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Abstract. An attraction-repulsion chemotaxis model with nonlinear chemo-
tactic sensitivity functions and growth source is considered. The global-in-time

existence and boundedness of solutions are proved under some conditions on

the nonlinear sensitivity functions and growth source function. Our results
improve the earlier ones for the linear sensitivity functions.

1. Introduction. In this paper, we consider the following parabolic-elliptic-elliptic
attraction-repulsion chemotaxis model with nonlinear chemotactic sensitivity functi-
ons and a growth source function:

∂u

∂t
= ∆u− χ∇ · (ψ(u)∇v) + ξ∇ · (φ(u)∇w) + f(u), x ∈ Ω, t > 0,

0 = ∆v − γv + δu, x ∈ Ω, t > 0,

0 = ∆w − ηw + ρu, x ∈ Ω, t > 0,
∂u(x, t)

∂ν
=
∂v(x, t)

∂ν
=
∂w(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

Here u(x, t) represents the density of cells at location x ∈ Ω and time t, v(x, t)
denotes the concentration of an attractive chemical signal and w(x, t) is the concen-
tration of a repulsive chemical signal; Ω is a bounded domain in Rn (n ≥ 1) with
smooth boundary ∂Ω; homogeneous Neumann boundary condition is imposed for u,
v and w so that the system is a closed one; the smooth function f(u) is the growth
rate of the cells; positive parameters χ and ξ are the chemotactic coefficients, which
measure the strength of the attraction and repulsion respectively; the mortality
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rates of v and w are γ and η respectively, and parameters δ and ρ are growth rates
of the chemicals; and the chemotactic movements are cell density dependent which
are indicated by nonlinear functions ψ(u) and φ(u). Here the equations of v and
w are assumed to be in steady state mode due to different reaction time scales. So
(1.1) is a coupled system of a quasilinear parabolic equation and two linear elliptic
equations.

Throughout the paper, we assume that functions f(u), ψ(u) and φ(u) satisfy the
following hypotheses:

(H1) The function f(u) ∈ C1([0,∞)), and f(0) ≥ 0;
(H2) The functions ψ(u), φ(u) ∈ C2([0,∞)), and 0 ≤ ψ(u) ≤ up with some p > 0

for all u ≥ 0,

and one of the following hypotheses:

(H3) The functions f(u) and φ(u) satisfy f(u) ≤ a − b(1 + u)r and 0 ≤ φ(u) ≤
(1 + u)q with some a > 0, b > 0, r ≥ 2 and q > 0, for all u ≥ 0; or

(H4) The function f(u) satisfies f(u) ≤ a − bur with some a > 0, b > 0, r ≥ 2,
for all u ≥ 0; The function φ(u) satisfies φ(u) = uq, q > 0, u ≥ u∗ with u∗ > 1.

The studies of system (1.1) is motivated by recent extensive investigation of che-
motaxis models arisen from biology. Chemotaxis is a chemosensitive movement of
biological species which detects and responds to chemical substances in the envi-
ronment. The first chemotaxis model was proposed by Keller and Segel [18], which
describes the aggregation process of the slime mold formation in Dictyostelium
Discoidium. In the Keller-Segel model, the cell movement is directed towards the
increasing chemical signal concentration, which is called the attractive chemotaxis.
There have been numerous results on the boundedness and blow-up of the soluti-
ons of Keller-Segel type models, and a remarkable characteristics of such models is
that solution blow-up may occur in a finite time and whether the blow-up occurs
or not is not only dependent on the initial data, but also the spatial dimension n
and geometric shape of the spatial region Ω. It was known that when n = 1, all
the solutions are globally bounded [29], and when n ≥ 2, solution blow-up may
happen [12, 13, 41]. Furthermore, under some additional assumptions, when n ≥ 2,
the global existence and boundedness of solutions was also obtained in [27, 39]. A
recent survey of Keller-Segel type chemotaxis models can be found in [4].

There is another type chemotaxis model called repulsive chemotaxis, which in-
dicates that cells move away from the increasing signal concentration and it also
produces various interesting biological phenomena (see [10, 30, 43] for instance).
There are only a few work concerning the repulsive chemotaxis systems. In [5], the
global existence of smooth solutions and convergence to steady states based on a
Lyapunov functional approach were obtained with f(u) = u when n = 2, and when
n = 3, 4, the global existence of weak solutions was obtained. In [33, 38], it was
shown that under some assumptions, the classical solutions to the repulsion che-
motaxis model are uniformly bounded in time and converge to the constant steady
state as time goes to infinity.

Many biological processes may involve interactions between cells and a com-
bination of attractive and repulsive signalling chemicals, and the corresponding
attraction-repulsion chemotaxis model was proposed in [26, 30] to describes the
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aggregation process of microglia:

∂u

∂t
= ∆u− χ∇ · (u∇v) + ξ∇ · (u∇w) + f(u), x ∈ Ω, t > 0,

τ1
∂v

∂t
= ∆v − γv + δu, x ∈ Ω, t > 0,

τ2
∂w

∂t
= ∆w − ηw + ρu, x ∈ Ω, t > 0,

∂u(x, t)

∂ν
=
∂v(x, t)

∂ν
=
∂w(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

(1.2)

For the case without growth term (f(u) ≡ 0), it was shown in in [34] that the
solutions of (1.2) are globally bounded for the full parabolic case of τ1 = τ2 = 1 and
n = 2 if the repulsion prevails over the attraction and the initial mass is small. In
[15, 24], when the repulsion dominates over the attraction, the global existence of
classical solutions of (1.2) when n = 2 for any nonnegative initial data was proved,
and the global existence of a weak solution when n = 3 was also obtained in [15].
On the other hand, when 0 ≤ f(u) ≤ a − bur for all u ≥ 0 (a, b > 0, r ≥ 1), the
global existence and uniform boundedness of the classical solution of (1.2) when
τ1 = τ2 = 1 and n = 1, 2 were proved in [20, 22].

Since the chemicals diffuse much faster than cells, then the cases that τ1 = τ2 =
0 (parabolic-elliptic-elliptic) or τ1 = 1 and τ2 = 0 (parabolic-parabolic-elliptic)
of (1.2) have also been considered. For the parabolic-elliptic-elliptic case without
growth term, it was shown in [32, 34] that the solutions are globally bounded when
n ≥ 1 and the repulsion dominates over the attraction; while blow-up may occur
if the attraction dominates the repulsion when n = 2. In [44], the parabolic-
elliptic-elliptic case of (1.2) with logistic source was considered, and the global
existence of solutions and asymptotic behavior of solutions were obtained under
some additional conditions. The parabolic-parabolic-elliptic case was considered
recently in [17]: again when the repulsion dominates the attraction, the global
existence of uniformly-in-time bounded classical solutions with large initial data
was proved, and if the attraction dominates. solution blow-up may occur. Such
model without repulsive signalling chemicals were also studied by many people, see
[3, 7, 8, 9, 21, 37, 45, 46, 47] for example.

Furthermore there have been many other work on other aspects of the attraction-
repulsion chemotaxis model (1.2): traveling wave [31], steady states [23, 25], time-
periodic solutions and pattern formation [25], global attractor and convergence to
stationary solution [16].

In this paper, we consider the parabolic-elliptic-elliptic attraction-repulsion che-
motaxis model with growth source (1.1). Our main global existence results are as
follows:

Theorem 1.1. Let Ω be a bounded domain in Rn (n ≥ 1) with smooth boundary
∂Ω. Suppose that the parameters χ, ξ, γ, δ, η, ρ > 0, the functions f(u), ψ(u) and
φ(u) satisfy (H1), (H2) and (H3), and the parameters in (H2) and (H3) satisfy
a, b, p, q > 0 and r ≥ 2; the initial condition u0 ∈ W 1,∞(Ω), and u0(x) ≥ 0 for
x ∈ Ω. If one of the following sets of conditions holds:

(i)

p ≥ p0 = max

{
1,

2

n

}
, 0 < q ≤ p ≤ r − 1, b > b0, (1.3)
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where

b0 = 3χδ
pn− 2

pn+ 2p− 2
; (1.4)

or
(ii)

0 < p <
2

n
, 0 < q ≤ p ≤ r − 1, (1.5)

then the system (1.1) possesses a unique global classical solution that is bounded in
Ω× (0,∞).

Under different assumptions on f(u) and φ(u), we have another different global
existence result:

Theorem 1.2. Let Ω be a bounded domain in Rn (n ≥ 1) with smooth boundary
∂Ω. Suppose that the parameters χ, ξ, γ, δ, η, ρ > 0, the functions f(u), ψ(u) and
φ(u) satisfy (H1), (H2) and (H4), and the parameters in (H2) and (H4) satisfy
a, b, p, q > 0 and r ≥ 2; the initial condition u0 ∈ W 1,∞(Ω), and u0(x) ≥ 0 for
x ∈ Ω. If one of the following sets of conditions holds:

(iii)

q ≥ q0 = max

{
1,

2

n

}
, 0 < p ≤ q ≤ r − 1, b > b1, (1.6)

where

b1 =
qn− 2

qn− 2 + 2q

(
δχ− ξρ+

2(q − p)δχ
qn− 2 + 2p

)
; (1.7)

or
(iv)

0 < q <
2

n
, 0 < p ≤ q ≤ r − 1, (1.8)

Then the system (1.1) possesses a unique global classical solution that is bounded in
Ω× (0,∞).

We can apply Theorems 1.1 and 1.2 to the following model with power chemo-
tactic sensitivity functions:

∂u

∂t
= ∆u− χ∇ · (up∇v) + ξ∇ · (uq∇w) + f(u), x ∈ Ω, t > 0,

0 = ∆v − γv + δu, x ∈ Ω, t > 0,

0 = ∆w − ηw + ρu, x ∈ Ω, t > 0,
∂u(x, t)

∂ν
=
∂v(x, t)

∂ν
=
∂w(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(1.9)

where f(u) ≤ a− b(1 +u)r with some a > 0, b > 0 and r ≥ 2. Apparently Theorem
1.1 covers the case of p ≥ q, while Theorem 1.2 deals with the case of p ≤ q.
Combining Theorems 1.1 and 1.2, we have a quite complete picture for the question
of global existence and boundedness of solutions to (1.9) in the following diagram
and corollary:

Corollary 1.3. Let Ω be a bounded domain in Rn (n ≥ 1) with smooth boundary
∂Ω. Suppose that the parameters χ, ξ, γ, δ, η, ρ > 0, f ∈ C1([0,∞)), f(0) ≥ 0, and
f(u) ≤ a − b(1 + u)r with some a > 0, b > 0 and r ≥ 2. Then the system (1.9)
possesses a unique global classical solution that is bounded in Ω× (0,∞) if (see Fig.
1)
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Figure 1. Regions in (p, q) plane where the global existence and
boundedness of solutions to (1.9) are proved. The regions labelled
by (i), (ii), (iii) and (iv) correspond to the ones defined in Theo-
rems 1.1 and 1.2, and for the region labelled with ?, the result is
not known. Left: n ≤ 2; Right: n > 2.

1. n = 1, 2, and 0 ≤ p, q ≤ 2/n, or 2/n ≤ max{p, q} ≤ r − 1 and b large; or
2. n ≥ 3, and 0 ≤ p, q ≤ 2/n, or 1 ≤ max{p, q} ≤ r − 1 and b large.

Note that our results for system (1.9) are symmetric with respect to the two
exponents p and q, and our results in Corollary 1.3 generalize earlier results with
linear sensitivity functions in [44, Theorem 1.1] and [22, Theorem 1.1, 1.2] in which
the case of p = q = 1 is considered. For the case of n = 1 or 2, our results cover all
small p, q values (≤ r− 1). On the other hand, for the case of n ≥ 3, there is still a
gap region (see Fig. 1 right panel) for which the global existence and boundedness
of solutions to (1.9) is not known.

The organization of the remaining part of the paper is as follows. In Section 2,
we recall some preliminaries and also obtain the local existence of the solution. In
Section 3, global existence and boundedness of the solution under one sets of as-
sumptions is obtained, while in Section 4, results under another sets of assumptions
are obtained. We use ‖ · ‖Lp(Ω) as the norm of Lp(Ω), 1 ≤ p ≤ ∞; and ‖ · ‖Wm,p(Ω)

as the norm of Wm,p(Ω), m = 1, 2, 1 ≤ p ≤ ∞.

2. Local existence and preliminaries. First we state the local-in-time existence
result of a classical solution of (1.1), which is similar to the ones in [34, 37, 45, 6,
35, 42].

Lemma 2.1. Assume that the initial data satisfies u0 ≥ 0 and u0 ∈W 1,∞(Ω), the
function ψ(u) and φ(u) are nonnegative which satisfy (H2) and (H3) (or (H2) and
(H4)), and the function f satisfies (H1). Then there exists a positive constant Tmax
(the maximal existence time) such that the system (1.1) has a unique non-negative
classical solution (u(x, t), v(x, t), w(x, t)) which belongs to C0(Ω×(0, Tmax))∩C2,1(Ω
×(0, Tmax)). If Tmax <∞, then

lim
t→Tmax

||(u(·, t)||L∞(Ω) =∞. (2.1)
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Proof. Let T ∈ (0, 1) be a positive constant which is to be determined below. Define
the Banach space

X := C0(Ω× [0, T ]), (2.2)

and we consider the closed bounded convex subset of X,

S := {u ∈ X : ||u(·, t)||L∞(Ω) ≤ R for all t ∈ [0, T ]}, (2.3)

where R = ||u0||L∞(Ω) + 1. We define a mapping Θ : S → S so that Θ(u) = u,
where u ∈ X and u is the unique solution of

∂u

∂t
= ∆u− χ∇ · (ψ(u)∇v) + ξ∇ · (φ(u)∇w) + f(u), x ∈ Ω, t ∈ [0, T ],

∂u(x, t)

∂ν
= 0, x ∈ ∂Ω, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ω.

(2.4)
with v being the solution of0 = ∆v − γv + δu, x ∈ Ω, t ∈ [0, T ],

∂v(x, t)

∂ν
= 0, x ∈ ∂Ω, t ∈ [0, T ],

(2.5)

and w being the solution of0 = ∆w − ηw + ρu, x ∈ Ω, t ∈ [0, T ],
∂w(x, t)

∂ν
= 0, x ∈ ∂Ω, t ∈ [0, T ].

(2.6)

Then we will use the Schauder fixed point theorem to show that Θ has a fixed point
in S for T small enough. From the elliptic regularity theory in [11, Theorem 8.34],
there exists a unique solution v(x, t) ∈ C1+ι,0(Ω× [0, T ]) to (2.5) for each ι ∈ (0, 1).
Similarly, there is a unique solution w(x, t) ∈ C1+ι,0(Ω × [0, T ]) to (2.6) . Then
by elliptic Lp-estimates and the Sobolev embedding theorem, there exist positive
constants c1, c2 such that

||∇v||L∞(Ω×(0,T )) ≤ c1||∆v||L∞((0,T );W 2,p(Ω)) ≤ c2||u||L∞((0,T );Lp(Ω)) (2.7)

where p > n. Similarly, we have

||∇w||L∞(Ω×(0,T )) ≤ c3||∆w||L∞((0,T );W 2,p(Ω)) ≤ c4||u||L∞((0,T );Lp(Ω)) (2.8)

where c3, c4 > 0. Thus, according the classical parabolic regularity theory in [19,
Theorem V6.1], there exist ι ∈ (0, 1) and A > 0 such that

||u||
Cι,

ι
2 (Ω×[0,T ])

≤ A (2.9)

for u ∈ Cι, ι2 (Ω× [0, T ]), where A depends on ||∇v||L∞((0,T );Cι(Ω)) and

||∇w||L∞((0,T );Cι(Ω)). Hence, we have

max
0≤t≤T

||u(·, t)||L∞(Ω) ≤ ||u0||L∞(Ω) +At
ι
2 . (2.10)

Now, choosing T < A−
2
ι in (2.10), then we get

max
0≤t≤T

||u(·, t)||L∞(Ω) ≤ ||u0||L∞(Ω) + 1. (2.11)

So Θ maps S into itself for 0 ≤ t ≤ T , which is shown to be a compact mapping
from (2.9). Therefore, the Schauder fixed point theorem ensures the existence of a
fixed point u ∈ S of Θ. Using the regularity theory for elliptic equations we have
(v(·, t), w(·, t)) ∈ (C2+ι(Ω))2. Then we get (v, w) ∈ (C2+ι, ι2 (Ω × [τ, T ]))2 for all
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τ ∈ (0, T ) by (2.9). The regularity theory for parabolic equations [19, Theorem
V6.1] ensures that u ∈ C2+ι,1+ ι

2 (Ω × [τ, T ]). The solution may be extended to a
maximal interval [0, Tmax), and either if Tmax =∞ or Tmax <∞, where the latter
case entails that (2.1) holds.

Since f(0) ≥ 0, then the parabolic comparison principle ensures that u is nonne-
gative. Moreover applying the elliptic comparison principle to the second and third
equations in (1.1) implies v and w are nonnegative.

Next we recall some preliminary estimates which will be used in our proof. First
we review some well-known estimates for the diffusion semigroup for the homoge-
neous Neumann boundary conditions (see [14]).

Lemma 2.2. Assume that m ∈ {0, 1}, i ∈ [1,∞] and j ∈ (1,∞), then there exists
some positive constant c5, for any u ∈ D((−∆ + 1)θ) such that

||u||Wm,i(Ω) ≤ c5||(−∆ + 1)θu||Lj(Ω), (2.12)

where θ ∈ (0, 1) satisfies

m− n

i
< 2θ − n

j
.

If in addition j ≥ i, then there exist c6 > 0 and γ > 0 such that for any u ∈ Li(Ω),

||(−∆ + 1)θet(∆−1)u||Lj(Ω) ≤ c6t−θ−
n
2 ( 1

i−
1
j )e−γt||u||Li(Ω), (2.13)

where the associated diffusion semigroup {et(∆−1)}t≥0 maps Li(Ω) into D((−∆ +
1)θ). Moreover, for given i ∈ (1,∞) and any ε > 0, there exist c7 > 0 and µ > 0
such that

||(−∆ + 1)θet∆∇ · u||Li(Ω) ≤ c7t−θ−
1
2−εe−µt||u||Li(Ω) (2.14)

holds for all Rn-valued u ∈ Li(Ω).

The following Gagliardo-Nirenberg inequality also plays a key role in our proof
(see [28] for detail).

Lemma 2.3. Suppose that u ∈ W k,j(Ω) ∩ Li(Ω), h, k are nonnegative integers
satifying h/k ≤ α ≤ 1, 1 ≤ i, j ≤ ∞, and m > 0. Then there exists a constant
c8 > 0 such that

||Dhu||Lm(Ω) ≤ c8||Dku||αLj(Ω)||u||
1−α
Li(Ω) + c8||u||Li(Ω), (2.15)

where
1

m
− h

n
= α

(
1

j
− k

n

)
+ (1− α)

1

i
.

Finally, we give the following two elementary inequalities (see [37, 42] for detail).

Lemma 2.4. Assume that y, z ≥ 0 and b > 0, then we have

(y + z)b ≤ 2b(yb + zb). (2.16)

Lemma 2.5. Let x(t) : [0,∞) → R+ be a continuously differentiable function
satisfying {

x′(t) +Bxk(t) ≤ C, t > 0,

x(0) = x0,
(2.17)

with B > 0, k > 0, C ≥ 0 and x0 ≥ 0. Then we have

x(t) ≤ max

{
x0,

(
C

B

) 1
k

}
, for t ∈ (0,∞). (2.18)
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3. Global existence and boundedness of solutions under (H3). In this section,
we assume that f(u), ψ(u) and φ(u) satisfy (H1), (H2) and (H3), and we study the
global existence and boundedness of solutions. Before proving the main result, let
us give some a priori estimates for u(x, t), which are vital ingredients for our proofs.
First we prove the following L1(Ω) estimates.

Lemma 3.1. Assume that (H1) and (H3) are satisfied, then there exists a positive
constants C0 such that∫

Ω

u(x, t)dx ≤ C0 for all t ∈ (0, Tmax),∫
Ω

v(x, t)dx ≤ δ

γ
C0 for all t ∈ (0, Tmax),∫

Ω

w(x, t)dx ≤ ρ

η
C0 for all t ∈ (0, Tmax).

(3.1)

Proof. Integrating the first equation of (1.1) and using (H1), (H3), we have

d

dt

∫
Ω

u(x, t)dx =

∫
Ω

f(u(x, t))dx ≤
∫

Ω

(a−b(1+u(x, t))r) dx ≤
∫

Ω

(a−bur(x, t)) dx.

(3.2)
Then using Hölder inequality, we obtain that

d

dt

∫
Ω

u(x, t)dx+ b|Ω|1−r
(∫

Ω

u(x, t)dx

)r
≤ a|Ω|, (3.3)

where r ≥ 2. Thus from Lemma 2.5, we get∫
Ω

u(x, t)dx ≤ max

{∫
Ω

u0(x, t)dx,
(a
b

) 1
r |Ω|

}
:= C0. (3.4)

Then integrating the second equation of (1.1), and using (3.4), we obtain that∫
Ω

v(x, t)dx =
δ

γ

∫
Ω

u(x, t)dx ≤ δ

γ
C0. (3.5)

Similarly, we obtain that∫
Ω

w(x, t)dx =
ρ

η

∫
Ω

u(x, t)dx ≤ ρ

η
C0. (3.6)

Next we prove that u(x, t) is bounded in Lk(Ω) for certain positive k. Inspired
by the work in [36], we have the following lemma.

Lemma 3.2. Assume that f(u), ψ(u), and φ(u) satisfy (H1), (H2), (H3) and
condition (i) in Theorem 1.1 are satisfied, then for all k ∈ (k0, k1), where

k0 = max
{

1,
n

2
+ 1− p

}
, (3.7)

and

k1 =


3χδ − b+ bp

3χδ − b
if χ >

b

3δ
,

∞ if 0 < χ ≤ b

3δ
.

(3.8)

there exists a positive constant C1 > 0 such that

||u(·, t)||Lk(Ω) ≤ C1 for all t ∈ (0, Tmax). (3.9)
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Proof. If χ > b/(3δ), from the assumptions on p and b in (i), we have

k0 ≤
pn

2
<

3χδ − b+ bp

3χδ − b
:= k1, (3.10)

where k0 and k1 are defined as (3.7) and (3.8). So the interval (k0, k1) is nonempty.
In the following we assume that k ∈ (k0, k1). Multiplying the first equation of (1.1)
by (1 + u)k−1 and integrating over Ω, we have

1

k

d

dt

∫
Ω

(1 + u)k

=

∫
Ω

(1 + u)k−1∆u−
∫

Ω

(1 + u)k−1χ∇ · (ψ(u)∇v)

+

∫
Ω

(1 + u)k−1ξ∇ · (φ(u)∇w) +

∫
Ω

(1 + u)k−1f(u)

=− (k − 1)

∫
Ω

(1 + u)k−2|∇u|2 + χ(k − 1)

∫
Ω

(1 + u)k−2ψ(u)∇u · ∇v

+

∫
Ω

(1 + u)k−1f(u)− ξ(k − 1)

∫
Ω

(1 + u)k−2φ(u)∇u · ∇w.

(3.11)

Since k > 1, then from (3.11), we obtain that

1

k

d

dt

∫
Ω

(1 + u)k

≤χ(k − 1)

∫
Ω

∇Ψ1(u) · ∇v − ξ(k − 1)

∫
Ω

∇Φ1(u) · ∇w

+ a

∫
Ω

(1 + u)k−1 − b
∫

Ω

(1 + u)k+r−1

=− χ(k − 1)

∫
Ω

Ψ1(u)∆v + ξ(k − 1)

∫
Ω

Φ1(u)∆w

+ a

∫
Ω

(1 + u)k−1 − b
∫

Ω

(1 + u)k+r−1

=− χ(k − 1)

∫
Ω

Ψ1(u)(γv − δu) + ξ(k − 1)

∫
Ω

Φ1(u)(ηw − ρu)

+ a

∫
Ω

(1 + u)k−1 − b
∫

Ω

(1 + u)k+r−1,

(3.12)

where from (H2) and (H3),

Ψ1(u) :=

∫ u

0

(1 + z)k−2ψ(z)dz ≤
∫ u

0

(1 + z)k+p−2dz =
1

k + p− 1
(1 + u)k+p−1,

(3.13)

Φ1(u) :=

∫ u

0

(1 + z)k−2φ(z)dz ≤
∫ u

0

(1 + z)k−2(1 + z)qdz

≤
∫ u

0

(1 + z)k+q−2dz =
1

k + q − 1
(1 + u)k+q−1.

(3.14)

Then we have,

− χ(k − 1)

∫
Ω

Ψ1(u)(γv − δu) ≤ χδ(k − 1)

∫
Ω

Ψ1(u)u ≤ χδ(k − 1)

k + p− 1

∫
Ω

(1 + u)k+p,

(3.15)
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and

ξ(k − 1)

∫
Ω

Φ1(u)(ηw − ρu) ≤ ξη(k − 1)

∫
Ω

Φ1(u)w ≤ ξη(k − 1)

k + q − 1

∫
Ω

(1 + u)k+q−1w.

(3.16)
Combining (3.11), (3.15) and (3.16), we obtain that

1

k

d

dt

∫
Ω

(1 + u)k ≤ χδ(k − 1)

k + p− 1

∫
Ω

(1 + u)k+p +
ξη(k − 1)

k + q − 1

∫
Ω

(1 + u)k+q−1w

+ a

∫
Ω

(1 + u)k−1 − b
∫

Ω

(1 + u)k+r−1.

(3.17)

By using the assumption p ≥ q, we estimate the second term on the right hand side
of (3.17) by Young’s inequality,

ξη(k − 1)

k + q − 1

∫
Ω

(1 + u)k+q−1w ≤ χδ(k − 1)

k + p− 1

∫
Ω

(1 + u)k+p + d1

∫
Ω

wk+p, (3.18)

where

d1 =
ξη(k − 1)

k + q − 1

(
ξη(k + p− 1)2

χδ(k + p)(k + q − 1)

)k+p−1
1

k + p
. (3.19)

And since r − 1 ≥ p, then we have∫
Ω

(1 + u)k+p ≤ k + p

k + r − 1

∫
Ω

(1 + u)k+r−1 + d2 ≤
∫

Ω

(1 + u)k+r−1 + d2, (3.20)

where

d2 =

(
k + r − 2

k + p

)k+r−2 |Ω|
k + r − 1

. (3.21)

Applying the Agmon-Douglis-Nirenberg Lp estimates (see [1, 2] for detail) on
linear elliptic equations with Neumann boundary condition, for any l > 1 we have
that there exists a positive constant d3 such that

||w(·, t)||W 2,l(Ω) ≤ d3||u(·, t)||Ll(Ω) for all t ∈ (0, Tmax). (3.22)

Then by using Lemma 2.3 and Lemma 3.1, the last term in (3.18) can be estimated
as ∫

Ω

wk+p = ||w||k+p
Lk+p(Ω)

≤ d4||D2w||(k+p)λ

Lk+p−1(Ω)
||w||(k+p)(1−λ)

L1(Ω) + d4||w||k+p
L1(Ω) ≤ d5||u||(k+p)λ

Lk+p−1(Ω)
+ d5,

(3.23)

where

d4 > 0, d5 > 0, k + p >
n

2
+ 1 and λ :=

1− 1
k+p

1 + 2
n −

1
k+p−1

∈ (0, 1). (3.24)

Because of (3.24), we have

(k + p)λ < k + p− 1. (3.25)

So we obtain that∫
Ω

wk+p ≤ d5||u||(k+p)λ

Lk+p−1(Ω)
+d5 ≤ d6(||u||k+p−1

Lk+p−1(Ω)
+ 1)+d6 = d6

∫
Ω

uk+p−1+2d6.

(3.26)
By using Young’s inequality, we have∫

Ω

uk+p−1 ≤ ε0

∫
Ω

uk+p + d7, (3.27)
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where

d7 =

(
k + p− 1

ε0(k + p)

)k+p−1 |Ω|
k + p

, ε0 =
χδ(k − 1)

d1d6(k + p− 1)
. (3.28)

Combining (3.26) and (3.27), we arrive at∫
Ω

wk+p ≤ ε0d6

∫
Ω

uk+p + d8 ≤ ε0d6

∫
Ω

(1 + u)k+p + d8, (3.29)

where d8 = d6d7 + 2d6.
Substituting (3.18) , (3.20) and (3.29) into (3.17), we find that

1

k

d

dt

∫
Ω

(1 +u)k ≤ −
(
b− 3χδ(k − 1)

k + p− 1

)∫
Ω

(1 +u)k+p + a

∫
Ω

(1 +u)k−1 + bd2 + d1d8,

(3.30)
where from (3.8), we have

b− 3χδ(k − 1)

k + p− 1
> 0, (3.31)

Since p ≥ 0, then from Young’s inequality, for some d9 > 0 we also have

a

∫
Ω

(1 + u)k−1 ≤ 1

2

(
b− 3χδ(k − 1)

k + p− 1

)∫
Ω

(1 + u)k+p + d9. (3.32)

Hence, we obtain that

d

dt

∫
Ω

(1 + u)k ≤ −k
2

(
b− 3χδ(k − 1)

k + p− 1

)∫
Ω

(1 + u)k+p + d10, (3.33)

where d10 = k(bd2 + d1d8 + d9).
By the Hölder inequality, we have

d

dt

∫
Ω

(1 + u)k ≤ −k
2

(
b− 3χδ(k − 1)

k + p− 1

)
|Ω|−

p
k

(∫
Ω

(1 + u)k
) k+p

k

+ d10. (3.34)

Then according to Lemma 2.5, the boundedness of ||u(·, t)||Lk(Ω) is obtained.

From the proof of Lemma 3.2, we find that if b > 3χδ, then for any k > k0

the boundedness of ||u(·, t)||Lk(Ω) is obtained. In the following we consider the
boundedness of ||u(·, t)||Lk(Ω) for large k in the case of b ≤ 3χδ.

Lemma 3.3. Assume that (H1), (H2), (H3) and condition (i) in Theorem 1.1 are
satisfied, then for all k > k0 which is defined in (3.7), there exists a positive constant
C2 > 0 such that

||u(·, t)||Lk(Ω) ≤ C2 for all t ∈ (0, Tmax). (3.35)

Proof. If b > 3χδ, then this is proved in Lemma 3.2. In the following, we assume
that 0 < b ≤ 3χδ. For any k > 0, from (3.11) and (3.12), we have

1

k

d

dt

∫
Ω

(1 + u)k = −4(k − 1)

k2

∫
Ω

|∇(1 + u)
k
2 |2 − χ(k − 1)

∫
Ω

Ψ1(u)(γv − δu)

+ ξ(k − 1)

∫
Ω

Φ1(u)(ηw − ρu) +

∫
Ω

(1 + u)k−1f(u),

(3.36)

where Ψ1(u) and Φ1(u) are defined as in (3.13) and (3.14).
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The last term in (3.36) can be estimated as∫
Ω

(1 + u)k−1f(u) ≤
∫

Ω

(1 + u)k−1(a− b(1 + u)r) ≤
∫

Ω

(1 + u)k−1(a− bur)

≤
∫

Ω

(1 + u)k−1(a− b+ rb− rbu) =

∫
Ω

(1 + u)k−1(a− b+ 2rb)−
∫

Ω

rb(1 + u)k.

(3.37)

Then by Young’s inequality, we have∫
Ω

(1 + u)k−1(a− b+ 2rb) ≤
∫

Ω

rb(1 + u)k +
e1

k
, (3.38)

where e1 is a positive constant.
Hence, from (3.15), (3.16), (3.18) , (3.29), (3.37) and (3.38), we obtain that for

any k > 1,

d

dt

∫
Ω

(1+u)k ≤ −4(k − 1)

k

∫
Ω

|∇(1+u)
k
2 |2+

3χδk(k − 1)

k + p− 1

∫
Ω

(1+u)k+p+e2. (3.39)

where e2 = e1 + kd1d8.
Next, we consider the first two terms on the right side of (3.39). From the

assumption on b in (i), we have

1 ≤ pn

2
<

3χδ − b+ bp

3χδ − b
:= k1. (3.40)

We fix some k∗ ∈ (pn/2, k1). Then from Lemma 3.2, there exists C1 > 0 such that

||u(·, t)||Lk∗ (Ω) ≤ C1, for all t ∈ (0, Tmax). (3.41)

Now we choose k > k∗ and using Lemma 3.2 and Lemma 2.3, there exist e2 > 0
and e3 > 0 such that∫

Ω

(1 + u)k+p = ||(1 + u)
k
2 ||

2(k+p)
k

L
2(k+p)
k (Ω)

≤e2

(
||∇(1 + u)

k
2 ||α1

L2(Ω)||(1 + u)
k
2 ||1−α1

L
2k∗
k (Ω)

+ ||(1 + u)
k
2 ||

L
2k∗
k (Ω)

) 2(k+p)
k

≤e2

(
||∇(1 + u)

k
2 ||α1

L2(Ω)||1 + u||
k
2 (1−α1)

Lk∗ (Ω)
+ ||1 + u||

k
2

Lk∗ (Ω)

) 2(k+p)
k

≤e3

(
||∇(1 + u)

k
2 ||

2α1(k+p)
k

L2(Ω) + 1

)
,

(3.42)

where

α1 =

kn

2k∗
− kn

2(k + p)

1− n

2
+
kn

2k∗

=
(k + p− k∗)kn

k∗(k + p)(2− n) + (k + p)kn

=
(k + p− k∗)kn

(k + p− k∗)kn+ k∗(2k − pn+ 2p)
.

(3.43)

Since k > k∗ >
pn

2
≥ k0, then α1 ∈ (0, 1) and

2α1(k + p)

k
= 2

kn− k∗n+ pn

kn− k∗n+ 2k∗
< 2. (3.44)
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Hence, combining (3.42) with (3.43) and using Young’s inequality, we have(
3χδk(k − 1)

k + p− 1
+ 1

)∫
Ω

(1 + u)k+p ≤ 4(k − 1)

k

∫
Ω

|∇(1 + u)
k
2 |2 + e4, (3.45)

where e4 is a positive constant.
Inserting (3.45) into (3.39), we find that there exists a constant e5 > 0 such that

d

dt

∫
Ω

(1 + u)k ≤ −
∫

Ω

(1 + u)k+p + e5. (3.46)

Then from Hölder inequality, we derive that

d

dt

∫
Ω

(1 + u)k ≤ −|Ω|−
p
k

(∫
Ω

(1 + u)k
) k+p

k

+ e5. (3.47)

Therefore, the desired result is obtained from Lemma 2.5, that is,∫
Ω

(1 + u)k ≤ max

{∫
Ω

(1 + u0)k, (e5|Ω|
p
k )

k
k+p

}
. (3.48)

Finally we prove the Lk(Ω) boundedness of u(x, t) under the condition (ii).

Lemma 3.4. Assume that (H1), (H2), (H3) and condition (ii) in Theorem 1.1
hold, then for all k > k0 which is defined in (3.7), there exists a positive constant
C3 > 0 such that

||u(·, t)||Lk(Ω) ≤ C3 for all t ∈ (0, Tmax). (3.49)

Proof. In this part, we consider the case of 0 < p < 2/n. In this case, (3.39) still
holds as k > k0 ≥ 1. By using Lemmas 2.3 and 3.1, we obtain that∫

Ω

(1 + u)k+p = ||(1 + u)
k
2 ||

2(k+p)
k

L
2(k+p)
k (Ω)

≤e6

(
||∇(1 + u)

k
2 ||β1

L2(Ω)||(1 + u)
k
2 ||1−β1

L
2
k (Ω)

+ ||(1 + u)
k
2 ||

L
2
k (Ω)

) 2(k+p)
k

≤e6

(
||∇(1 + u)

k
2 ||β1

L2(Ω)||1 + u||
k
2 (1−β1)

L1(Ω) + ||1 + u||
k
2

L1(Ω)

) 2(k+p)
k

≤e6

(
||∇(1 + u)

k
2 ||β1

L2(Ω)(|Ω|+ C0)
k
2 (1−β1) + (|Ω|+ C0)

k
2

) 2(k+p)
k

≤e7

(
||∇(1 + u)

k
2 ||

2β1(k+p)
k

L2(Ω) + 1

)
,

(3.50)

where

β1 =

kn
2 −

kn
2(k+p)

1− n
2 + kn

2

=
(k + p− 1)kn

(k + p)(2− n+ kn)
=

(k + p− 1)kn

(k + p− 1)kn+ (2k − pn+ 2p)

≤ (k + p− 1)kn

(k + p− 1)kn+ (2− pn+ 2p)
< 1,

(3.51)

since k > k0 and 2− pn > 0, then β1 ∈ (0, 1). And we have

2β1(k + p)

k
= 2n

k + p− 1

2 + nk − n
< 2. (3.52)
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Thus, combining (3.50) with (3.52) and using Young’s inequality, we have(
3χδk(k − 1)

k + p− 1
+ 1

)∫
Ω

(1 + u)k+p ≤ 4(k − 1)

k

∫
Ω

|∇(1 + u)
k
2 |2 + e8. (3.53)

Then substituting (3.53) into (3.39), we arrive at

d

dt

∫
Ω

(1 + u)k ≤ −
∫

Ω

(1 + u)k+p + e9. (3.54)

Thus the Lk-bound of u(x, t) is obtained by using Lemma 2.5 and we complete the
proof.

By using Lemmas 3.1-3.4, we now can obtain the L∞-bound of u(x, t).

Lemma 3.5. Assume that all assumptions in Theorem 1.1 hold, then there exists
a positive constant C4 > 0 such that

||u(·, t)||L∞(Ω) ≤ C4 for all t ∈ (0, Tmax). (3.55)

Proof. We use semigroup arguments similar to the ones in [39, 40, 14] to get the
L∞-bound of u. First, u(x, t) can be expressed by

u(·, t) = et(∆−1)u0 − χ
∫ t

0

e(t−s)(∆−1)∇ · (ψ(u(·, t))∇v)ds

+ ξ

∫ t

0

e(t−s)(∆−1)∇ · (φ(u(·, t))∇w)ds+

∫ t

0

e(t−s)(∆−1)ϕ(u(·, t))ds

= U1 + U2 + U3 + U4,

(3.56)

where ϕ(u) = f(u) + u. Then we study the L∞-bound of U1, U2, U3 and U4

respectively.
For U1, we find that

U1(·, t) ≤ ||u0||L∞(Ω) for all t ∈ (0, Tmax). (3.57)

For U2, let j > n, i =∞ in Lemma 2.2, so there exists θ ∈ ( n2j ,
1
2 ); and in this case

ε ∈ (0, 1
2 − θ) in Lemma 2.2. Then there exist positive constants κ1, κ2 and µ such

that

||U2(·, t)||L∞(Ω) ≤ κ1||(−∆ + 1)θU2(·, t)||Lj(Ω)

≤ χκ1

∫ t

0

||e(t−s)(∆−1)∇ · (ψ(u(·, t))∇v(·, t))||Lj(Ω)ds

≤ χκ1

∫ t

0

e−(t−s)||e(t−s)∆∇ · (ψ(u(·, t))∇v(·, t))||Lj(Ω)ds

≤ κ2

∫ t

0

(t− s)−θ− 1
2−εe−(µ+1)(t−s)||ψ(u(·, t))∇v(·, t)||Lj(Ω)ds

(3.58)

for all t ∈ (0, Tmax).
Then from Lemma 3.3 or Lemma 3.4, we have ||u(·, t)||Li(Ω) ≤ C5 for i > k0 and

using the elliptic regularity theory to the second equation in (1.1), we have

sup
0<t<Tmax

||v(·, t)||W 2,i(Ω) ≤ κ3 for all i > k0. (3.59)
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Choosing i > n, from the Sobolev embedding theorem, we obtain that

sup
0<t<Tmax

||∇v(·, t)||L∞(Ω) ≤ κ4 for all t ∈ (0, Tmax). (3.60)

Hence, there exists κ5 > 0 such that

||ψ(u(·, t))∇v(·, t)||Li(Ω) ≤ κ5 for all t ∈ (τ, Tmax). (3.61)

Therefore, from (3.57) and (3.61), we obtain that, for all t ∈ (τ, Tmax)

||U2(·, t)||L∞(Ω) ≤ κ2κ5

∫ t

0

(t− s)−θ− 1
2−εe−(µ+1)(t−s)ds

≤κ2κ5

∫ ∞
0

σ−θ−
1
2−εe−(µ+1)σdσ ≤ κ6Γ(

1

2
− θ − ε),

(3.62)

where Γ( 1
2 − θ − ε) > 0 for 1

2 − θ − ε > 0. Similarly, the L∞-bound of U3 can be
obtained.

Finally, for U4, by using (2.12), (2.14) and ϕ(u) ≤ â − b̂(1 + u)r for all u > 0

with any b̂ < b and some â > a, we have

U4(·, t) ≤
∫ t

0

e(t−s)(∆−1)âds ≤ κ6

∫ t

0

e−γ(t−s)ds ≤ κ7

γ
for all t ∈ (0, Tmax). (3.63)

Therefore, by (3.57), (3.58) and (3.62), we obtain that u is bounded in Ω×(0, Tmax).
Along with (2.1), this proves that Tmax = ∞ and hence, (u, v, w) is bounded in
Ω× (0,∞).

Next we prove Theorem 1.1.

Proof of Theorem 1.1. From Lemma 3.5 and the blowup criterion (2.1), we obtain
that there exists a constant C4 > 0 such that

||u(·, t)||L∞(Ω) ≤ C4 for all t ∈ (0,∞). (3.64)

This completes the proof of Theorem 1.1.

4. Global existence and boundedness of solutions under (H4). In this
section, we assume that f(u), ψ(u) and φ(u) satisfy (H1), (H2) and (H4), and
we consider the global existence and boundedness of solutions of (1.1). Similar to
the proof in Section 3, we also need the L1(Ω) bounds of u, v and w. The following
lemma can be proved in the same way as that of Lemma 3.1, and we omit the proof.

Lemma 4.1. Assume that (H1) and (H4) hold, then there exists a positive constant
C5 such that ∫

Ω

u(x, t)dx ≤ C5 for all t ∈ (0, Tmax),∫
Ω

v(x, t)dx ≤ δ

γ
C5 for all t ∈ (0, Tmax),∫

Ω

w(x, t)dx ≤ ρ

η
C5 for all t ∈ (0, Tmax).

(4.1)

Next we prove that u(x, t) is Lk(Ω) bounded for certain positive k.
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Lemma 4.2. Assume that (H1), (H2), (H4) and condition (iii) in Theorem 1.2
are satisfied. Define

k2 = max
{

1,
n

2
+ 1− q

}
, k3 =

−F +
√
F 2 − 4EG

2E
, (4.2)

where

E = b− δχ+ ξρ,

F = b(p− 1) + ξρ(p− 2) + b(q − 1)− δχ(q − 2),

G = b(p− 1)(q − 1) + δχ(q − 1)− ξρ(p− 1).

(4.3)

Then for k ∈ (max{k2, k3},∞) if b− δχ+ ξρ ≥ 0( b− δχ+ ξρ = 0, then k3 = −GF ),
or for k ∈ (k2, k3) if b − δχ + ξρ < 0, there exists a positive constant C6 > 0 such
that

||u(·, t)||Lk(Ω) ≤ C6 for all t ∈ (0, Tmax). (4.4)

Proof. Multiplying the first equation of (1.1) by uk−1 and integrating over Ω, we
have

1

k

d

dt

∫
Ω

uk

=

∫
Ω

uk−1∆u−
∫

Ω

uk−1χ∇ · (ψ(u)∇v) +

∫
Ω

uk−1ξ∇ · (φ(u)∇w) +

∫
Ω

uk−1f(u)

=− (k − 1)

∫
Ω

uk−2|∇u|2 + χ(k − 1)

∫
Ω

uk−2ψ(u)∇u · ∇v

− ξ(k − 1)

∫
Ω

uk−2φ(u)∇u · ∇w +

∫
Ω

uk−1f(u)

≤χ(k − 1)

∫
Ω

∇Ψ2(u) · ∇v − ξ(k − 1)

∫
Ω

∇Φ2(u) · ∇w + a

∫
Ω

uk−1 − b
∫

Ω

uk+r−1

=− χ(k − 1)

∫
Ω

Ψ2(u)∆v + ξ(k − 1)

∫
Ω

Φ2(u)∆w + a

∫
Ω

uk−1 − b
∫

Ω

uk+r−1

=− χ(k − 1)

∫
Ω

Ψ2(u)(γv − δu) + ξ(k − 1)

∫
Ω

Φ2(u)(ηw − ρu)

+ a

∫
Ω

uk−1 − b
∫

Ω

uk+r−1,

(4.5)

where

Ψ2(u) :=

∫ u

0

yk−2ψ(y)dy ≤
∫ u

0

yk+p−2dy =
1

k + p− 1
uk+p−1, (4.6)

Φ2(u) :=

∫ u

0

yk−2φ(y)dy =

∫ u

0

yk−2yqdy =

∫ u

0

yk+q−2dy =
1

k + q − 1
uk+q−1.

(4.7)
Then we have

− χ(k − 1)

∫
Ω

Ψ2(u)(γv − δu) ≤ χδ(k − 1)

∫
Ω

Ψ2(u)u ≤ χδ(k − 1)

k + p− 1

∫
Ω

uk+p, (4.8)

and

ξ(k − 1)

∫
Ω

Φ2(u)(ηw − ρu) =
ξη(k − 1)

k + q − 1

∫
Ω

uk+q−1w − ξρ(k − 1)

k + q − 1

∫
Ω

uk+q. (4.9)
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Combining (4.5), (4.6), (4.7), (4.8) and (4.9), we obtain that

1

k

d

dt

∫
Ω

uk ≤ χδ(k − 1)

k + p− 1

∫
Ω

uk+p +
ξη(k − 1)

k + q − 1

∫
Ω

uk+q−1w

− ξρ(k − 1)

k + q − 1

∫
Ω

uk+q + a

∫
Ω

uk−1 − b
∫

Ω

uk+r−1.

(4.10)

From q ≥ p in (iii) and Young’s inequality, there exists a constant h1 > 0 such that∫
Ω

uk+p ≤ k + p

k + q

∫
Ω

uk+q + h1 ≤
∫

Ω

uk+q + h1, (4.11)

and also from q ≤ r − 1 in (iii) and Young’s inequality, we have∫
Ω

uk+q ≤ k + q

k + r − 1

∫
Ω

uk+r−1 + h2 ≤
∫

Ω

uk+r−1 + h2, (4.12)

where h2 is a positive constant. Combining (4.10), (4.11) and (4.12), we obtain that

1

k

d

dt

∫
Ω

uk ≤ χδ(k − 1)

k + p− 1

∫
Ω

uk+q +
ξη(k − 1)

k + q − 1

∫
Ω

uk+q−1w

− ξρ(k − 1)

k + q − 1

∫
Ω

uk+q + a

∫
Ω

uk−1 − b
∫

Ω

uk+q +
χδ(k − 1)

k + p− 1
h1 + bh2

=

(
χδ(k − 1)

k + p− 1
− ξρ(k − 1)

k + q − 1
− b
)∫

Ω

uk+q +
ξη(k − 1)

k + q − 1

∫
Ω

uk+q−1w

+ a

∫
Ω

uk−1 +
χδ(k − 1)

k + p− 1
h1 + bh2.

(4.13)

From our assumption for k, we have

χδ(k − 1)

k + p− 1
− ξρ(k − 1)

k + q − 1
− b < 0. (4.14)

Indeed for the case of b− δχ+ ξρ ≥ 0, (4.14) holds when k ∈ (max{k2, k3},∞), and
for the case of b − δχ + ξρ < 0, (4.14) holds k ∈ (k2, k3) as from the assumptions
on q and b in (iii), we have k2 ≤ qn

2 < k3, hence the interval (k2, k3) is not empty.
We estimate the second term in the right side of (4.13) by Young’s inequality,

ξη(k − 1)

k + q − 1

∫
Ω

uk+q−1w ≤ 1

4

(
b− χδ(k − 1)

k + p− 1
+
ξρ(k − 1)

k + q − 1

)∫
Ω

uk+q + h3

∫
Ω

wk+q,

(4.15)

where h3 is a positive constant. Similar to the proof of (3.26), there exists a constant
h4 > 0 such that ∫

Ω

wk+q ≤ h4

∫
Ω

uk+q−1 + 2h4, (4.16)

Then by Young’s inequality, we arrive at∫
Ω

wk+q ≤ ε1h4

∫
Ω

uk+q + h5. (4.17)

where

ε1 =

b− χδ(k − 1)

k + p− 1
+
ξρ(k − 1)

k + q − 1

4h3h4
(4.18)
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and h5 is a positive constant. Substituting (4.15) and (4.17) into (4.13), we find
that

1

k

d

dt

∫
Ω

uk ≤ 1

2

(
χδ(k − 1)

k + p− 1
− ξρ(k − 1)

k + q − 1
− b
)∫

Ω

uk+q + a

∫
Ω

uk−1 + h6. (4.19)

where h6 = h1 + bh2 + h3h5. Since q ≥ 0, then there exists a constant h7 > 0 such
that

a

∫
Ω

uk−1 ≤ 1

4

(
b− χδ(k − 1)

k + p− 1
+
ξρ(k − 1)

k + q − 1

)∫
Ω

uk+q + h7. (4.20)

Hence from (4.19) and (4.20), we obtain that

d

dt

∫
Ω

uk ≤ −k
4

(
b− χδ(k − 1)

k + p− 1
+
ξρ(k − 1)

k + q − 1

)∫
Ω

uk+q + h8,

≤− k

4

(
b− χδ(k − 1)

k + p− 1
+
ξρ(k − 1)

k + q − 1

)
|Ω|−

q
k

(∫
Ω

uk
) k+q

k

+ h8.

(4.21)

where h8 = k(h1+bh2+h3h5+h7). Then according to Lemma 2.5, the boundedness
of ||u(·, t)||Lk(Ω) is obtained.

In Lemma 4.2, if F 2 − 4EG < 0, then (4.14) hold for any k, so we only consider
the case that k3 is a real number. And in this Lemma, we have shown that if
ξρ + b ≥ χδ, then for any k > k2, ||u(·, t)||Lk(Ω) is bounded. In the following we

prove the boundedness of Lk(Ω) in the case of ξρ+ b < χδ under condition (iii).

Lemma 4.3. Assume that (H1), (H2), (H4) and condition (iii) in Theorem 1.2
are satisfied, then for all k > max{k2, k3}, there exists a positive constant C7 > 0
such that

||u(·, t)||Lk(Ω) ≤ C7 for all t ∈ (0, Tmax). (4.22)

Proof. If b − δχ + ξρ ≥ 0, then this is proved in Lemma 4.2. In the following, we
assume that b− δχ+ ξρ < 0. Similar to (3.36), we have

1

k

d

dt

∫
Ω

(1 + u)k =− 4(k − 1)

k2

∫
Ω

|∇(1 + u)
k
2 |2 − χ(k − 1)

∫
Ω

Ψ2(u)∆v

+ ξ(k − 1)

∫
Ω

Φ2(u)∆w +

∫
Ω

(1 + u)k−1f(u),

(4.23)

where Ψ2(u) and Φ2(u) are defined in (4.6) and (4.7). The last term in (4.23) can
be estimated as follows:∫

Ω

(1 + u)k−1f(u) ≤
∫

Ω

(1 + u)k−1(a− bur) ≤
∫

Ω

(1 + u)k−1(a− b+ rb− rbu)

= (a− b+ 2rb)

∫
Ω

(1 + u)k−1 − rb
∫

Ω

(1 + u)k.

(4.24)

From Young’s inequality, there exists a constant h9 > 0 such that

(a− b+ 2rb)

∫
Ω

(1 + u)k−1 ≤ rb
∫

Ω

(1 + u)k +
h9

k
. (4.25)

Hence, from (4.8), (4.9), (4.11), (4.17), (4.23), (4.24) and (4.25), we obtain that

d

dt

∫
Ω

(1+u)k ≤ −4(k − 1)

k

∫
Ω

|∇(1+u)
k
2 |2+

3χδk(k − 1)

k + p− 1

∫
Ω

(1+u)k+q+h9. (4.26)
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Next, we consider the first two terms in the right side of (4.26). Since condition
(iii) is satisfied, then b > b1 where b1 is defined as in (1.7), and recalling k3 defined
in (4.2), we have

qn

2
< k3. (4.27)

We select k′ ∈ (qn/2, k3), where q ≥ 2/n which implies qn/2 ≥ 1. Therefore from
Lemma 4.2, there exists C6 > 0 such that

||u(·, t)||Lk′ (Ω) ≤ C6, for all t ∈ (0, Tmax). (4.28)

Hence, choosing k > k′ and using Lemma 4.2 and Lemma 2.3, similar to (3.42), we
obtain that there exists h10 > 0 such that∫

Ω

(1 + u)k+q = ||(1 + u)
k
2 ||

2(k+q)
k

L
2(k+q)
k (Ω)

≤ h10

(
||∇(1 + u)

k
2 ||

2α2(k+q)
k

L2(Ω) + 1

)
, (4.29)

where

α2 =

kn

2k′
− kn

2(k + q)

1− n

2
+
kn

2k′

=
(k + q)kn− k′kn

k′(k + q)(2− n) + (k + q)kn

=
(k + q)kn− k′kn

(k + q)kn− k′kn+ k′(2k − qn+ 2q)
.

(4.30)

Since k > k′ >
qn

2
≥ k2, then α2 ∈ (0, 1) and

2α2(k + q)

k
= 2

kn− k′n+ qn

kn− k′n+ 2k′
< 2. (4.31)

Hence, combining (4.29) with (4.31) and using Young’s inequality, we find(
3χδk(k − 1)

k + q − 1
+ 1

)∫
Ω

(1 + u)k+q ≤ 4(k − 1)

k

∫
Ω

|∇(1 + u)
k
2 |2 + h11, (4.32)

where h11 is a positive constant. Inserting (4.32) into (4.26), from Hölder inequality,
we derive that

d

dt

∫
Ω

(1 + u)k ≤ −|Ω|−
q
k

(∫
Ω

(1 + u)k
) k+q

k

+ h12. (4.33)

where h12 = h9 + h11. Therefore, from Lemma 2.5, we have∫
Ω

(1 + u)k ≤ max

{∫
Ω

(1 + u0)k, (h12|Ω|
q
k )

k
k+q

}
. (4.34)

The proof of the following lemma is similar to that of Lemma 3.4, and for the
sake of completeness, we give the proof here.

Lemma 4.4. Assume that (H1), (H2), (H4) and condition (iv) in Theorem 1.2
hold, then for all k > max{k2, k3}, there exists a positive constant C8 > 0 such that

||u(·, t)||Lk(Ω) ≤ C8 for all t ∈ (0, Tmax). (4.35)
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Proof. In this part, we will consider 0 < q < 2/n. Similar to the proof of Lemma
3.3, we also obtain (4.26). By Lemmas 2.3 and 4.1, we obtain that∫

Ω

(1 + u)k+q = ||(1 + u)
k
2 ||

2(k+q)
k

L
2(k+q)
k (Ω)

≤ h13

(
||∇(1 + u)

k
2 ||

2β2(k+q)
k

L2(Ω) + 1

)
, (4.36)

where

β2 =

kn

2
− kn

2(k + q)

1− n

2
+
kn

2

=
(k + q − 1)kn

(k + q)(2− n+ kn)
=

(k + q − 1)kn

(k + q − 1)kn+ (2k − qn+ 2q)

≤ (k + q − 1)kn

(k + q − 1)kn+ (2− qn+ 2q)
< 1,

(4.37)

since k > k2 and 2− qn > 0, then β2 ∈ (0, 1). Also the following inequality holds:

2β2(k + q)

k
= 2n

k + q − 1

2 + nk − n
< 2. (4.38)

Thus, combining (4.36) with (4.38) and using Young’s inequality, we have(
3χδk(k − 1)

k + q − 1
+ 1

)∫
Ω

(1 + u)k+q ≤ 4(k − 1)

k

∫
Ω

|∇(1 + u)
k
2 |2 + h14. (4.39)

Then substituting (4.39) into (4.26), we arrive at

d

dt

∫
Ω

(1 + u)k ≤ −
∫

Ω

(1 + u)k+q + h15. (4.40)

So from Lemma 2.5, the Lk-bound of u is also obtained and we complete the proof.

Finally we prove Theorem 1.2.

Proof. From Lemmas 4.3 and 4.4, we can show the L∞-bound of u(x, t) using the
exactly same way as in Lemma 3.5. Now using the L∞-bound and the blowup
criterion (2.1), we obtain that there exists a constant C9 > 0 such that

||u(·, t)||L∞(Ω) ≤ C9 for all t ∈ (0,∞). (4.41)

Hence we complete the proof of Theorem 1.2.
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