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NONEXISTENCE OF NONCONSTANT
POSITIVE STEADY STATES OF A DIFFUSIVE

PREDATOR-PREY MODEL WITH FEAR
EFFECT

Shanshan Chen1, Zonghao Liu1 and Junping Shi2,†

Abstract In this paper, we investigate a diffusive predator-prey model with
fear effect. It is shown that, for the linear predator functional response case,
the positive constant steady state is globally asymptotically stable if it ex-
ists. On the other hand, for the Holling type II predator functional response
case, it is proved that there exist no nonconstant positive steady states for
large conversion rate. Our results limit the parameters range where complex
spatiotemporal pattern formation can occur.
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1. Introduction
The interaction between predator and prey is one of fundamental ecological phe-
nomena. Adding the random movement in the spatial habitat, reaction-diffusion
systems have been used to described the interaction and dispersal of the predator
and prey species [1,6,7,15,17,18,21,22]. Recently some researchers found that the
fear of the predators could lead to the reduction of the prey, see [8–10, 19, 23] and
references therein. A reaction-diffusion predator-prey system with fear effect and
predator-taxis is proposed in [20]:

∂u

∂t
= d1∆u+ α∇ · (β(u)u∇v) +

ru

1 + kv
− du− au2 − buv

1 + qu
, x ∈ Ω, t > 0,

∂v

∂t
= d2∆v −m1v −m2v

2 +
cuv

1 + qu
, x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ ( ̸≡)0, v(x, 0) = v0(x) ≥ (̸≡)0,

(1.1)
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where u(x, t) and v(x, t) are the density functions of the prey and predator pop-
ulation; Ω is a bounded domain in RN (N ≤ 3) with a smooth boundary ∂Ω; d1
and d2 are the diffusion coefficients of the prey and predator respectively, and
α∇ · (β(u)u∇v) represent the predator-taxis that predator moves toward high prey
concentration location; m1 > 0 and m2 ≥ 0 account for the death rate and crowding
effect of the predator, r > 0 and d > 0 are the birth and death rates of the prey
respectively, and a > 0 reflects the intro-species competition of the prey; b > 0
and c > 0 measure the interaction strength between the predator and prey; q ≥ 0
measures the prey’s ability to evade attack and u/(1 + qu) is the Holling type II
functional response; and k > 0 represents the fear effect. For the corresponding
kinetic model, it is known that high levels of fear can stabilize the positive steady
state, and low levels of fear can induce multiple limit cycles leading to bistable
phenomenon [19]. For the diffusive model (1.1) with q = 0, it is shown that the
unique positive constant steady state is globally asymptotically stable under certain
conditions, and for q ̸= 0, complex spatiotemporal pattern formation can occur [20].

In this paper, we revisit model (1.1) without considering the predator-taxis, that
is, 

∂u

∂t
= d1∆u+

ru

1 + kv
− du− au2 − buv

1 + qu
, x ∈ Ω, t > 0,

∂v

∂t
= d2∆v −m1v −m2v

2 +
cuv

1 + qu
, x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ (̸≡)0, v(x, 0) = v0(x) ≥ (̸≡)0.

(1.2)

We find that, for q = 0 (Lotka-Volterra case), the positive constant steady state
is globally asymptotically stable if exists, and for q ̸= 0 (Holling Type II case),
there exists no nonconstant positive steady states with large conversion rate c. Our
result for global stability is proved under weaker condition that the ones in [20] but
also without predator-taxis. Our results give some ranges for the model parameters
within which, spatiotemporal pattern formation cannot occur, and supplement some
results obtained in [20].

The model (1.2) is a variant of more commonly studied Rosenzweig-MacArthur
predator-prey model with Holling type II functional response [13, 18, 22]. By using
conversion rate c as a variable parameter, they showed the existence of Hopf and
steady state bifurcations, and there exist no nonconstant steady states when c is
large or small, which implies that the global bifurcating branches of steady state
solutions of system are bounded loops. Related results were also obtained for the
diffusive predator-prey model with Holling type III predator functional response
[2,16], or other more general functional responses [4], or other growth functions [5],
or delay effect [3].

The rest of the paper is organized as follows. In Section 2, we consider the global
stability of the constant positive steady state for the Lotka-Volterra predation case.
In Section 3, we show the nonexistence of nonconstant positive steady states for the
Holling type II predation case.

2. The Lotka-Volterra case
In this section, we show that, when q = 0, the constant positive steady state
of model (1.2) is globally asymptotically stable if it exists. Therefore, complex
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pattern formation cannot occur. Clearly, for q = 0, model (1.2) has a constant
positive steady state (u∗, v∗) if and only if r > d+ am1

c , see [20]. Then we have:

Theorem 2.1. Assume that r > d +
am1

c
and q = 0. Then system (1.2) has a

unique positive constant (u∗, v∗) which is globally asymptotically stable.

Proof. Let h(v) =
krv

1 + kv
+ bv, and construct a Lyapunov functional as follows:

V (u, v) = c

∫
Ω

∫ u

u∗

ξ − u∗

ξ
dξdx+

∫
Ω

∫ v

v∗

h(η)− h(v∗)

η
dηdx. (2.1)

If (u(x, t), v(x, t)) is a solution of system (1.2), then

dV (u(x, t), v(x, t))

dt
=c

∫
Ω

(u− u∗)[au∗ + h(v∗)− au− h(v)]dx

+

∫
Ω

[h(v)− h(v∗)](−cu∗ +m2v∗ −m2v + cu)dx

− cd1u∗

∫
Ω

|∇u|2

u2
dx− d2

∫
Ω

h′(v)v − h(v) + h(v∗)

v2
|∇v|2dx

=− cd1u∗

∫
Ω

|∇u|2

u2
dx− d2

∫
Ω

h′(v)v − h(v) + h(v∗)

v2
|∇v|2dx

− ca

∫
Ω

(u− u∗)
2dx−m2

∫
Ω

(v − v∗)[h(v)− h(v∗)]dx.

(2.2)

Since h′(v) > 0 and h′′(v) < 0 for v ∈ (0,∞), it follows that

dV (u(x, t), v(x, t))

dt
≤ 0,

and the equality holds if and only if u(x, t) = u∗ and v(x, t) = v∗. Therefore,
(u∗, v∗) is globally asymptotically stable from LaSalle Invariance Principle.

In [20] Theorem 4.2, a global stability result was proved under extra condition
for the predator-taxis case. Here we prove the global stability of constant steady
state holds whenever it exists.

For the sake of completeness, we also describe the dynamics of (1.2) for r <
d+ am1

c and q = 0 in the following. The main method is the comparison principle,
and here we omit the proof.

Theorem 2.2. Assume that q = 0. Then

1. if d < r < d +
am1

c
, then the prey-only constant steady state (

r − d

a
, 0) is

globally asymptotically stable;
2. if 0 < r < d, then the trivial steady state (0, 0) is globally asymptotically

stable.

From Theorems 2.1 and 2.2, the dynamics of (1.2) is completely classified when
q = 0, which is similar to the classical Lotka-Volterra predator-prey model.
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3. The Holling type II case
In this section, we consider the case of Holling type II functional response (q ̸= 0),
and we investigate the positive steady states of (1.2) for large c, which satisfy the
following system

−d1∆u =
ru

1 + kv
− du− au2 − buv

1 + qu
, x ∈ Ω,

−d2∆v = −m1v −m2v
2 +

cuv

1 + qu
, x ∈ Ω,

∂nu = ∂nv = 0, x ∈ ∂Ω.

(3.1)

It follow from the first equation of model (3.1) that

(r − d)

∫
Ω

udx >

∫
Ω

(
ru

1 + kv
− du)dx > 0,

which implies that r > d if u(x) and v(x) are positive. Therefore, if r < d, then
system (3.1) has no positive solutions, and we will only consider the case of r > d
in the following.

By virtue of the transformation w = cu, z = bv and ρ = 1/c, we see that (w, z)
satisfies 

−d1∆w =
rbw

b+ kz
− dw − aρw2 − wz

1 + qρw
, x ∈ Ω,

−d2∆z = −m1z −
m2

b
z2 +

wz

1 + qρw
, x ∈ Ω,

∂nw = ∂nz = 0, x ∈ ∂Ω.

(3.2)

Then the nonexistence of positive solutions of system (3.1) for large c is equivalent
to that of system (3.2) for small ρ. We first sketch the main steps to prove the
nonexistence, and the method is motivated by the one in [13]:

Step 1: We show that, for ρ = 0, system (3.2) has a unique positive solution, which
is constant and non-degenerate;

Step 2: We show that, if (wi(x), zi(x)) is a positive solution of system (3.2) for
ρ = ρi, where i = 1, 2, · · · , and lim

i→∞
ρi = 0, then there exists a subsequence

{ik}∞k=1 such that (wik(x), zik(x)) → (w̃(x), z̃(x)) in C2(Ω) as k → ∞, where
(w̃(x), z̃(x)) is a positive solution of system (3.2) for ρ = 0.

Then it follow from the implicit function theorem that system (3.2) has no noncon-
stant positive solutions for small ρ.

We first prove Step 1.

Proposition 3.1. Assume that r > d and ρ = 0. Then system (3.2) has a unique
positive solution (w∗, z∗), where z∗ is the unique positive root of

rb

b+ kz
− d− z = 0,

and w∗ = m1 +
m2

b
z∗.
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Proof. It is easy to verify that (w∗, z∗) is the unique constant positive solution of
system (3.2) for ρ = 0. Let

V1(w, z) =

∫
Ω

{
w − w∗

w

[
d1∆w + w

(
rb

b+ kz
− d− z

)]}
dx

+

∫
Ω

{
h1(z)− h1(z∗)

z

[
d2∆z + z

(
−m1 −

m2

b
z + w

)]}
dx,

where
h1(z) = z +

krz

b+ kz
.

As in the proof of Theorem 2.1, we calculate that

V1(w, z) =− d1w∗

∫
Ω

|∇w|2

w2
dx− d2

∫
Ω

h′
1(z)z − h1(z) + h1(z∗)

z2
|∇z|2dx

− m2

b

∫
Ω

(z − z∗)[h1(z)− h1(z∗)]dx.

Noticing that h′
1(v) > 0 and h′′

1(v) < 0 for v ∈ (0,∞), we have V1(w, z) ≤ 0. If
(w(x), z(x)) is a positive solution of system (3.2) for ρ = 0, then V1(w, z) = 0, which
implies that w(x) and z(x) are constant. This completes the proof.

For Step 2, we need to use the following two well-known results. The first one
is from [11].

Lemma 3.1 (Lemma 2.1, [11]). Assume that Ω is a bounded domain in RN with
smooth boundary, and d is a nonnegative constant. If z ∈ W 1,2(Ω) is a non-negative
weak solution of the following inequalities{

−∆z + dz ≥ 0, x ∈ Ω,

∂νz ≤ 0, x ∈ ∂Ω,

then, for any q ∈
[
1, N

N−2

)
, there exists a positive constant C such that

∥z∥q ≤ C inf
x∈Ω

z,

where C is determined only by q, d and Ω.

The second one is a Harnack inequality from [12,14].

Lemma 3.2 (Lemma 2.2, [12]). Assume that Ω is a bounded domain in RN with
smooth boundary, and c(x) ∈ Lq(Ω) for some q > N/2. If z ∈ W 1,2(Ω) is a
non-negative weak solution of the following problem{

∆z + c(x)z = 0, x ∈ Ω,

∂νz = 0, x ∈ ∂Ω,

then, there exists a positive constant C such that

sup
x∈Ω

z ≤ C inf
x∈Ω

z,

where C is determined only by ∥c(x)∥q, q, and Ω.
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Based on Lemmas 3.1 and 3.2, we have the following a priori estimate for the
positive solutions of system (3.2).

Proposition 3.2. Assume that r > d, and (wi(x), zi(x)) is a positive solution of
system (3.2) for ρ = ρi, where i = 1, 2, · · · , and lim

i→∞
ρi = 0. Then there exists a

subsequence {ik}∞k=1 such that (wik(x), zik(x)) → (w̃(x), z̃(x)) in C2(Ω) as k → ∞,
where (w̃(x), z̃(x)) is a positive solution of system (3.2) for ρ = 0.

Proof. We first show the existence of the upper bounds for {wi(x)}∞i=1 and {zi(x)}∞i=1.
For m2 = 0, we have

−d2∆zi +m1zi =
wizi

1 + qρiwi
> 0,

and it follows from Lemma 3.1 that there exists a positive constant C1 such that

∥zi∥2 ≤ C2 inf
Ω

zi for all i ≥ 1. (3.3)

We claim that there exists a positive constant C2 such that

∥zi∥2 ≤ C2 for all i ≥ 1. (3.4)

If it is not true, then there exists a subsequence {ik}∞k=1 such that limk→∞ ∥zik∥2 =
∞, which implies that zik → ∞ uniformly on Ω as k → ∞ from Eq. (3.3). Note
that 0 < ρiwik ≤ r−d

a from the comparison principle. Then, for sufficiently large k,∫
Ω

wik

(
rb

b+ kzik
− d− aρikwik − zik

1 + qρikwik

)
dx < 0,

which is a contradiction. Therefore, Eq. (3.4) holds.
For m2 ̸= 0, it follows from system (3.2) that

m1

∫
Ω

zidx+
m2

b

∫
Ω

z2i dx =

∫
Ω

wizi
1 + qρiwi

dx ≤
∫
Ω

rbwi

b+ kzi
dx,∫

Ω

wi

1 + qρiwi
dx−

∫
Ω

m1dx− m2

b

∫
Ω

zidx = −d2

∫
Ω

1

z2i
|∇zi|2dx ≤ 0.

(3.5)

This, combined with the fact that 0 < ρiwi ≤ r−d
a , implies that

m2

b
∥zi∥22 ≤ rbm1|Ω|

[
1 +

q(r − d)

a

]
+ rm2|Ω|

1
2

[
1 +

q(r − d)

a

]
∥zi∥2.

Therefore, Eq. (3.4) also holds.
Then there exists a positive constant C3 such that∥∥∥∥ rb

b+ kzi
− d− aρiwi −

zi
1 + qρiwi

∥∥∥∥
2

≤ C3 for all i ≥ 1,

and from Lemma 3.2, we see that there exists a positive constant C4 such that

sup
Ω

wi ≤ C4 inf
Ω

wi for all i ≥ 1. (3.6)
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We claim that there exists a positive constant C5 such that

sup
Ω

wi ≤ C5 for all i ≥ 1. (3.7)

By way of contradiction, there exists a subsequence {ik}∞k=1 such that

lim
k→∞

sup
Ω

wik = ∞,

which implies that wik → ∞ uniformly on Ω as k → ∞ from Eq. (3.6). It follows
from Eq. (3.4) and the second equation of (3.5) that

a

a+ q(r − d)
inf
Ω

wi ≤ m1 +
m2

b
|Ω|− 1

2C2,

which is a contraction, and consequently Eq. (3.7) holds. Similarly, by virtue of
Lemma 3.2 and Eq. (3.7), we see that there exists a positive constant C6 such that

sup
Ω

zi ≤ C6 inf
Ω

zi for all i ≥ 1. (3.8)

Then, it follows from the first equation of (3.5) that

m1 inf
Ω

zi ≤ rb sup
Ω

wi ≤ rbC5 for all i ≥ 1.

This, combined with Eq. (3.8), implies that there exists a positive constant C7 such
that

sup
Ω

zi ≤ C7 for all i ≥ 1. (3.9)

Now, we derive the lower bounds for {wi(x)}∞i=1 and {zi(x)}∞i=1. We claim that
there exists a positive constant C8 such that

inf
Ω

wi ≥ C8 for all i ≥ 1. (3.10)

If it is not true, then there exists a subsequence {ik}∞k=1 such that limk→∞ infΩ wik =
0. This, combined with Eq. (3.6), implies that wik → 0 uniformly on Ω as k → ∞.
Then, for sufficiently large k,∫

Ω

zik

(
−m1 −

m2

b
zik +

wik

1 + qρikwik

)
dx < 0,

which is a contradiction, and consequently Eq. (3.10) holds. Then we claim that
there exists a positive constant C9 such that

inf
Ω

zi ≥ C9 for all i ≥ 1. (3.11)

If it does not hold, then there exists a subsequence {ik}∞k=1 such that limk→∞ zik =
0, which implies that zik → 0 uniformly on Ω as k → ∞ from Eq. (3.8). Note that
limk→∞ ρikwik → 0 uniformly on Ω as k → ∞. It follows that, for sufficiently large
k, ∫

Ω

wik

(
rb

b+ kzik
− d− aρikwik − zik

1 + qρikwik

)
dx > 0,
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which is a contradiction, and consequently Eq. (3.11) holds.
From the above analysis, we see that {wi(x)}∞i=1 and{zi(x)}∞i=1 are bounded in

L∞(Ω). It follows from the Lp theory that we obtain that {wi(x)}∞i=1, {zi(x)}∞i=1

are bounded in W 2,p(Ω) for any p > N . By virtue of the embedding theorem,
we see that {wi(x)}∞i=1, {zi(x)}∞i=1 are precompact in C1(Ω). Then, there exists a
subsequence {ik}∞k=1 and (w̃(x), z̃(x)) ∈ C1(Ω)× C1(Ω) such that

(wik(x), zik(x)) → (w̃(x), z̃(x)) in C1(Ω) as k → ∞.

Since

wik =[−d1∆+ I]−1

[
wik + wik

(
rb

b+ kzik
− d− aρikwik − zik

1 + qρikwik

)]
,

zik =[−d2∆+ I]−1

[
zik + zik

(
−m1 −

m2

b
zik +

wik

1 + qρikwik

)]
,

(3.12)

and limk→0 ρikwik = 0 in C1(Ω), we see that (w̃(x), z̃(x)) is a positive solution of
system (3.2) for ρ = 0, and it follows from the Schauder theory that

(wik , zik) → (w̃(x), z̃(x)) in C2(Ω) as k → ∞.

This completes the proof.
Now, based on Propositions 3.1 and 3.2, we prove that that system (3.2) has no

nonconstant positive solutions for small ρ.

Theorem 3.1. Assume that r > d. Then there exists a positive constant ρ∗ such
that system (3.2) has a unique positive constant solution and has no nonconstant
positive solutions for ρ ∈ (0, ρ∗).

Proof. By way of contradiction, there exists {ρi}∞i=1 such that limi→∞ ρi = 0, and
system (3.2) has a nonconstant positive steady state (wi(x), zi(x)) for ρ = ρi (i =
1, 2, 3, · · · ). It follows from Theorems 3.1 and 3.2 that there exists a subsequence
{ik}∞k=1 such that (wik(x), zik(x)) → (w∗, z∗) in C2(Ω) as k → ∞, where (w∗, z∗)
defined as in Theorem 3.1 is the unique positive solution of system (3.2) for ρ = 0.
Note that 0 is not the eigenvalue with respect to (w∗, z∗) for the corresponding
parabolic equations when ρ = 0. Then, by virtue of the implicit function theorem,
we obtain that there exists ρ∗ > 0 such that, for ρ ∈ (0, ρ∗), system (3.2) has a
unique positive solution in the neighborhood of (w∗, z∗) in C1(Ω), which is constant.
This implies that (wik(x), zik(x)) is constant for sufficiently large k, which is a
contradiction. This completes the proof.

Then we obtain that the original system (3.1) has no nonconstant positive so-
lutions for large conversion rate c.

Corollary 3.1. Assume that r > d. Then there exists a positive constant c∗ such
that system (3.1) has a unique constant positive solution and has no nonconstant
positive solutions for c > c∗.
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