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Radially symmetric solutions of many important systems of partial differential equations
can be reduced to systems of special ordinary differential equations. A numerical solver
for initial value problems for such systems is developed based on Matlab, and numerical
bifurcation diagrams are obtained according to the behavior of the solutions. Various bifur-
cation diagrams of coupled Schrödinger equations from nonlinear physics are obtained,
which suggests the uniqueness of the ground state solution.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction and background

The nonlinear Schrödinger (NLS) equation

iwt þ Dwþ cjwj2w ¼ 0; ð1:1Þ

is a canonical and universal equation which is of major importance in continuum mechanics, plasma physics, nonlinear op-
tics, and condensed matter (where it describes the behavior of a weakly interacting Bose gas and known as the Gross–Pitaev-
skii (GP) equation). The coupled NLS equations have been receiving a lot of attention with recent experimental advances in
multi-component Bose–Einstein condensates (BECs).

Bose–Einstein condensate is a state of matter formed by a system of bosons confined in an external potential and cooled
to temperatures very near to absolute zero. Under such supercooled conditions, a large fraction of the atoms collapse into the
lowest quantum state of the external potential, at which point quantum effects become apparent on a macroscopic scale. BEC
has been an important issue in condensed material physics since the condensate produced by Cornell and Wieman in 1995
[3] using a gas of rubidium atoms cooled to 170 nanokelvin, which was awarded 2001 Nobel Prize in Physics. It is well-
known (see [19]) that NLS equations (or GP equations) provide a good description the behavior of the BEC’s and is the ap-
proach often applied to their theoretical analysis. Phase separation of different types of condenses has been one of recent
interests from the experimental work of Cornell and Wieman group in NIST [15,29]. It has also been suggested that mul-
ti-component BECs offer the simplest tractable microscopic models in the proper universality class of cosmological systems
and solitary waves in multi-component BECs may have their analogs among cosmic strings. The two-component system is
described by (see [16,32,33])
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where x 2 Rn for n ¼ 1;2;3, /j (j ¼ 1;2) are the wave functions of two interacting condensates; VjðxÞ are the trap potentials;
the interaction strengths kj and b are determined by the scattering lengths for binary collisions of like and unlike bosons.
Another recent interest on coupled NLS is on the propagation of soliton-like pulses in birefringent nonlinear fibers. Exper-
iments have showed the existence of self-trapping of incoherent beam in a nonlinear medium [27,28]. Such findings are sig-
nificant since optical pulses propagating in a linear medium have a natural tendency to broaden in time (dispersion) and
space (diffraction). Such broadening can be eliminated in a nonlinear medium that modifies its refractive index in the pres-
ence of light in such a way that dispersion or diffraction effects are counteracted by light-induced lensing. This can allow
short pulses to propagate without changing their shape. Mathematically, propagation of solitons in nonlinear fiber couplers
is described by the set of coupled nonlinear Schrödinger equations (see [1,14,26]):

i
@wj

@z
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2
@2wj

@x2 þ
1
2
@2wj

@y2 þ a2
XK

j¼1

jwjj
2

 !
wj ¼ 0; ð1:3Þ

for j ¼ 1; . . . ;K. Here (complex-value) wj denotes the jth component of the light beam, a2 is a coefficient representing the
strength of nonlinearity, ðx; yÞ is the transverse coordinate, z is the coordinate along the direction of propagation, andP
jwjj

2 is the change in refractive index profile created by all the incoherent components in the light beam.
In the following we shall only consider (1.2), but (1.3) for K ¼ 2 can also be treated similarly. Looking for pulse-like soliton

solution of (1.2) in form of

/jðt; xÞ ¼ ujðxÞ expðiljt=�hÞ; ð1:4Þ

we reduce (1.2) to a system of elliptic PDEs:

�h2

2m1
Du1 þ V1ðxÞu1 þ k1ju1j2u1 þ bju2j2u1 ¼ l1u1;

�h2

2m2
Du2 þ V2ðxÞu2 þ k2ju2j2u2 þ bju1j2u2 ¼ l2u2:

8<
: ð1:5Þ

From a variational consideration, lj can be viewed as chemical potential. When Vj � 0, the solutions of the homogeneous
equation (1.5) are the canonical ground states. For the case of n ¼ 1, the canonical ground states can be integrated for some
parameters.

Driven by the fascinating experiments of BECs and nonlinear optics, the coupled NLS equations have been extensively
investigated by theoretical physicists as the main underlying theory in the last decade. Numerical simulations have produced
results matching experimental data very well. Variational structure have been observed, but exact soliton solutions are hard
to obtain, especially for the higher spatial dimension case. Rigorous mathematical studies about the soliton solutions only
start in recent years. Consider the equation of canonical (homogeneous) soliton

Du1 � k1u1 þ l1u3
1 þ bu1u2

2 ¼ 0; x 2 Rn;

Du2 � k2u2 þ l2u3
2 þ bu2

1u2 ¼ 0; x 2 Rn;

(
ð1:6Þ

where ki;li; b > 0, and n ¼ 1;2;3. We look for positive solutions of (1.6) which decay to zero as jxj ! 1. It is known that such
solutions are radially symmetric and decay exponentially [8]. Hence the system to be considered is

Du1 � k1u1 þ l1u3
1 þ bu1u2

2 ¼ 0; x 2 Rn;

Du2 � k2u2 þ l2u3
2 þ bu2

1u2 ¼ 0; x 2 Rn;

u1ðxÞ > 0; u2ðxÞ > 0; x 2 Rn;

u1ðxÞ ! 0; u2ðxÞ ! 0; jxj ! 1:

8>>>>>><
>>>>>>:

ð1:7Þ

The existence of positive solutions of (1.7) have been considered in several papers recently by Amrosetti and Colorado [2],
Bartsch, Dancer, Wang and Wei [4–6,12], Chang and Liu [9], de Figueiredo and Lopez [13], Lin and Wei [20,21], Liu and Wang
[22], Maia et al. [23,24], Sirakov [31], Wei and Weth [34–36] and many others. The methods involved in most of these work
are variational ones, as the solution ðu1;u2Þ of (1.6) are the critical points of the energy function

Eðu1;u2Þ ¼
1
2

Z
Rn
ðjru1j2 þ jru2j2 þ k1u2

1 þ k2u2
2Þ �

1
4

Z
Rn
ðl1u4

1 þ 8bu2
1u2

2 þ l2u4
2Þ: ð1:8Þ

Bifurcation theory and spectral methods are also used in [4,6,12].
On the other hand, since the solutions of (1.7) are radially symmetric, then they satisfy

u001 þ n�1
r u01 � k1u1 þ l1u3

1 þ bu1u2
2 ¼ 0; r > 0;

u002 þ n�1
r u02 � k2u2 þ l2u3

2 þ bu2
1u2 ¼ 0; r > 0;

u01ð0Þ ¼ 0; u01ðrÞ < 0; lim
r!1

u1ðrÞ ¼ 0;

u02ð0Þ ¼ 0; u02ðrÞ < 0; lim
r!1

u2ðrÞ ¼ 0:

8>>>>><
>>>>>:

ð1:9Þ
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In particular the solution satisfies the initial value problem:

u001 þ n�1
r u01 � k1u1 þ l1u3

1 þ bu1u2
2 ¼ 0; r > 0;

u002 þ n�1
r u02 � k2u2 þ l2u3

2 þ bu2
1u2 ¼ 0; r > 0;

u1ð0Þ ¼ A > 0; u01ð0Þ ¼ 0;
u2ð0Þ ¼ B > 0; u02ð0Þ ¼ 0:

8>>><
>>>:

ð1:10Þ

In this article, we consider the initial value problem (1.10) and its generalization numerically. We give the basic mathemat-
ical setting in Section 2; we introduce our numerical method in Section 3; and we present numerical bifurcation diagrams for
(1.10) and some observations in Section 4. Our results indicate that for all parameters in (1.9) investigated, the positive solu-
tion of (1.9) is unique. This has not been proved for general coupled Schrödinger equations, and we hope our numerical inves-
tigation can motivate future research in that direction. More discussion on that aspect is provided at the end of Section 4.

2. Mathematical setting

We consider the initial value problem (1.10). The local existence and uniqueness of the solution to (1.10) can be proved
via a standard application of contraction mapping principle, see for example, [30] Lemma 2.1. We denote the solution of
(1.10) by ðu1ðr; A; BÞ;u2ðr; A;BÞÞ or simply ðu1ðrÞ;u2ðrÞÞwhen there is no confusion. The solution ðu1ðrÞ;u2ðrÞÞ can be extended
to a maximal interval ð0;RÞ so that u1ðrÞ > 0 and u2ðrÞ > 0 in ð0;RÞ. Note that this includes the case that ðu1ðrÞ;u2ðrÞÞ
extended to r ¼ R and u1ðRÞu2ðRÞ ¼ 0.

We look for two types of solutions. If

u1ðrÞ > 0; u2ðrÞ > 0; u01ðrÞ < 0; u02ðrÞ < 0; 0 < r <1; ð2:1Þ

then ðu1ðrÞ;u2ðrÞÞ is a ground state solution; if

u1ðrÞ > 0; u2ðrÞ > 0; u01ðrÞ < 0; u02ðrÞ < 0; 0 < r < R;

u1ðRÞ ¼ u2ðRÞ ¼ 0;
ð2:2Þ

then ðuðrÞ;vðrÞÞ is a crossing solution. From the result of [8], any solution of (1.7) is radially symmetric thus a solution of
(1.10) satisfying (2.1), and any solution on a ball BR is also radially symmetric thus a solution of (1.10) satisfying (2.2).

Define

f ðu1;u2Þ � �k1u1 þ l1u3
1 þ bu1u2

2;

gðu1;u2Þ � �k2u2 þ l2u3
2 þ bu2

1u2;

and Fðu1;u2Þ ¼
1
2
ðk1u2

1 þ k2u2
2Þ þ

1
4
ðl1u4

1 þ 8bu2
1u2

2 þ l2u4
2Þ:

ð2:3Þ

Then it is easy to verify that @F=@u1 ¼ f and @F=@u2 ¼ g, hence the coupled Schrödinger equations is a gradient system. The
set ff ðu1;u2Þ ¼ 0g consists of the line fu1 ¼ 0g and the ellipse E1 ¼ fl1u2

1 þ bu2
2 ¼ k1g, and the set fgðu1;u2Þ ¼ 0g consists of

the line fu2 ¼ 0g and the ellipse E2 ¼ fbu2
1 þ l2u2

2 ¼ k2g. Let

b1 ¼min
k2

k1
l1;

k1

k2
l2

� �
; and b2 ¼max

k2

k1
l1;

k1

k2
l2

� �
: ð2:4Þ

Then it is easy to show that when 0 < b < b1 and b > b2, E1 and E2 intersects exactly once in the first quadrant; and when
b1 < b < b2, E1 and E2 do not intersect hence one ellipse is inside the other one (see Fig. 1). In the first case, the unique inter-
section point of f ¼ 0 and g ¼ 0 is the global minimum of the potential function Fðu1;u2Þ in the first quadrant. We assume

Fig. 1. The regions of possible initial values ðA;BÞ: solid lines are f ðu1;u2Þ ¼ 0 and gðu1;u2Þ ¼ 0 respectively; and the dashed line is Fðu1;u2Þ ¼ 0. (left):
0 < b < b1 and b > b2; (right) b1 < b < b2.
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that min Fðu1;u2Þ ¼ �c1 < 0. Define Fc ¼ fðu1;u2Þ 2 R2
þ : Fðu1;u2Þ 6 cg, then there exists 0 < c2 < c1 such that when

�c1 < c < �c2; Fc is a connected closed subset.
According to the signs of f and g, we define the following regions in R2

þ:

I ¼ fðu1;u2Þ 2 R2
þ : f ðu1;u2Þ > 0; gðu1;u2Þ > 0g;

II ¼ fðu1;u2Þ 2 R2
þ : f ðu1;u2Þ < 0; gðu1;u2Þ < 0g;

III ¼ fðu1;u2Þ 2 R2
þ : f ðu1; u2Þ < 0; gðu1;u2Þ > 0g;

IV ¼ fðu1;u2Þ 2 R2
þ : f ðu1;u2Þ > 0; gðu1;u2Þ < 0g:

ð2:5Þ

For ðA;BÞ 2 II [ III [ IV , u0 > 0 or v 0 > 0 in ð0; dÞ for small d > 0, hence it cannot be a ground state or a crossing solution. For
ðA;BÞ 2 I, u0 < 0 and v 0 < 0 in ð0; dÞ for small d > 0, thus

T ¼ TðA;BÞ ¼ supft > 0 : u1ðrÞ > 0;u2ðrÞ > 0;u01ðrÞ < 0;u02ðrÞ < 0; r 2 ð0; tÞg

exists. We partition I into the following classes:

B ¼ fðA;BÞ 2 I : T <1;u1ðTÞ ¼ 0;u01ðTÞ < 0;u2ðTÞ > 0;u02ðTÞ < 0g;
G ¼ fðA;BÞ 2 I : T <1; u1ðTÞ > 0;u01ðTÞ ¼ 0;u2ðTÞ > 0;u02ðTÞ < 0g;
R ¼ fðA;BÞ 2 I : T <1;u1ðTÞ > 0;u01ðTÞ < 0;u2ðTÞ ¼ 0;u02ðTÞ < 0g;
Y ¼ fðA;BÞ 2 I : T <1; u1ðTÞ > 0; u01ðTÞ < 0;u2ðTÞ > 0;u02ðTÞ ¼ 0g;
S ¼ fðA;BÞ 2 I : T <1;u1ðTÞ ¼ 0;u01ðTÞ < 0; u2ðTÞ ¼ 0;u02ðTÞ < 0g;
Q ¼ fðA;BÞ 2 I : T ¼ 1; lim

r!1
u1ðrÞ ¼ lim

r!1
u2ðrÞ ¼ 0g;

P ¼ I n B [ G [R [ Y [ S [ Qð Þ:

ð2:6Þ

One can show that each of B;G;R;Y is an open subset of R2
þ if it is non-empty. Indeed if ðA0;B0Þ 2 B, then the solution starting

from ðA0;B0Þ can be extended to T þ � so that u1ðT þ �Þ < �d;u01ðT þ �Þ < �d; u2ðT þ �Þ > d and u02ðT þ �Þ < �d for some d > 0.
Then there exists a neighborhood O of ðA0;B0Þ, such that for any ðA;BÞ in O, we have u1ðT þ �Þ < �d=2;
u01ðT þ �Þ < �d=2;u2ðT þ �Þ > d=2 and u02ðT þ �Þ < �d=2. Then apparently such ðA;BÞ also belongs to B. The proof for the
openness of G;R;Y is similar. The set S is the boundary between B and R representing the initial values for crossing solu-
tions, and the crossing time T satisfies u1ðTÞ ¼ u2ðTÞ ¼ 0; and each element in Q represents a ground state solution. The set
S [ Q [ P is closed in R2

þ as it is the complement of B [ G [ R [ Y. Solution curves of type B;S and R are illustrated in Fig. 2.

3. Numerical methods

We use a computational method to solve an initial value problem like (1.10). Indeed we consider a more general problem:

u001 þ n�1
r u01 þ f ðu1;u2Þ ¼ 0; r > 0;

u002 þ n�1
r u02 þ gðu1;u2Þ ¼ 0; r > 0;

u1ð0Þ ¼ A > 0; u01ð0Þ ¼ 0;
u2ð0Þ ¼ B > 0; u02ð0Þ ¼ 0;

8>>><
>>>:

ð3:1Þ

where f ; g are appropriate nonlinear functions, and A;B > 0. We first expand the system (3.1) from two second order differ-
ential equations into a system of four first order differential equations
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Fig. 2. Solution curves of (1.10) when n ¼ 3, l1 ¼ k1 ¼ k2 ¼ 1; l2 ¼ 2; b ¼ 0:01. Initial values: uð0Þ ¼ 8 in all three; (left) vð0Þ ¼ 9 (uðRÞ ¼ 0 and vðRÞ > 0);
(middle) vð0Þ ¼ 11:4 (uðRÞ ¼ vðRÞ ¼ 0, crossing solution); (right) vð0Þ ¼ 13 (uðRÞ > 0 and vðRÞ ¼ 0).

M. Essman, J. Shi / Applied Mathematics and Computation 219 (2012) 3646–3654 3649



Author's personal copy

u01 ¼ v1;

v 01 ¼ � n�1
r u01 � f ðu1;u2Þ;

u02 ¼ v2;

v 02 ¼ � n�1
r u02 � gðu1; u2Þ;

u1ð0Þ ¼ A > 0; v1ð0Þ ¼ 0;
u2ð0Þ ¼ B > 0; v2ð0Þ ¼ 0:

8>>>>>>>><
>>>>>>>>:

ð3:2Þ

We discretize the space of initial values fðA;BÞ : Ab 6 A 6 Ae;Bb 6 B 6 Beg to a two-dimensional data structure:

fðAi;BjÞ : 0 6 i 6 n; 0 6 j 6 mg;

where Ai ¼ Ab þ ði=nÞðAe � AbÞ and Bj ¼ Bb þ ðj=nÞðBe � BbÞ. Then for each initial value ðAi;BjÞ, we solve (3.2) by using an
appropriate ODE solver in Matlab, until the solution reaches a stopping time which is defined as

T ¼ supfr > 0 : u1ðrÞv1ðrÞu2ðrÞv2ðrÞ– 0g: ð3:3Þ

In fact, we only detect the stopping time if the initial value ðA;BÞ is valid, which means that it satisfies

f ðA;BÞ > 0 and gðA;BÞ > 0: ð3:4Þ

That is, if ðA; BÞ belongs to region I defined in (2.5). If ðA;BÞ 2 II
S

III
S

IV , then initially u0ðrÞ > 0 or v 0ðrÞ > 0 for small r > 0,
and the solution cannot be the one we desire. On the bifurcation graph, we use color ‘‘cyan’’ for the data point ðAi;BjÞ if
ðAi;BjÞ 2 II

S
III
S

IV .
On the other hand, if the initial value ðAi;BjÞ 2 I, then for some d > 0;u1ðrÞ;u2ðrÞ > 0 and u01ðrÞ;u02ðrÞ < 0 for r 2 ð0; dÞ,

hence T is well-defined. As the solution reaches T, we color the data point according to the classification in (2.6): ‘‘blue’’
for u1ðTÞ ¼ 0; ‘‘green’’ for u01ðTÞ ¼ 0; ‘‘red’’ for u2ðTÞ ¼ 0; and ‘‘yellow’’ for u02ðTÞ ¼ 0. Notice that it is certainly possible to have
two values equaling zero simultaneously, but in general such initial values ðA;BÞ only form boundary curves on R2

þ between
the open subsets B;G;R;Y and the cyan region C ¼ II

S
III
S

IV .
On a bifurcation diagram (see for example, Fig. 3), the cyan1 area is bordered by the highlighted curves of f ðu; vÞ ¼ 0 and

gðu;vÞ ¼ 0. We also point out that, the boundary curve between the red and blue regions gives all initial values for crossing solu-
tion for which u1ðTÞ ¼ u2ðTÞ ¼ 0; the boundary curve between the yellow and green regions gives all initial values for which
u01ðTÞ ¼ u02ðTÞ ¼ 0, which indeed gives all radially symmetric solutions satisfying Neumann boundary condition on a sphere with
jxj ¼ T. In all diagrams in Fig. 3, there is at most one common point for all four (red, blue, green, yellow) regions, and that point is
exactly the one corresponding to the ground state solution. Note that (3.1) cannot have solution with
u1ðTÞ ¼ u2ðTÞ ¼ u01ðTÞ ¼ u02ðTÞ ¼ 0 for finite T from the uniqueness of solution to ODE.

4. Numerical bifurcation diagrams

By using the numerical scheme described in Section 3, we investigate the distribution of the qualitative behavior of solu-
tions to the shooting problem (3.1). For the numerical calculation, we use the Matlab solver ode113 since it handles com-
putationally intensive problems well with an acceptable degree of accuracy. The calculation of the initial value problem is
preformed for initial value ðA;BÞ in a rectangle ½0;Amax� � ½0;Bmax�. In Figs. 3 and 4(a), we choose Amax ¼ Bmax ¼ 10, and in other
diagrams of Fig. 4, we choose Amax ¼ Bmax ¼ 5. In each diagram, we sample 3002 points to color according to the algorithm
above, hence each bifurcation diagram is a five-color dot matrix with 9� 104 dots.

From the discussion of the nonlinearities f ðu;vÞ and gðu;vÞ in coupled Schrödinger equations in Section 2, one can iden-
tify two possible bifurcation points

b1 ¼min
k2

k1
l1;

k1

k2
l2

� �
; and b2 ¼max

k2

k1
l1;

k1

k2
l2

� �
:

In [2,6,13], two other possible bifurcation points are identified. Let /a be the unique positive radially symmetric solution of

D/� a/þ /3 ¼ 0; x 2 Rn;

/ðxÞ ! 0; jxj ! 1;

(
ð4:1Þ

and for g > 0 define

�m1ðgÞ ¼ principal eigenvalue of the operator M0ðkÞ ¼ �Dk� g/2
0k: ð4:2Þ

For the existence and uniqueness of /a, we refer to [7]. It is also known [7] that M0 has a unique positive eigenvalue m1ðgÞ,
and the property of m1ðgÞ can be found in [13]. Then Theorem 1.1 of [13] (see also [6]) shows that when n ¼ 1;2;3, there exist
0 < b�1 < b�2 <1 such that when 0 < b < b�1 and b > b�2, (1.7) has a solution. Here if k1 ¼ 1, then b�i satisfy

1 For interpretation of color in Fig. 3, the reader is referred to the web version of this article.
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b�1 ¼minfba;bbg; b�1 ¼maxfba; bbg;

where m1ð
ba

l1
Þ ¼ k2; m1ð

bb

l2
Þ ¼ 1

k2
:

ð4:3Þ

One can show that (see [13] Theorems 1.2 and 1.3)

0 < b1 < b�1 < b�2 < b2:

This existence result can be shown from our numerical bifurcation diagrams of the shooting problem (3.1). In our numer-
ical experiment, we fix a set of parameters ðk1; k2;l1;l2Þ ¼ ð1;2;1;1Þ and n ¼ 3, and use b as a free parameter. Hence
b1 ¼ 0:5 and b2 ¼ 2. In Fig. 3, one can see that b�1 � 0:85. As b! ðb�1Þ

�, the green region (for which u01ðTÞ ¼ 0) shrinks to

Fig. 3. Bifurcation diagrams of (1.10). The coordinates are ðA; BÞ, the initial values in (3.1). Here 0 6 A, B 6 10, 300� 300 points in ðA;BÞ 2 ½0;10�2 are
sampled, n ¼ 3; l1 ¼ l2 ¼ 1; k1 ¼ 1; k2 ¼ 2.

M. Essman, J. Shi / Applied Mathematics and Computation 219 (2012) 3646–3654 3651
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empty near ðA;BÞ ¼ ð0;6Þ. This indicates a convergence of the ground states of the system to the semitrivial state
ðu1ðrÞ;u2ðrÞÞ ¼ ð0;/2Þ, where /2 is the unique solution of (4.1) with same k2. From Fig. 5, /2ð0Þ � 6:13. This also confirms
the bifurcation diagram suggested in [2,6].

In Fig. 3, one can see that the structure of the bifurcation diagrams undergoes several topological change as b increases
from b ¼ 0 to b ¼ 1. When 0 < b < b1, the cyan region borders the green region by the curve �1þ u2

1 þ bu2
2 ¼ 0, and borders

the yellow region by the curve �2þ u2
2 þ bu2

1 ¼ 0. Hence the boundary curve between red–green region and blue–yellow re-
gion connects with the unique intersection point of �1þ u2

1 þ bu2
2 ¼ 0 and �2þ u2

2 þ bu2
1 ¼ 0 (see Fig. 3(a) and (b)). For

b1 < b < b�1, only the yellow region encircles the non-admissible region (cyan) in the lower-left corner, and the yellow region
also shares a boundary with u2-axis while the green region shrinks (see Fig. 3(c) and (d)). For b > b�1, the blue region reaches
the vertical boundary u2-axis, and it separates the yellow and red regions (see Fig. 3(e) and (f)).

Fig. 4. Bifurcation diagrams of (1.10). The coordinates are ðA;BÞ, the initial values in (3.1). Here (except (a)) 0 6 A, B 6 5, 300� 300 points in ðA;BÞ 2 ½0;5�2

are sampled, n ¼ 3, l1 ¼ l2 ¼ 1, k1 ¼ 1, k2 ¼ 2. In (a), 0 6 A, B 6 10.
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For b�1ð� 0:85Þ < b1 < b�2ð� 1:2Þ, it has been conjectured that (1.7) has no ground state solution. Fig. 3(f) appears to sup-
port that claim as the green region (where u01ðTÞ ¼ 0) is empty for this parameter range. At b ¼ 1, the red region is also absent
on the diagram (even if we enlarge the plotting region). Hence the bifurcation diagram completely consists of blue2 and yel-
low regions when b ¼ 1 (see Fig. 4(a)).

As b increases from b ¼ 1, a similar sequence of bifurcations occurs, see Fig. 4(b)–(f). Here we use the plotting window
ðA;BÞ 2 ½0;5� � ½0;5� for a better viewing area. The red region reappears as b increases from b ¼ 1 but from the right lower
corner. At b ¼ b�2 � 1:2, the blue region touches off from u1-axis, which represents the bifurcation from semitrivial solution
ðu1ðrÞ;u2ðrÞÞ ¼ ð/1;0Þ. From Fig. 5, /1ð0Þ � 4:32, that is exactly the last touching point of the blue region with u1-axis
(Fig. 4(b)). As b crosses b�2, a green region emerges from the u1-axis, and a ground state bifurcates from the semitrivial solu-
tion. Again the ground state is indicated by the unique common point of the four regions (Fig. 4(c)). At b ¼ b2 ¼ 2 (Fig. 4(d)),
the green region reaches to the cyan region of non-admissible initial values, and for b > b2, the yellow and green regions
encircle the non-admissible region in the lower-left corner (Fig. 4(e)). But one can see that when b is large, the yellow
and green regions do not share boundary with u1 and u2 axes, which is different from the small b case (b ¼ 0:01 and
b ¼ 0:2 in Fig. 3(a) and (b)).

We also remark that our selection ðk1; k2;l1;l2Þ ¼ ð1;2;1;1Þ shows enough of asymmetry for the system displaying var-
ious bifurcation diagrams. When k1 ¼ k2 and l1 ¼ l2, the bifurcation diagram is always symmetric: the yellow and green
regions are symmetric with respect to A ¼ B, and so are the blue and red regions.

Another very degenerate case is when b ¼ l1 ¼ l2 ¼ k1 ¼ k2 ¼ 1, and if z is the unique positive radial solution of
�Dzþ z ¼ z3 in the whole space, then the pair ðcosðhÞzðxÞ; sinðhÞzðxÞÞ is a positive solution of the system, for any
h 2 ½0;p=2�, having the same energy (but different initial value), this suggest that, at least in this case, the parameters equal-
ity turn the problem into a very degenerate one, which does not possess a unique positive solution (see [17]).

We summarize our observation of numerical bifurcation diagrams and give a few conjectures to possible rigorous
approach:

1. The shooting problem (3.1) in general possesses four types of solutions with stopping condition uiðTÞ ¼ 0 or u0iðTÞ ¼ 0 for
i ¼ 1;2, and the region of each type is an open subset of R2

þ. These four regions cover most of initial values, but the bound-
ary between the regions include ground state and crossing solutions.

2. The absence of at leat one type of regions implies the non-existence of a ground state solution of the coupled Schrödinger
equations (1.7), which occurs when b 2 ðb�1; b

�
2Þ. We remark that such a non-existence result has not been proved rigor-

ously for any non-trivial case from our knowledge.
3. The common boundary point of all four regions is a ground state solution of (1.7), and from numerical experiments here,

the ground state solution is unique for these parameter values. In general, the uniqueness of the ground state of (1.7) is
not known except some special case (see [10,17,18,25]), and the nondegeneracy of the ground state is studied in [12].
However the uniqueness may not hold for some parameter values in the degenerate cases.

4. When the ground state exists, a monotone increasing curve in R2
þ separates the blue–yellow and green–red regions.

This curve contains all solutions so that u1ðTÞ ¼ u2ðTÞ ¼ 0 or u01ðTÞ ¼ u02ðTÞ ¼ 0. The monotonicity of such curve has
been proved in some similar problems [10,11], but still remains open for the coupled Schrödinger equations (1.7).
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Fig. 5. Ground state of (4.1) when n ¼ 3. (left) a ¼ 2, ground state /2ð0Þ � 6:13; (right) a ¼ 1, ground state /1ð0Þ � 4:32.

2 For interpretation of color in Fig. 4, the reader is referred to the web version of this article.
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