one of them is the trivial solution
(u1, u2) = (0, 0)), and that there exists a threshold set in the phase space separating
the basins of attraction of the two stable steady states. Our first result in this paper
is to confirm the multiplicity of positive steady-state solutions. More precisely, we
prove the following theorem.

Theorem 1.2. Suppose that 1 < p < q, k, λ > 0, and suppose that d∗ is the
constant defined in theorem 1.1. Then, for 0 < d < d∗, (1.6) possesses at least two
distinct positive solutions.

In our second result, we consider (1.6) with 1 = p � q. In this case we can
completely identify the range of parameters for which a positive steady-state solu-
tion exists. Moreover, to compare it with the bistable dynamics of 1 < p < q, we
show that a unique positive steady-state solution exists for the case n = 1; thus,
the dynamics is monostable. Hence, the order p of the reaction is critical to the
asymptotical dynamics. Our second result is stated as the following theorem.

Theorem 1.3. Suppose that 1 = p � q, and let ρ1 be the first eigenvalue of −∆
under a homogeneous Dirichlet boundary condition. Then, (1.6) with q = 1 has a
positive solution if and only if λ > k + dρ1, and (1.6) with q > 1 has a positive
solution if and only if λ > dρ1. Furthermore, the positive solution of (1.6) is unique
if n = 1.

For scalar semilinear equations, the multiplicity for p > 1 versus the uniqueness
for p = 1 of positive solutions of the logistic-type equation

−∆u = λ(1 − u)up, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

}
(1.7)

is well known (see [26,27,32]), and the results for scalar equations were used for the
system (1.6) with k = 0 in [19,33], as it can be reduced to the scalar case. However,
the positive k case of (1.6) cannot be reduced to the scalar case; hence, the proofs
of theorems 1.2 and 1.3 are much more difficult. We use Leray–Schauder degree
theory to establish the existence of a second positive solution of (1.6) in theorem 1.2,
and we use bifurcation theory for the existence/non-existence part in theorem 1.3.
The uniqueness of a positive steady-state solution is usually a challenging problem
for the reaction–diffusion system, especially for predator–prey-type systems (note
that (1.6) is a predator–prey-type system). Here, we adapt an approach in [23] (see
also [4, 11,13]) to prove the uniqueness of a positive steady-state solution.

The paper has the following structure. In § 2, we study the multiplicity of solu-
tions when 1 < p < q and prove theorem 1.2. In § 3, we study the necessary and
sufficient conditions to ensure the existence of a solution when 1 = p � q and prove
theorem 1.3. For functions u1, v1, u2, v2 ∈ C(Ω̄), we say that (u1, v1) � (u2, v2) if
u1(x) � u2(x) and v1(x) � v2(x) for any x ∈ Ω, and that (u1, v1) > (u2, v2) if
u1(x) > u2(x) and v1(x) > v2(x) for any x ∈ Ω.
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2. Multiplicity of positive solutions when p > 1

In this section we prove the multiplicity result in theorem 1.2. In the proof, we apply
various well-known properties of the Leray–Schauder degree, which can be found in
standard references of nonlinear analysis (see, for example, [5,12,36]). Throughout
this section, we always assume that 1 < p < q.

In order to prove theorem 1.2, we need several lemmas. First, we recall the exis-
tence of a pair of ordered upper and lower solutions of (1.6), which is shown in [37,
proof of theorem 3.4].

Lemma 2.1. Suppose that 1 < p < q and k, λ > 0. There then exists d∗ > 0
such that, for 0 < d < d∗, (1.6) has a pair comprising the ordered upper solution
(ū1(x), ū2(x)) and the lower solution (u1(x), u2(x)), which satisfies

(0, 0) < (u1(x), u2(x)) < (ū1(x), ū2(x)) < (1, d−1), x ∈ Ω, (2.1)

and
−∆ū1 > f1(ū1, ū2), x ∈ Ω,

−∆u1 < f1(u1, u2), x ∈ Ω,

−d∆ū2 > f2(u1, ū2), x ∈ Ω,

−d∆u2 < f2(ū1, u2), x ∈ Ω,

ū1 = u1 = ū2 = u2 = 0, x ∈ ∂Ω.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.2)

We use Leray–Schauder degree theory in the proof. Thus, we extend the definition
of f1 and f2 to all real numbers. Define

f̃i(u1, u2) =

{
fi(u1, u2), u2 � 0,

0, u2 < 0,
i = 1, 2.

It is then obvious that (ū1(x), ū2(x)) and (u1(x), u2(x)) satisfy (2.2) with fi = f̃i,
i = 1, 2. Furthermore, there exists a positive constant M such that, for i = 1, 2,

|f̃i(u
(1)
1 , u

(1)
2 ) − f̃i(u

(2)
1 , u

(2)
2 )| < M(|u(1)

1 − u
(2)
1 | + |u(1)

2 − u
(2)
2 |) (2.3)

for any (u(1)
1 , u

(1)
2 ), (u(2)

1 , u
(2)
2 ) ∈ [0, 1] × [0, d−1] and (u(1)

1 , u
(1)
2 ) �= (u(2)

1 , u
(2)
2 ).

Consider the auxiliary problem

−∆u1 = f̃1(u1, u2), x ∈ Ω,

−d∆u2 = f̃2(u1, u2), x ∈ Ω,

u1 = u2 = 0, x ∈ ∂Ω.

⎫⎪⎬
⎪⎭ (2.4)

Any non-negative solution of (2.4) is then also a solution of (1.6). The next lemma
ensures that any solution of (2.4) is non-negative.

Lemma 2.2. Let u = (u1, u2) be a solution of (2.4); then (u1, u2) � (0, 0). Thus,
any solution of (2.4) is a non-negative solution of (1.6). Also, either u1 = u2 ≡ 0,
or u1(x) > 0 and u2(x) > 0 for any x ∈ Ω.

Proof. Set
Ω− = {x : x ∈ Ω, u2(x) < 0};
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u2 then satisfies

−∆u2 = 0, x ∈ Ω−, u = 0, x ∈ ∂Ω−.

So u2 ≡ 0 for x ∈ Ω−, i.e. Ω− = ∅. So u2 � 0 for x ∈ Ω. From the strong maximum
principle of elliptic equations, we have u2 ≡ 0 or u2 > 0 for x ∈ Ω.

If u2 ≡ 0, then u1 ≡ 0 as well, and the conclusion holds. If u2 > 0 for x ∈ Ω, we
assume that u1(x0) = maxΩ̄u1(x). From the first equation of (2.4), we can then see
that u1(x0) � 1 and, consequently, u1(x) � 1 for any x ∈ Ω. So u1 satisfies

−∆u1 � 0, x ∈ Ω, u1 = 0, x ∈ Ω.

We then get that u1(x) � 0 by the maximum principle of elliptic equations, and
that u1(x) > 0 from the strong maximum principle.

To obtain more detailed information on the iterated sequence generated by the
defined upper and lower solutions, we recall the iteration process. For any

u = (u1, u2) ∈ C1(Ω̄) × C1(Ω̄),

the problem
−∆v1 + Mv1 = Mu1 + f̃1(u1, u2), x ∈ Ω,

−d∆v2 + Mv2 = Mu2 + f̃2(u1, u2), x ∈ Ω,

v1 = v2 = 0, x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (2.5)

has a unique solution

v = (v1, v2) ∈ C2+α(Ω̄) × C2+α(Ω̄), 0 < α < 1.

We define v = (v1, v2) = T (u1, u2). It is well known that T is a compact opera-
tor in C1(Ω̄) × C1(Ω̄) and (2.4) is equivalent to the operator equation (u1, u2) −
T (u1, u2) = 0.

Consider the following problem:

−∆ũ1 + Mũ1 = Mū1 + f̃1(ū1, ū2), x ∈ Ω,

−∆û1 + Mû1 = Mu1 + f̃1(u1, u2), x ∈ Ω,

−d∆ũ2 + Mũ2 = Mū2 + f̃2(u1, ū2), x ∈ Ω,

−d∆û2 + Mû2 = Mu2 + f̃2(ū1, u2), x ∈ Ω,

ũ1 = ũ2 = û1 = û2 = 0, x ∈ ∂Ω,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

which generates (ũ1, ũ2) and (û1, û2) as the first iterated terms from the iteration
scheme. By using the maximum principle, we get the following lemma.

Lemma 2.3. Let (ũ1, û1, ũ2, û2) be the unique positive solution of (2.6); we then
have that

(u1(x), u2(x)) < (û1(x), û2(x)) < (ũ1(x), ũ2(x)) < (ū1(x), ū2(x)), x ∈ Ω,(
∂ũ1

∂ν
(x),

∂ũ2

∂ν
(x)

)
<

(
∂û1

∂ν
(x),

∂û2

∂ν
(x)

)
, x ∈ ∂Ω,

where ν is the unit outward normal on ∂Ω.
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Proof. Since û1 satisfies

−∆û1 + Mû1 = Mu1 + f̃1(u1, u2) > Mu1 − ∆u1, x ∈ Ω,

we obtain that

−∆w + Mw > 0, x ∈ Ω, w = 0, x ∈ ∂Ω,

where w = û1(x)−u1(x). So, w > 0 in Ω by the strong maximum principle of elliptic
equations, i.e. û1(x) > u1(x), x ∈ Ω. Similarly, we can prove that û2(x) > u2(x),
x ∈ Ω. In the same way as above, we can prove that (ũ1(x), ũ2(x)) < (ū1(x), ū2(x)),
x ∈ Ω.

Next, we set z1(x) = ũ1(x) − û1(x), z2(x) = ũ2(x) − û2(x). Since

f̃1(ū1, ū2) − f̃1(u1, u2) = (f̃1(ū1, ū2) − f̃1(ū1, u2)) + (f̃1(ū1, u2) − f̃1(u1, u2))
> −M(ū1 − u1),

f̃2(u1, ū2) − f̃2(ū1, u2) = (f̃2(u1, ū2) − f̃2(u1, u2)) + (f̃2(u1, u2) − f̃2(ū1, u2))
> −M(ū2 − u2),

(z1, z2) satisfies

−∆z1 + Mz1 > 0, x ∈ Ω, z1 = 0, x ∈ ∂Ω,

−∆z2 + Mz2 > 0, x ∈ Ω, z2 = 0, x ∈ ∂Ω.

By the strong maximum principle and the Hopf lemma, we then obtain that

zi(x) > 0, x ∈ Ω,
∂zi

∂ν
< 0, x ∈ ∂Ω, i = 1, 2.

The properties proved in lemma 2.3 allow us to define a convex subset in the
function space, which will be useful in the proof. Let

E = {u : u = (u1, u2) ∈ C1(Ω̄) × C1(Ω̄), ui(x) = 0, x ∈ ∂Ω, i = 1, 2}.

Then, E is a Banach space with norm ‖(u1, u2)‖E = ‖u1‖C1 +‖u2‖C1 , and, for any
u = (u1, u2) ∈ E, if ui(x) � ui(x) � ūi(x), x ∈ Ω, i = 1, 2, then there exists a
positive constant M1 such that ‖Tu‖E < M1. Moreover, we define

U =
{

u = (u1, u2) ∈ E : ûi(x) < ui(x) < ũi(x), x ∈ Ω;

∂ũi

∂ν
(x) <

∂ui

∂ν
(x) <

∂ûi(x)
∂ν

, x ∈ ∂Ω, ‖u‖E < M1, i = 1, 2
}

; (2.7)

then U is an open convex set in E. Furthermore, we have the following lemma.

Lemma 2.4. The set U defined in (2.7) satisfies T (Ū) ⊂ U and

deg(I − T, U, (0, 0)) = 1.
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Proof. Similarly to the proof of lemma 2.3, we can get the first conclusion. The
second conclusion follows from well-known properties of Leray–Schauder degree
theory (see, for example, [36, theorem 6.3.1] or [12]).

To find fixed points for (2.5), we consider the following homotopy problem:

−∆u1 + tMu1 = t[Mu1 + f̃1(u1, u2)], x ∈ Ω,

−d∆u2 + tMu2 = t[Mu2 + f̃2(u1, u2)], x ∈ Ω,

u1 = u2 = 0, x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (2.8)

where t ∈ [0, 1]. Problem (2.8) is then equivalent to the operator equation (u1, u2)−
Tt(u1, u2) = (0, 0), where (v1, v2) = Tt(u1, u2) is defined by the unique solution of

−∆v1 + tMv1 = t[Mu1 + f̃1(u1, u2)], x ∈ Ω,

−d∆v2 + tMv2 = t[Mu2 + f̃2(u1, u2)], x ∈ Ω,

u1 = u2 = 0, x ∈ ∂Ω.

⎫⎪⎬
⎪⎭ (2.9)

It is well known that Tt : [0, 1] × E → E is a compact operator, and, furthermore,
we have the following lemma.

Lemma 2.5. Let u = (u1, u2) be a non-zero solution of (2.8); the following then
hold:

(i) there exists a constant R > 0 such that ‖u‖E < R;

(ii) there exists a constant δ > 0 such that ‖u‖E > δ.

Proof. In the proof, we use C as a positive constant, which may change value from
line to line.

(i) Similarly to [37, proof of lemma 2.1], we obtain that there exists a positive
constant R0 such that

max
Ω̄

|ui| < R0, i = 1, 2.

By Sobolev’s embedding theorem and Lr-estimates, we have that

‖ui‖C1+α � C(‖u1‖W 2,r + ‖u2‖W 2,r )

� C(‖f̃1(u1, u2)‖Lr + ‖f̃2(u1, u2)‖Lr ),

where r is a positive constant such that 2 − n/r > 1 + α. Therefore, there exists a
constant R > 0 satisfying that ‖u‖E < R.

(ii) If R > 0 does not satisfy ‖u‖E < R, then there exists a sequence {tm}+∞
m=1 ⊂

[0, 1] such that the solution um = (u1m, u2m) of (2.8) with t = tm satisfies ‖um‖E >
0, ‖um‖E → 0 as m → ∞. On the other hand, we have that

‖um‖E � C(‖f̃1(u1m, u2m)‖Lr + ‖f̃2(u1m, u2m)‖Lr )

� C
(

max
Ω̄

|f̃1(u1m, u2m)| + max
Ω̄

|f̃2(u1m, u2m)|
)

� C‖u2m‖p
∞ � C‖um‖p

E ,

which is a contradiction, with ‖um‖E → 0 as m → ∞ and p > 1.
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U

Bδ

Bδ

R

Figure 1. Illustration of the sets in the proof of theorem 1.2.

We are now ready to prove theorem 1.2.

Proof of theorem 1.2. By lemma 2.4 and Schauder’s fixed-point theorem, (2.4) has
a positive solution in U and

deg(I − T, U, (0, 0)) = 1.

By lemma 2.5(i), we know that there exists a ball BR = BR(0, 0) ⊃ Ū , and (0, 0) �∈
(I − Tt)(∂BR) for all t ∈ [0, 1]. By lemma 2.5(ii), we know that there exists a ball
Bδ = Bδ(0, 0) such that B̄δ ⊂ BR, B̄δ ∩ Ū = ∅ and (0, 0) �∈ (I − Tt)(∂Bδ) for all
t ∈ [0, 1].

Let BR
δ = BR \ B̄δ; then (see figure 1)

BR
δ = U ∪ ∂U ∪ (BR

δ \ Ū).

By the additivity of the Leray–Schauder degree and the fact, from lemma 2.4, that
(0, 0) �∈ (I − T )(∂U), we get that

deg(I − T, BR
δ , (0, 0)) = deg(I − T, U, (0, 0)) + deg(I − T, BR

δ \ Ū , (0, 0))

= 1 + deg(I − T, BR
δ \ Ū , (0, 0)). (2.10)

By the homotopy invariance of the Leray–Schauder degree and the fact that there
is no solution of (I − T0)(u1, u2) = (0, 0) in BR

δ , we have that

deg(I − T, BR
δ , (0, 0)) = deg(I − T0, B

R
δ , (0, 0)) = 0. (2.11)

From (2.10) and (2.11), we obtain that

deg(I − T, BR
δ \ Ū , (0, 0)) = −1.

Therefore, (2.4) has another non-zero solution in BR
δ \ Ū , which we denote by

ŭ = (ŭ1, ŭ2). From the construction of BR
δ , we know that ‖ŭ‖E > δ and, from the

definition of f̃1 and f̃2, (ŭ1, ŭ2) > 0 for i = 1, 2 by lemma 2.2. Hence, (1.6) has one
positive solution in U and another positive solution in BR

δ \ Ū , and the theorem is
proved.
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3. Existence and bifurcation of positive solutions when p = 1

In this section we prove the existence part of theorem 1.3, and we prove the unique-
ness part of theorem 1.3 when n = 1 in § 4. Here, we consider (1.6) with q � p = 1,
i.e. the following system of semilinear elliptic equations:

−∆u1 = λu2 − λu1u2, x ∈ Ω,

−d∆u2 = λu2 − λu1u2 − kuq
2, x ∈ Ω,

u1 = u2 = 0, x ∈ ∂Ω.

⎫⎪⎬
⎪⎭ (3.1)

For later discussion, we establish some notation (see, for example, [2]), which
will be used throughout this section. For any q(x) in C(Ω̄) and d > 0, the linear
eigenvalue problem

−d∆u + q(x)u = ρu, x ∈ Ω,

u = 0, x ∈ ∂Ω

}
(3.2)

has an infinite sequence of eigenvalues, ρ1 < ρ2 � ρ3 � · · · , which are bounded
from below. It is also known that the principal eigenvalue

ρ1 = ρ1(−d∆ + q(x)) (3.3)

is simple and any solution of (3.2) with ρ = ρ1(−d∆+q(x)) is a constant multiple of
an eigenfunction that does not change sign in Ω and whose normal derivatives never
vanish on the boundary ∂Ω. Furthermore, ρ1 is strictly increasing in the sense that
q1(x), q2(x) ∈ C(Ω̄), q1(x) � q2(x); q1(x) �≡ q2(x) implies that ρ1(−d∆ + q1(x)) <
ρ1(−d∆ + q2(x)). Furthermore, according to the variational characterization for
ρ1(−d∆ + q(x)), we know that

ρ1(−d∆ + q(x)) = inf
ϕ∈H1

0 (Ω), ϕ �=0

∫
Ω

(d|∇ϕ|2 + qϕ2) dx∫
Ω

ϕ2 dx
. (3.4)

In particular, ρ1 = ρ1(−∆) is the principal eigenvalue of −∆ subject to the homo-
geneous Dirichlet boundary condition, and the corresponding positive eigenfunction
is denoted by ω(x). We normalize the eigenfunction such that ω(x) satisfies

−∆ω = ρ1ω, x ∈ Ω, ω = 0, x ∈ ∂Ω,

∫
Ω

ω2 dx = 1. (3.5)

From the arguments in lemma 2.2, a non-negative solution of (3.1) is either (0, 0)
or a positive solution. A positive solution of (3.1) satisfies the following a priori
estimates.

Lemma 3.1. Suppose that (u1, u2) is a positive solution of (3.1). Then

0 < du2(x) < u1(x) < 1, 0 < u2(x) <
1
d
, x ∈ Ω. (3.6)

Proof. Let x0 ∈ Ω such that u1(x0) = maxΩ̄u1(x). Then −∆u1(x0) � 0, and,
from the first equation of (3.1), it becomes apparent that 0 � λ(1 − u1(x0))u2(x0).
Consequently, we have that u1(x0) � 1. That u1(x) < 1 in Ω follows from the
strong maximum principle.
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By a direct calculation, we find from (3.1) that

−∆(du2 − u1) = −kuq
2 < 0, x ∈ Ω, du2 − u1 = 0, x ∈ ∂Ω. (3.7)

So, du2(x) < u1(x), x ∈ Ω by the strong maximum principle, which implies (3.6).

In the following discussion, we distinguish between the two cases, q = 1 and
q > 1. First we consider (3.1) with q = 1, i.e. the system

−∆u1 = λu2 − λu1u2, x ∈ Ω,

−d∆u2 = λu2 − λu1u2 − ku2, x ∈ Ω,

u1 = u2 = 0, x ∈ ∂Ω.

⎫⎪⎬
⎪⎭ (3.8)

In the following we consider positive solutions of (3.8) in the space X2, where
X = W 2,r(Ω) ∩ W 1,r

0 (Ω) for r > n. From the smoothness of the nonlinearities
in (3.8), such solutions indeed belong to [C2+α(Ω̄)]2.

Our existence/non-existence and bifurcation result for (3.8) is as follows.

Theorem 3.2. Suppose that d, k > 0. Then (3.8) has no positive solution if λ �
k + dρ1, and (3.8) has at least one positive solution if λ > k + dρ1. Moreover, the
following hold.

(1) λ = k + dρ1 is a bifurcation value of (3.8), where positive solutions bifurcate
from the line of trivial solutions Γ0 = {(λ, 0, 0) : λ > 0}, and λ = k + dρ1 is
the unique bifurcation value for which positive solutions bifurcate from Γ0.

(2) Near (λ, u1, u2) = (k+dρ1, 0, 0), all positive solutions of (3.8) lie on a smooth
curve Γ1 = {(λ(s), u1(s, x), u2(s, x)) : s ∈ (0, δ), x ∈ Ω} for some δ > 0, with

λ(s) = k + dρ1 + sd(k + dρ1)2
∫

Ω

ω3 dx + sθ(s),

u1(s) = s(k + dρ1)dω + sφ1(s),
u2(s) = sω + sφ2(s),

where ((k+dρ1)dω, ω) is a positive solution of the following eigenvalue problem
with ρ = 0:

∆ξ + λη = ρξ, x ∈ Ω,

d∆η + λη − kη = ρη, x ∈ Ω,

ξ = η = 0, x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (3.9)

θ is a smooth function defined on (0, δ) such that θ(0) = θ′(0) = 0, and φ1, φ2
are smooth functions from (0, δ) into a subspace of X2 that complements
span{((k + dρ1)dω, ω)} such that φi(0) = φ′

i(0) = 0 for i = 1, 2.

(3) Γ1 is contained in a connected component Σ1 of the set of positive solutions
of (3.8) in R

+ × X2 such that

PλΣ1 = (k + dρ1,∞), Pu1Σ1 ⊂ (0, 1), Pu2Σ1 ⊂ (0, 1/d),
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u1 u2

k + dρ1 k + dρ1λ λ

Figure 2. Possible global bifurcation diagram of positive solutions of (3.8).

where Pλ stands for the projection operator into the λ-component of R
+×X2,

and Pui stands for the projection operator into the ui-component, i = 1, 2 (see
figure 2).

Proof. We divide the proof into several parts.

(1) (Non-existence.) We prove that λ > k + dρ1 is a necessary condition to ensure
that (3.8) has a positive solution. In fact, multiplying the second equation of (3.8)
by ω(x), and then integrating the result by parts over Ω, we can obtain the following
equality by using −∆ω = ρ1ω:

λ

∫
Ω

u1u2w dx = (λ − k − dρ1)
∫

Ω

u2ω dx.

So λ > k + dρ1 if (λ, u1, u2) is a positive solution of (3.8).

(2) (Local bifurcation.) By linearizing (3.8) at (λ, 0, 0), we obtain the eigenvalue
problem (3.9). A necessary condition for bifurcation is that the principal eigenvalue
of (3.9) is 0, which occurs if λ = k + dρ1, and the corresponding eigenfunction is
(ψ(x), ω(x)), where ω(x) is defined in (3.5) and ψ(x) = (k + dρ1)(−∆)−1(ω(x)) =
(k + dρ1)dω(x).

We apply a bifurcation result of Crandall and Rabinowitz [9] at (λ, 0, 0). For fixed
d, k > 0, define a nonlinear mapping F : R × X2 → Y 2, where Y = Lr(Ω), by

F (λ, u1, u2) =
(

∆u1 + λu2 − λu1u2

d∆u2 + λu2 − λu1u2 − ku2

)
.

We consider the bifurcation at (λ, u1, u2) = (k + dρ1, 0, 0). From straightforward
calculations, we find the Fréchet derivatives of F to be

F(u1,u2)(λ, u1, u2)[ξ, η] =
(

∆ξ − λu2ξ + λη − λu1η

d∆η − λu2ξ + λη − λu1η − kη

)
,

Fλ(λ, u1, u2) =
(

u2 − u1u2

u2 − u1u2

)
, Fλ(u1,u2)(λ, u1, u2)[ξ, η] =

(
−u2ξ + η − u1η

−u2ξ + η − u1η

)
,

F(u1,u2)(u1,u2)(λ, u1, u2)[ξ, η]2 =
(

−2λξη

−2λξη

)
.
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At (λ, u1, u2) = (k + dρ1, 0, 0), it is easy to verify that the kernel and the range
space are given, respectively, by

N (F(u1,u2)(k + dρ1, 0, 0)) = span{(ψ(x), ω(x))}

and

R(F(u1,u2)(k + dρ1, 0, 0)) =
{

(f, g) ∈ Y 2 :
∫

Ω

g(x)ω(x) dx = 0
}

.

We can also verify that

Fλ(u1,u2)(k + dρ1, 0, 0)[ψ, ω] =
(

ω

ω

)
�∈ R(F(u1,u2)(k + dρ1, 0, 0)).

Thus, we can apply [9, theorem 1.7] to conclude that the set of positive solutions
to (3.8) near (k + dρ1, 0, 0) is a smooth curve Γ1 = {(λ(s), u1(s), u2(s)) : s ∈ (0, δ)}
such that λ(0) = k + dρ1, u1(s) = sψ + sφ1(s), u2(s) = sω + sφ2(s), where φi

satisfies the conditions in the theorem. Moreover, λ′(0) can be calculated (see, for
example, [31]) by

λ′(0) = −
〈l, F(u1,u2)(u1,u2)(k + dρ1, 0, 0)[ψ, ω]2〉

2〈l, Fλ(u1,u2)(k + dρ1, 0, 0)[ψ, ω]〉

=
2(k + dρ1)

∫
Ω

ψω2 dx

2
∫

Ω
ω2 dx

= d(k + dρ1)2
∫

Ω

ω3 dx,

where l is a linear functional on Y 2 defined as 〈l, [f, g]〉 =
∫

Ω
g(x)ω(x) dx.

(3) (Uniqueness of bifurcation point.) In this part, we prove that λ = k + dρ1 is
the unique bifurcation value to positive solutions of (3.8) from (0, 0). Suppose that
there exists a sequence {(λn, u1n, u2n)}+∞

n=1 of positive solutions of (3.8) with

lim
n→+∞

(λn, u1n, u2n) = (λ̂, 0, 0) ∈ R × X.

We then find from the second equation of (3.8) with λ = λn that, for every n � 1,

−d∆
(

u2n

‖u2n‖

)
= λn

u2n

‖u2n‖ − λnu1n
u2n

‖u2n‖ − k
u2n

‖u2n‖

or, equivalently,

d
u2n

‖u2n‖ = (λn − λ̂)(−∆)−1
(

u2n

‖u2n‖

)
+(−∆)−1

(
λ̂

u2n

‖u2n‖ −λnu1n
u2n

‖u2n‖ −k
u2n

‖u2n‖

)
,

(3.10)
where ‖ · ‖ denotes the norm of Y = Lr(Ω). By the compactness of (−∆)−1, it is
easy to see that, along some subsequence, relabelled n, we have that

lim
n→+∞

u2n

‖u2n‖ = φ > 0
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for some φ ∈ W 2,r(Ω) with ‖φ‖ = 1. Thus, passing to the limit as n → +∞
in (3.10), we find that

dφ = (−∆)−1(λ̂φ − kφ)

or, equivalently,

−d∆φ + kφ = λ̂φ, x ∈ Ω, φ = 0, x ∈ ∂Ω.

Therefore, λ̂ = k + dρ1.

(4) (Global bifurcation.) Recall the Krasnoselskii–Rabinowitz global bifurcation
theorem (see, for example, [29,34]); a connected component Σ1 of the set of positive
solutions in R

+ × X2 then contains Γ1, and Σ1 satisfies one of the following:

(1) Σ1 is unbounded;

(2) Σ1 contains (λ̃, 0, 0), where (λ̃, 0, 0) is another bifurcation value from which
positive solutions bifurcate from Γ0.

From part (3) of the proof, we know that the second alternative cannot happen. So
Σ1 is unbounded. From part (1) of the proof, if λ � k + dρ1, (3.8) has no positive
solution and, from lemma 3.1, any positive solution (u1, u2) satisfies u1(x) < 1 and
u2(x) < 1/d for any x ∈ Ω. Hence, the projection of Σ1 into the λ-axis must be
(k + dρ1,∞). This completes the proof.

We next consider (3.1) with q > 1. The results are similar to those in theorem 3.2.
Hence, we only state the result and point out the difference between the proofs.

Theorem 3.3. Suppose that d, k > 0 and q > 1. Then (3.1) has no positive solution
if λ � dρ1, and (3.1) has at least one positive solution if λ > dρ1. Moreover, the
following hold.

(1) λ = dρ1 is a bifurcation value of (3.1), where positive solutions bifurcate from
the line of trivial solutions Γ0 = {(λ, 0, 0) : λ > 0}, and λ = dρ1 is the unique
bifurcation value for which positive solutions bifurcate from Γ0.

(2) Near (λ, u1, u2) = (dρ1, 0, 0), all positive solutions of (3.8) lie on a smooth
curve Γ1 = {(λ(s), u1(s, x), u2(s, x)) : s ∈ (0, δ), x ∈ Ω} for some δ > 0, with

u1(s) = sdω + sφ1(s),
u2(s) = sω + sφ2(s),

where φ1, φ2 are smooth functions from (0, δ) into a subspace of X2 that
complements span{(dω, ω)} such that φi(0) = φ′

i(0) = 0 for i = 1, 2, and λ(s)
satisfies

λ(0) = dρ1, λ′(0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

does not exist, 1 < q < 2,

(d2ρ1 + k)
∫

Ω

ω3 dx, q = 2,

d2ρ1

∫
Ω

ω3 dx, q > 2.
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(3) Γ1 is contained in a connected component Σ1 of the set of positive solutions
of (3.8) in R

+ × X2 such that

PλΣ1 = (dρ1,∞), Pu1Σ1 ⊂ (0, 1), Pu2Σ1 ⊂ (0, 1/d),

where Pλ stands for the projection operator into the λ-component of R
+×X2,

and Pui
stands for the projection operator into the ui-component, i = 1, 2.

Proof. Since the proof is similar to that of theorem 3.2, we omit the details. We
only calculate the λ′(0) here. Define a nonlinear mapping F : R × X2 → Y 2 by

F (λ, u1, u2) =
(

∆u1 + λu2 − λu1u2

d∆u2 + λu2 − λu1u2 − kuq
2

)
.

From straightforward calculations, we obtain that

Fλ(u1,u2)(λ, u1, u2)[ξ, η] =
(

−u2ξ + η − u1η

−u2ξ + η − u1η

)
,

F(u1,u2)(u1,u2)(λ, u1, u2)[ξ, η]2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
−2λξη

−2λξη − 2kη2

)
, q = 2,

(
−2λξη

−2λξη − kq(q − 1)uq−2
2 η2

)
, q �= 2.

Moreover, similarly to the proof of theorem 3.2, λ′(0) can be calculated by

λ′(0) = −
〈l, F(u1,u2)(u1,u2)(dρ1, 0, 0)[dω, ω]2〉

2〈l, Fλ(u1,u2)(dρ1, 0, 0)[dω, ω]〉 ,

where l is a linear functional on Y × Y defined as 〈l, [f, g]〉 =
∫

Ω
g(x)ω(x) dx.

If 1 < q < 2, λ(s) is not differentiable at s = 0 and lims→0+λ′(s) = ∞, so λ′(0)
does not exist. If q = 2, we get

λ′(0) =
2d2ρ1

∫
Ω

ω3 dx + 2k
∫

Ω
ω3 dx

2
∫

Ω
ω2 dx

= (d2ρ1 + k)
∫

Ω

ω3 dx.

If q > 2, we get

λ′(0) =
2d2ρ1

∫
Ω

ω3 dx

2
∫

Ω
ω2 dx

= d2ρ1

∫
Ω

ω3 dx.

4. Uniqueness and stability

In this section, we study the uniqueness and stability of the positive solution of (3.1)
in one dimension, i.e.

−u′′
1 = λu2 − λu1u2, x ∈ (0, L),

−du′′
2 = λu2 − λu1u2 − kuq

2, x ∈ (0, L),

u1(0) = u1(L) = u2(0) = u2(L) = 0,

⎫⎪⎬
⎪⎭ (P )k

where L is a positive constant and the double prime denotes d2/dx2 = ∆.
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We study the uniqueness of the positive solution in two cases: q = 1 and q > 1.
First, we consider the case of q = 1, i.e. the system

−u′′
1 = λu2 − λu1u2, x ∈ (0, L),

−du′′
2 = (λ − k)u2 − λu1u2, x ∈ (0, L),

u1(0) = u1(L) = u2(0) = u2(L) = 0.

⎫⎪⎬
⎪⎭ (4.1)

By theorem 3.2, (4.1) has a positive solution if and only if λ > k + dρ1. In order to
get the uniqueness result, we first consider the linear system

−u′′
1 + λu0

2u1 = λ(1 − û1)u2, x ∈ (0, L),

−du′′
2 + (k − λ + λu0

1)u2 = −λû2u1, x ∈ (0, L),

u1(0) = u1(L) = u2(0) = u2(L) = 0,

⎫⎪⎬
⎪⎭ (4.2)

where (u0
1, u

0
2) is a positive solution of (4.1), and û1(x), û2(x) ∈ C[0, L] such that

û1(x) < 1, û2(x) > 0, x ∈ [0, L]. (4.3)

Then, similarly to [22, theorem 4.1], we have the following result.

Lemma 4.1. Assume that (u0
1, u

0
2) is a positive solution of (4.1) and û1(x), û2(x) ∈

C[0, L] satisfy (4.3). Then (0, 0) is the unique solution of (4.2).

Based on the above lemma, we get the following uniqueness result for the case
of q = 1.

Theorem 4.2. There is a unique positive solution of (4.1) if and only if λ > k+dρ1.

Proof. The existence of the positive solution has been proved in theorem 3.2, and
hence we only prove the uniqueness. Suppose that (u1, u2) and (ũ1, ũ2) are two
arbitrary positive solutions of (4.1), and let U1 = u1 − ũ1, U2 = u2 − ũ2. Then,
(U1, U2) satisfies

−U ′′
1 + λu2U1 = λ(1 − ũ1)U2, x ∈ (0, L),

−dU ′′
2 + (k − λ + λu1)U2 = −λũ2U1, x ∈ (0, L),

u1(0) = u1(L) = u2(0) = u2(L) = 0,

By lemma 3.1, (ũ1, ũ2) satisfies (4.3). Hence, by using lemma 4.1, U1 = U2 = 0
must hold, i.e. u1 = ũ1 and u2 = ũ2. This completes the proof.

We next consider the uniqueness for the case q > 1. We first introduce several
lemmas, which are used to get the uniqueness. The following lemma is well known.

Lemma 4.3. Assume that λ > dρ1; (P )0 then has a unique positive solution

(u1, u2) = (dλ−1θd/λ, λ−1θd/λ),

where θa with a > ρ1 is the unique positive solution (see [10]) of the problem

−φ′′ = φ(a − φ), x ∈ (0, L),
φ(0) = φ(L) = 0.

}
(4.4)
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Proof. It is easy to see that u1 = du2 from (P )0. So, u2 satisfies

−du′′
2 = u2(λ − λdu2), x ∈ (0, L),

u2(0) = u2(L) = 0,

}
(4.5)

and the unique positive solution of (4.5) is λ−1θd/λ.

Lemma 4.4. Assume that q > 1. Let (u0
1, u

0
2) be an arbitrary positive solution

of (P )k; the linearized system of (P )k at (u0
1, u

0
2) then has only the trivial solu-

tion (0, 0). Hence, any positive solutions of (P )k are not degenerate.

Proof. The linearized system of (P )k at (u0
1, u

0
2) is

−u′′ + λu0
2u = λ(1 − u0

1)v, x ∈ (0, L),

−dv′′ + (λu0
1 + kq(u0

2)
q−1 − λ)v = −λu0

2u, x ∈ (0, L),

u(0) = u(L) = v(0) = v(L) = 0.

⎫⎪⎬
⎪⎭ (4.6)

If k = 0, it is obvious that u = dv. So, v satisfies

−dv′′ + (λdu0
2 − λ + λu0

1)v = 0, x ∈ (0, L),
v(0) = v(L) = 0.

}
(4.7)

Since (u0
1, u

0
2) is a positive solution of (P )0, we have that

ρ1(−d∆ + λdu0
2 − λ + λu0

1) > ρ1(−d∆ − λ + λu0
1) = 0.

Therefore, u = v = 0.
Next, we study the case k > 0. Consider the operators L1 and L2 defined by

L1φ = −φ′′ + λu0
2φ and L2φ = −dφ′′ + (λu0

1 + kq(u0
2)

q−1 − λ)φ, φ ∈ X , (4.8)

where X = C2
0 [0, L] = {u ∈ C2[0, L] : u(0) = u(L) = 0}. Then L1 and L2 are

invertible. In fact, that L1 is invertible follows from ρ1(L1) > ρ1 > 0. Note that
(u0

1, u
0
2) is a positive solution of (P )k; we then have that

ρ1(L2) > ρ1(−d∆ + λu0
1 + k(u0

2)
q−1 − λ) = 0.

So L2 is invertible.
Let

P := {φ ∈ X : φ(x) � 0, x ∈ Ω} (4.9)

be the usual cone of positive functions in X , and let L−1
1 and L−1

2 be the inverse
operators of L1 and L2, respectively. It is obvious that L−1

1 and L−1
2 are compact

and strictly order-preserving operators with respect to P . Moreover,

L−1
i (P \ {0}) ⊂ intP for i = 1, 2.

In terms of L1 and L2, (4.6) can be written as

L1u = λ(1 − u0
1)v, L2v = −λu0

2u, u, v ∈ X . (4.10)

In this setting we can show that the only solution of (4.10) is u = v = 0, using a
similar proof as in [4, 23], which completes the proof.
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A perturbation argument can be used to show that if (P )k with q > 1 has
exactly one positive solution, which is assumed to be non-degenerate, then (P )k+ε

also has exactly one positive solution, provided that ε is small enough. For that
purpose, we state the following lemma. Since its proof is basically the same as that
of [4, lemma 5.4], we omit it here.

Lemma 4.5. Assume that q > 1 and that (P )k has exactly one positive solution
(u0

1, u
0
2), which is not degenerate. There then exists ε0 = ε(λ, k) > 0 such that, for

every ε ∈ (−ε0, ε0), (P )k+ε has exactly one positive solution (u1(ε), u2(ε)). More-
over, (u1(0), u2(0)) = (u0

1, u
0
2) and the mapping ε �→ (u1(ε), u2(ε)), from (−ε0, ε0)

to P 2, is C1, where P is defined in (4.9).

By using lemmas 4.3–4.5, we now state the following uniqueness result for the
case of q > 1, which also completes theorem 1.3. Again the proof is similar to that
of [4, theorem 5.1], and is thus omitted.

Theorem 4.6. Assume that q > 1. Problem (P )k then has a unique positive solu-
tion if and only if λ > dρ1.

To conclude the paper, we discuss the stability of the unique positive solution
when n = 1 by estimating the eigenvalues of the linearized equation. Similar argu-
ments have been used in, for example, [14, 28]. The local stability of the unique
positive solution of (P )k is important for a better understanding of the dynamics
of the original reaction–diffusion system (1.2) when p = 1 and n = 1, but it is
a challenging question in general. Here, we prove the local stability of the unique
positive solution of (P )k when d = 1 and q = 2, and leave the general case as an
open question. The uniqueness result that we have proved implies that 0 cannot be
an eigenvalue for the linearized equation when d = 1, but it does not exclude purely
imaginary eigenvalues, which could result in the occurrence of Hopf bifurcations.

For the stability of the uniqueness of the positive solution of (P )k with d = 1
and q = 2, we consider the following semilinear elliptic system:

−u′′
1 = λu2 − λu1u2, x ∈ (0, L),

−u′′
2 = λu2 − λu1u2 − ku2

2, x ∈ (0, L),

u1(0) = u1(L) = u2(0) = u2(L) = 0.

⎫⎪⎬
⎪⎭ (4.11)

Let (u0
1, u

0
2) be the unique positive solution of (4.11). In order to study the stabil-

ity of (u0
1, u

0
2), we consider the following linearized eigenvalue problem at (u0

1, u
0
2):

−φ′′ = −λu0
2φ + (λ − λu0

1)ψ + µφ, x ∈ (0, L),

−ψ′′ = −λu0
2φ + (λ − λu1 − 2ku0

2)ψ + µψ, x ∈ (0, L),

φ(0) = φ(L) = ψ(0) = ψ(L) = 0.

⎫⎪⎬
⎪⎭ (4.12)

Here, µ is an eigenvalue of (4.12), (φ, ψ) ∈ [C2(0, L) ∩ C[0, L]]2 is a corresponding
eigenfunction and (φ, ψ) �≡ (0, 0). Note that µ may be a complex number and φ
and ψ may be complex-valued functions. The solution (u0

1, u
0
2) is called a stable one

if each eigenvalue µ has positive real part.

Proposition 4.7. Suppose that λ > ρ1 and k > 0, and let (u0
1, u

0
2) be the unique

positive solution of (4.11). Then (u0
1, u

0
2) is stable.
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Proof. Suppose that µ is an eigenvalue of (4.12), and (φ, ψ) is a non-trivial eigen-
function. Let ξ := φ − ψ, η := ψ, z0 := u0

1 − u0
2 and v0 := u0

2; (z0, v0) is then the
unique positive solution of

−z′′ = kv2, x ∈ (0, L),
−v′′ = (λ − kv − λdv − λz)v, x ∈ (0, L),

z(0) = z(L) = v(0) = v(L) = 0,

⎫⎪⎬
⎪⎭ (4.13)

and (ξ, η, z0, v0) satisfies

−ξ′′ = 2kv0η + µξ, x ∈ (0, L),
−η′′ = (λ − 2kv0 − 2λv0 − λz0)η − λv0ξ + µη, x ∈ (0, L),

ξ(0) = ξ(L) = η(0) = η(L) = 0.

⎫⎪⎬
⎪⎭ (4.14)

From now on, we denote by h̄ the complex conjugate of a complex function h.
We multiply the second equation of (4.14) by η̄, and then integrate over (0, L) to
obtain that

∫ L

0
{|η′|2 + [λ(v0 + z0) − λ + kv0]|η|2} dx

= −k

∫ L

0
v0|η|2 dx − λ

∫ L

0
(v0|η|2 + v0ξη̄) dx + µ

∫ L

0
|η|2 dx. (4.15)

Since v0 > 0 and satisfies

−v′′
0 + [λ(v0 + z0) − λ + kv0]v0 = 0, x ∈ (0, L), v0(0) = v0(L) = 0,

we have that ρ1(−d2/dx2 + λ(v0 + z0) − λ + kv0) = 0. Moreover, by (3.4), we have
that

0 = ρ1(−d2/dx2 + λ(v0 + z0) − λ + kv0)

= inf
ϕ∈H1

0 (0,L), ϕ �=0

∫ L

0 {|ϕ′|2 + [λ(v0 + z0) − λ + kv0]|ϕ|2} dx∫ L

0 |ϕ|2 dx

�
∫ L

0 {|η′|2 + [λ(v0 + z0) − λ + kv0]|η|2} dx∫ L

0 |η|2 dx
,

which means that ∫ L

0
{|η′|2 + [λ(v0 + z0) − λ + kv0]|η|2} dx � 0.

So, we get from (4.15) that

k

∫ L

0
v0|η|2 dx + λ

∫ L

0
(v0|η|2 + v0ξη̄) dx − µ

∫ L

0
|η|2 dx � 0, (4.16)
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which implies that

k

∫ L

0
v0|η|2 dx + λ

∫ L

0
v0|η|2 dx + λ Re

( ∫ L

0
v0ξη̄ dx

)
� Re(µ)

∫ L

0
|η|2 dx.

(4.17)

We estimate the term Re(
∫ L

0 v0ξη̄ dx). First, using the first equation of (4.14), we
have that

Re(ξη̄) = Re(ηξ̄) =
1
2k

(−v−1
0 ξ̄ξ′′ − v−1

0 Re(µ)|ξ|2).

Hence,

Re
( ∫ L

0
v0ξη̄ dx

)
=

1
2k

∫ L

0
(− Re(µ)|ξ|2 − ξ̄ξ′′) dx

=
1
2k

∫ L

0
(− Re(µ)|ξ|2 + |ξ′|2) dx. (4.18)

By (4.17) and (4.18), we obtain that

(k + λ)
∫ L

0
v0|η|2 dx +

λ

2k

∫ L

0
|ξ′|2 dx � Re(µ)

[ ∫ L

0

(
|η|2 +

λ

2k
|ξ|2

)
dx

]
. (4.19)

Since (ξ, η) �≡ 0, Re(µ) > 0 from (4.19), which proves the stability of (u0
1, u

0
2).
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18 E. Jakab, D. Horváth, J. H. Merkin, S. K. Scott, P. L. Simon and A. Tóth. Isothermal
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22 J. López-Gómez. The steady states of a non-cooperative model of nuclear reactors. J. Diff.
Eqns 246 (2009), 358–372.
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