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Abstract

The stability and Hopf bifurcation of the positive steady state to a general scalar reaction–diffusion equa-
tion with distributed delay and Dirichlet boundary condition are investigated in this paper. The time delay 
follows a Gamma distribution function. Through analyzing the corresponding eigenvalue problems, we rig-
orously show that Hopf bifurcations will occur when the shape parameter n ≥ 1, and the steady state is 
always stable when n = 0. By computing normal form on the center manifold, the direction of Hopf bifur-
cation and the stability of the periodic orbits can also be determined under a general setting. Our results 
show that the number of critical values of delay for Hopf bifurcation is finite and increasing in n, which is 
significantly different from the discrete delay case, and the first Hopf bifurcation value is decreasing in n. 
Examples from population biology and numerical simulations are used to illustrate the theoretical results.
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1. Introduction

Reaction–diffusion models have been used to describe the spatiotemporal distribution of 
density functions of substances from particles, chemicals, organisms, to plants and animals in 
modeling biological and ecological systems [4,30,31]. In 1952, Alan Turing [40] proposed that 
spatial patterns in embryonic morphogenesis were driven by diffusion-induced instability. Since 
then, researchers in chemistry and developmental biology have successfully applied Turing the-
ory to explain and simulate the patterns arisen in Hydra growth [12,28], pigmentation patterning 
in fish [25], spatial patterns in Chlorite-Iodide-Malonic Acid-starch chemical reaction [26], reg-
ulation of Hox gene in the transition of fins to limbs during evolution [32], to name just a few.

On the other hand, real biochemical or ecological dynamics often depends on the historical 
information of systems so time delays could occur in various modeling mechanisms, and the 
presence of time delay may have profound impact on the dynamics of reaction–diffusion models 
[6,17,42]. The delay effect to a scalar reaction–diffusion population model has been considered 
in, for example, [3,5,18,36,38,43]. In general, a larger delay destabilizes the stable steady state 
of the system and an oscillatory pattern arises from a Hopf bifurcation. The stable steady state 
under Neumann boundary condition is usually a constant one, thus the Hopf bifurcation analysis 
is relatively easier [29,44]. For Dirichlet boundary problem, a positive steady state is always 
spatially non-homogeneous which makes such analysis difficult. Following the approach in [3], 
Su et al. [36] considered a general scalar diffusive equation with delayed growth rate per capita 
and Dirichlet boundary condition:

⎧⎪⎪⎨
⎪⎪⎩

∂u(x, t)

∂t
= d

∂2u(x, t)

∂x2
+ λu(x, t)f (u(x, t − τ)), x ∈ (0, l), t > 0,

u(0, t) = u(l, t) = 0, t > 0,

u(x, t) = η(x, t), x ∈ (0, l), t ∈ [−τ,0],

where d > 0 is the diffusion coefficient, τ > 0 represents the time delay, λ > 0 is a scaling con-
stant. The nonlinear function f is the growth rate per capita which can be chosen properly so 
that this equation can embrace different kinds of population dynamics. They proved that the non-
homogeneous positive steady state loses its stability when τ increases and analyzed associated 
Hopf bifurcations. In [43], Yan and Li extended the results to a higher dimensional domain and 
also proved the stability of the bifurcating periodic orbits.

The dependence of the rate of change of current population on the population at a particular 
point of past time is usually a simplified assumption, and a more reasonable dependence would 
be on the whole historical information of the population. A distributed delay has been proposed 
to describe the population growth of some species, which can date back to the work of Volterra 
[41]. Here we propose a diffusive population model with general growth rate incorporating a 
distributed delay and Dirichlet boundary condition based on the previous work in [36]:

⎧⎪⎨
⎪⎩

ut (x, t) = d�u(x, t) + λu(x, t)f (g ∗ u(x, t − s)), x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,

u(x, t) = u0(x, t), x ∈ �, t ∈ (−∞,0],
(1.1)

where � is a bounded domain in Rk (k ≥ 1) with smooth boundary, and u0 ∈ C � C ((−∞,0], Y )

with Y = L2(�). Here, d > 0 represents the diffusion coefficient, λ > 0 is a growth rate coeffi-
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cient and the growth rate per capita function f is assumed to be logistic type. Instead of using 
f (u(t − τ)), we use f (g ∗ u) in (1.1) where g ∗ u(x, t − s) is a distributed delayed population 
density which has the following form,

g ∗ u(x, t − s) =
t∫

−∞
g(τ, t − s)u(x, s)ds =

0∫
−∞

g(τ,−s)u(x, t + s)ds,

where the kernel function g(τ, t) is a probability distribution function satisfying g(τ, t) ≥ 0, and 
∞∫

0

g(τ, t)dt = 1. Here we choose g(τ, t) to be the Gamma distribution (see [15,27]):

gn(τ, t) = tne− t
τ

τ n+1�(n + 1)
, (1.2)

where n ≥ 0 is the shape parameter of Gamma distribution, and the mean and variance of gn(τ, ·)
are given by E(gn(τ, ·)) = (n + 1)τ and Var(gn(τ, ·)) = (n + 1)τ 2 respectively. This includes 
the two well known distributions used in ecological studies: the weak kernel (n = 0) and the 
strong kernel (n = 1):

g0(τ, t) = 1

τ
e− t

τ , g1(τ, t) = t

τ 2
e− t

τ .

In our analysis, we will take τ as the bifurcation parameter, which is associated with the aver-
age delay upon a scaling of the shape parameter. It is known that (1.1) has a unique positive 
steady state uλ when λ > λ∗ (principal eigenvalue of −d� in H 1

0 (�)), and when τ = 0, the pos-
itive steady state uλ is locally asymptotically stable [4]. Our main results are for the dynamical 
behavior of (1.1) when τ > 0 and λ is near λ∗, and our results can be summarized as follows:

1. for n = 0, that is the weak kernel case, the positive steady state uλ is locally asymptotically 
stable for any τ > 0;

2. for each positive integer n, there exists an increasing finite sequence {τm
nλ}mn

m=0 where mn =
[(n − 1)/4] (the integer part of (n − 1)/4), such that the positive steady state uλ of Eq. (1.1)
is locally asymptotically stable when τ ∈ (0, τ 0

nλ) and is unstable when τ ∈ (τ 0
nλ, ∞); more-

over, the system (1.1) undergoes a Hopf bifurcation at τ = τm
nλ near the steady state uλ for 

each 0 ≤ m ≤ mn;

3. the critical Hopf bifurcation values satisfy q(m, n) := lim
λ→λ∗

(λ −λ∗)τm
nλ = tan(ηm

nλ∗)

cosn+1(ηm
nλ∗)

with 

ηm
nλ∗ = (4m + 1)π

2(n + 1)
for 0 ≤ m ≤ mn. And q(m, n) is strictly decreasing with respect to n, 

which means that the critical τ value is smaller for a larger n. In other words, it is easier 
(taking a smaller delay value) for the system (1.1) with a larger shape parameter n to lose its 
stability.

These results show that the shape parameter n significantly affects the dynamics of system (1.1). 
Note that the finiteness of bifurcation values τm is quite different from infinitely many bifur-
nλ
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cation values in the case of discrete delay case considered in [36] which corresponds to a Dirac 
delta distribution function. Hence combining with this earlier results, we now know that the num-
ber of the critical values of Hopf bifurcation can be zero (weak kernel), a finite number (strong 
kernel or Gamma distribution with higher n), or infinitely many (Dirac delta distribution).

The spatiotemporal delay effect to the population models has been studied extensively in 
recent years. In fact, since the individuals in the population move freely, so the population density 
variation at a spatial location depends on the population in a neighborhood of the location, that 
is, on a spatial average weighted according to distance from the original position. Based on such 
assumption, Britton [2] proposed a model with spatiotemporal delay term:

ut = �u + u[1 + αu − βu2 − (1 + α − β)g ∗ ∗u], x ∈ �, t > 0,

where

g ∗ ∗u =
t∫

−∞

∫
�

g(x − y, t − s)u(y, s)dyds.

Here the function g(x, t) is a general spatiotemporal average, which is studied in [1,13,14,16]
on an infinite spatial domain. Recently, Chen and Yu [7] considered a diffusive logistic model 
incorporating a class of spatiotemporal delay on a bounded domain with Dirichlet boundary 
condition, and found that the nonhomogeneous steady state is locally asymptotically stable and 
Hopf bifurcations do not occur. Zuo and Song [46] studied the bifurcation in a general scalar 
reaction–diffusion model with spatiotemporal delay under Neumann boundary condition. Guo 
[19] also considered Hopf bifurcation for a Dirichlet boundary value problem.

When the spatial variation of the averaging kernel is negligible, a reasonable simplifica-
tion is that g(x, t) is a purely temporal average, which means that g(x, t) = δ(x)g̃(t), that 
is the distributed delay case. In [15], Gourley and Ruan investigated a Nicholson’s blowflies 
equation incorporating both distributed delay and diffusion under Neumann boundary con-
dition, and they obtained the local and global stability of homogeneous steady state. Zuo 
and Song [45] studied the stability and bifurcation of positive constant steady state in a 
general scalar diffusive equation with distributed delay and Neumann boundary condition. 
For Dirichlet boundary problem with distributed delay, a two-species diffusive population 
model with distributed delay under Dirichlet boundary condition and its bifurcation problem 
were investigated in [23]. But the kernel function in [23] has support in [τ, ∞), which is 
quite different from the Gamma distribution considered here. Another idealized assumption 
is that g(x, t) only depends on spatial information, that is, g(x, t) = ḡ(x)δ(t − τ). Stabil-
ity of positive steady state and associated Hopf bifurcations for such nonlocal spatial delay 
effect with Dirichlet boundary condition have been studied in for example [5,8,21]. And, 
in [24,39], the nonlocal delay effect in a scalar diffusive population equation under Neu-
mann boundary condition is investigated. When g(x, t) = δ(x)δ(t − τ), then g ∗ ∗u becomes 
the discrete and local delay effect. The Dirichlet boundary value problem with discrete de-
lay for diffusive logistic model has been considered in [3,36,38,43], and similar problem for 
Nicholson’s blowflies and Dirichlet boundary condition equation [20,34,37] and the references 
therein.

This paper is organized as follows. In Section 2, we study the stability and Hopf bifurca-
tion of the positive steady state through analyzing the corresponding eigenvalue problem. Then 
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the normal form of Hopf bifurcation is calculated in Section 3 to determine the bifurcation 
direction and stability of the bifurcating periodic orbits. In Section 4, we apply our results to 
two reaction–diffusion population models: logistic model and food-limited model, and we per-
form some numerical simulations. Here, we want to introduce some notations in this paper. The 
Lebesgue space of square integrable functions defined on a bounded and smooth domain � is 
denoted by L2(�) and we use Hk, Hk

0 denote the real-valued Sobolev space based on L2(�)

space. Denote X = H 2(�) ∩ H 1
0 (�) and Y = L2(�). For a linear vector space Z, we define its 

complexification to be ZC � Z ⊕ iZ = {x1 + ix2 : x1, x2 ∈ Z}. The Banach space of continuous 
mappings from s ∈ (−∞, 0] into Y is denoted by C = C((−∞, 0], Y) and the complex-valued 
Hilbert space YC has the inner product: 〈u, v〉 = ∫

�
ū(x)T v(x)dx. And throughout the paper, we 

define λ∗ as the principal eigenvalue of

{
−d�φ(x) = λφ(x), x ∈ �,

φ(x) = 0, x ∈ ∂�,
(1.3)

where φ(x) is the corresponding eigenfunction of λ∗ satisfying φ(x) > 0 for all x ∈ � and ∫
�

φ2(x)dx = 1.

2. Stability and Hopf bifurcation

In this section, we investigate the stability of the nonhomogeneous steady state of Eq. (1.1)
which satisfies the following boundary problem:

{
d�u(x) + λu(x)f (u(x)) = 0, x ∈ �,

u(x) = 0, x ∈ ∂�.
(2.1)

We always have the following assumptions for function f :

(H1) There exists a δ > 0 such that f is a C3 function on [0, δ],
(H2) f (0) = 1 and f ′(u) < 0 for all u ∈ [0, δ].

The existence of the steady state of system (1.1) satisfying Eq. (2.1) has been proved in [36], 
so we will pay our attention to study its stability which can be determined by analyzing the 
corresponding eigenvalue problems. First we decompose the spaces X, Y as follows,

X = K ⊕ X1, Y = K ⊕ Y1,

where

K = Span{φ}, X1 =
⎧⎨
⎩y ∈ X :

∫
�

φ(x)y(x)dx = 0

⎫⎬
⎭ , Y1 =

⎧⎨
⎩y ∈ Y :

∫
�

φ(x)y(x)dx = 0

⎫⎬
⎭ .

We directly give the result about the existence of steady state which is from Theorem 2.1 in [36].



6542 Q. Shi et al. / J. Differential Equations 263 (2017) 6537–6575
Lemma 2.1. There exist λ∗ > λ∗ and a continuously differentiable mapping λ 
→ (ξλ, αλ) from 
[λ∗, λ∗] to X1 ×R+ such that Eq. (1.1) with f satisfying (H2) has a positive steady state given 
by

uλ = αλ(λ − λ∗) [φ + (λ − λ∗)ξλ] , λ ∈ [λ∗, λ∗]. (2.2)

Moreover,

αλ∗ = − ∫
�

φ2(x)dx

λ∗f ′(0)
∫
�

φ3(x)dx
= − 1

λ∗f ′(0)
∫
�

φ3(x)dx
,

and ξλ∗ ∈ X1 is the unique solution of the equation

(d� + λ∗) ξ + [
1 + λ∗αλ∗f

′(0)φ(x)
]
φ(x) = 0, 〈φ, ξ〉 = 0. (2.3)

Let uλ be the positive steady state obtained in Lemma 2.1, the discussion in the following sec-
tions is always based on the assumption that λ ∈ (λ∗, λ∗] and 0 < λ∗ − λ∗ � 1 unless otherwise 
specified. Here, we clarify that the following analysis is for a fixed shape parameter n ∈R+ ∪{0}.

The linearization of Eq. (1.1) at uλ is given by

{
ut (x, t) = d�u(x, t) + λf (uλ)u(x, t) + λuλf

′(uλ)gn ∗ u(x, t − s), x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,
(2.4)

where gn∗u(x, t −s) = ∫ t

−∞ gn(τ, t −s)u(x, s)ds. We introduce the operator A(λ) : D(A(λ)) →
YC defined by

A(λ) := d� + λf (uλ), (2.5)

where D(A(λ)) = XC. By letting s̃ = s − t and dropping tilde on s, Eq. (2.4) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

ut (x, t) = A(λ)u(x, t) + λuλf
′(uλ)

0∫
−∞

gn(τ,−s)u(x, t + s)ds, x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0.

(2.6)

From Chapter 3 of [42], the semigroup induced by the solutions of Eq. (2.6) has an infinitesi-
mal generator Anτ (λ) which is given by

Anτ (λ)ϕn = ϕ̇n, (2.7)

and the domain of Anτ (λ) is

D(Anτ (λ)) =
⎧⎨
⎩ϕn ∈ CC ∩ C1

C
: ϕ̇n(0) = A(λ)ϕn(0) + λuλf

′(uλ)

0∫
−∞

gn(τ,−s)ϕn(s)ds

⎫⎬
⎭ ,

where C1 = C1((−∞, 0], YC) and ϕn(0) ∈ XC. The spectrum of Anτ (λ) is

C
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σ(Anτ (λ)) = {μ ∈ C : �(λ,μ, τ)ψn = 0, for some ψn ∈ XC\{0}}, (2.8)

where

�(λ,μ, τ) = A(λ) + λuλf
′(uλ)

0∫
−∞

gn(τ,−s)eμsds − μ

= A(λ) + λuλf
′(uλ)

1

(1 + μτ)n+1
− μ.

(2.9)

Note that (2.9) holds from the integral

0∫
−∞

gn(τ,−s)eμsds = 1

τn+1�(n + 1)

0∫
−∞

snes/τ eμsds = 1

(1 + μτ)n+1
. (2.10)

The stability and associated Hopf bifurcation of the nonhomogeneous steady state uλ of 
Eq. (1.1) are investigated in this section with the delay measure τ considered as the bifurca-
tion parameter. In the following lemma, we show that, as τ → 0, the stability of steady state of 
Eq. (1.1) is determined by the limiting operator

An0(λ) = A(λ) + λuλf
′(uλ). (2.11)

Lemma 2.2. For τ > 0, we have the following results for the spectra of Anτ and An0:

(i) σ(An0(λ)) ⊆ R−;
(ii) lim

τ→0
σb(Anτ (λ)) = σb(An0(λ)), where σb(Anτ (λ)) := σ(Anτ (λ)) ∩ {μ ∈ C : Re(μ) > b}, 

b = − min{1, λ∗} + ε with some small ε > 0;
(iii) sup

μ∈σ(Anτ (λ))

Re(μ) < 0 holds for τ > 0 sufficiently small.

In particular, for λ ∈ (λ∗, λ∗] and τ > 0 sufficiently small, the positive steady state uλ is locally 
asymptotically stable with respect to Eq. (1.1).

Proof. For (i), it is well-known that An0(λ) is a self-joint linear operator, so that any spectral 
point of An0(λ) is real-valued. Moreover, from the assumption (H1) that f ′(uλ) < 0, the princi-
pal eigenvalue of An0(λ) satisfies

μ1 = inf
0�=y∈H 1

0 (�)

−d
∫
�

|∇y|2 + λ
∫
�

f (uλ)y
2 + λ

∫
�

uλf
′(uλ)y

2∫
�

y2

< inf
0�=y∈H 1

0 (�)

−d
∫
�

|∇y|2 + λ
∫
�

f (uλ)y
2∫

�
y2

= 0,

and the last equality holds because of the fact that A(λ)uλ = (d� + λf (uλ))uλ = 0 and 0 is the 
principal eigenvalue of A(λ) with uλ being its eigenfunction. This proves (i).
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To prove (ii), we follow the setting in [42]. Define AT y = d�y for y ∈ XC. Then the closure 
of AT generates an analytic compact semigroup T (t) in XC, and it satisfies |T (t)| ≤ Me−λ∗t for 
t ≥ 0 by [42, Theorem 1.1.5 and 3.1.4]. Then (2.6) can be rewritten as

v(t) = T (t)v(0) +
t∫

0

T (t − s)f̃ (v(0), v(s))ds, t ≥ 0,

with f̃ : Ck → YC defined by

f̃ (φ̃)(x) := λf (uλ)φ̃(0) + λuλf
′(uλ)

0∫
−∞

gn(−s)φ̃(x, s)ds, x ∈ �, (2.12)

where the space Ck is defined as (for γ > 0)

Ck = {φ̃ : (−∞,0] → YC, φ̃ is continuous and lim
s→−∞ eγ s |φ̃(s)| = 0}.

Here the norm in Ck is defined by ‖φ̃‖Ck
:= sup

s≤0
eγ s |φ̃(s)|. For a fixed n, we choose γ = 1. When 

0 < τ < 1/2, we have

∞∫
0

eγ s |gn(s)|ds = 1

τn+1�(n + 1)

∞∫
0

sne(γ−1/τ)sds = 1

(γ τ − 1)n+1
< 2n+1 < ∞. (2.13)

Then, by (2.13) and the boundedness of uλ, f (uλ), f ′(uλ), we have

|f̃ (φ̃)| := sup
x∈�

|f̃ (φ̃)(x)| ≤ |λf (uλ)|‖φ̃‖Ck
+ |λuλf

′(uλ)|
∞∫

0

eγ s |gn(s)|ds‖φ̃‖Ck

<
(
|λf (uλ)| + 2n+1|λuλf

′(uλ)|
)

‖φ̃‖Ck
< M̃‖φ̃‖Ck

,

for some M̃ > 0. Therefore f̃ is a bounded linear operator on Ck . With b = − min{1, λ∗} + ε < 0
and by using [42, Theorem 3.4.2 and 3.4.5], we know that the set σb(Anτ (λ)) contains only a 
finite number of points of Pσ (Anτ (λ)) which is the point spectrum of Anτ (λ), and all of these 
points are of finite multiplicity. Then, when τ → 0, the conclusion in (ii) holds.

Then, we show that σb(An0(λ)) �= ∅ by proving μ1 ∈ σb(An0(λ)). By the variational method, 
we can also write the λ∗ which is the principal eigenvalue of −d� into the following form:

λ∗ = inf
0�=y∈H 1(�)

d
∫
�

|∇y|2∫
y2

. (2.14)

0 �
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So, we can calculate that

μ1 − (−λ∗) = inf
0�=y∈H 1

0 (�)

λ
∫
�

f (uλ)y
2 + λ

∫
�

uλf
′(uλ)y

2∫
�

y2

= inf
0�=y∈H 1

0 (�)

λ
∫
�
[f (uλ) + uλf

′(uλ)]y2∫
�

y2
.

When λ → λ∗, that is uλ → 0, by the assumptions (H1) and (H2), we know that f (uλ) → 1
and uλf

′(uλ) → 0. Therefore, we have μ1 > −λ∗ which means that μ1 > b and thus μ1 ∈
σb(An0(λ)).

Part (iii) is a direct consequence of (i) and (ii). From part (iii), we know that all the eigen-
values of Anτ (λ) have negative real part for sufficient small τ > 0, which implies that the steady 
state uλ of Eq. (1.1) is locally asymptotically stable. �

In order to investigate Hopf bifurcations in system (1.1), we consider the case that Anτ (λ) has 
a pair of purely imaginary eigenvalues μ = ±iωn (ωn > 0) for some τ > 0. From (2.9), we know 
that the operator Anτ (λ) has an eigenvalue iωn is equivalent to

[
A(λ) + λuλf

′(uλ)
1

(1 + iθn)n+1
− iωn

]
ψn = 0, ψn ∈ XC \ {0}, (2.15)

where θn := ωnτ .
Next we will show that there exist some triples (ωn, θn, ψn) which solve Eq. (2.15) for n > 0. 

For further discussion, we need the following lemma.

Lemma 2.3. Recall that λ∗ is the principal eigenvalue of −d�, we have

(i) if z ∈ XC and 〈φ, z〉 = 0, then |〈(d� + λ∗)z, z〉| ≥ (λ2 − λ∗)‖z‖2
YC

, where λ2 is the second 
eigenvalue of −d�;

(ii) for each n ≥ 0, if there exist some (ωn, θn, ψn) solve Eq. (2.15) with ψn ∈ XC, then ωn/(λ −
λ∗) is uniformly bounded for λ ∈ (λ∗, λ∗].

Proof. Part (i) is the same as [5, Lemma 2.3]. We prove part (ii). By Eq. (2.15), we have

〈[
A(λ) + λuλf

′(uλ)
1

(1 + iθn)n+1
− iωn

]
ψn,ψn

〉
= 0. (2.16)

Since A(λ) is self-adjoint, then 〈A(λ)ψn, ψn〉 is real. And by using 1 + iθn =√
1 + θ2

n eiηn with 
tanηn = θn, Eq. (2.16) can be rewritten as

〈[
A(λ) + λuλf

′(uλ)(1 + θ2
n)−(n+1)/2e−i(n+1)ηn − iωn

]
ψn,ψn

〉
= 0. (2.17)

Separating the real and imaginary parts of Eq. (2.17), we have

ωn〈ψn,ψn〉 = −
〈
(1 + θ2

n)−(n+1)/2 sin((n + 1)ηn)λuλf
′(uλ)ψn,ψn

〉
.
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Therefore, we obtain

|ωn|
λ − λ∗

= λαλ

∣∣(1 + θ2
n)−(n+1)/2 sin((n + 1)ηn)〈f ′(uλ)[φ + (λ − λ∗)ξλ]ψn,ψn〉

∣∣
‖ψn‖2

YC

.

According to the boundedness of f ′ and θn, we know that there is a constant M1 > 0 such that ∣∣((1 + θ2
n)−(n+1)/2 sin((n + 1)ηn)

)
f ′(uλ)

∣∣≤ M1, which implies that

|ωn|
λ − λ∗

≤ λαλM1 (1 + (λ − λ∗)‖ξλ‖∞) , λ ∈ (λ∗, λ∗].

The boundedness of ωn/(λ − λ∗) follows from the continuity of λ 
→ (αλ, ‖ξλ‖∞). �
Suppose that (ωn, θn, ψn) is a solution of Eq. (2.15) with ψn ∈ XC, then ψn can be decom-

posed and normalized as

ψn = βnφ + (λ − λ∗)zn, 〈φ, zn〉 = 0,

‖ψn‖2
YC

= β2
n‖φ‖2

YC
+ (λ − λ∗)2‖zn‖2

YC
= ‖φ‖2

YC
.

(2.18)

Substituting Eqs. (2.2), (2.18) and ωn = (λ − λ∗)hn into Eq. (2.15), we get the following system 
which is equivalent to Eq. (2.15):

g1(zn,βn,hn, θn, λ) := (d� + λ∗)zn + (βnφ + (λ − λ∗)zn)
{

1 + λm1(ξλ,αλ,λ)

+ λαλ[φ + (λ − λ∗)ξλ)]f ′(uλ)
1

(1 + iθn)n+1
− ihn

}
= 0,

g2(βn, zn, λ) :=
(
β2

n − 1
)

‖φ‖2
YC

+ (λ − λ∗)2‖zn‖2
YC

= 0,

(2.19)

where

m1(ξλ,αλ,λ) =

⎧⎪⎨
⎪⎩

f (uλ) − 1

λ − λ∗
, λ �= λ∗,

f ′(0)αλ∗φ, λ = λ∗.
(2.20)

We define G : XC ×R3 ×R → YC ×R as

G(zn,βn,hn, θn, λ) := (g1, g2).

We will show that the equation G = 0 can be solved for λ near λ∗, and we first solve the limiting 
equation when λ = λ∗ in the following lemma.

Lemma 2.4. When λ = λ∗, for n ≥ 0 and m ∈N ∪ {0}, we define

ηm
nλ∗ := (4m + 1)π

, �n := {
θm
nλ∗ = tan

(
ηm

nλ∗
) : sin

(
ηm

nλ∗
)
> 0, cos

(
ηm

nλ∗
)
> 0

}
. (2.21)
2(n + 1)



Q. Shi et al. / J. Differential Equations 263 (2017) 6537–6575 6547
Then G(zn, βn, hn, θn, λ∗) = 0 has exactly |�n| solutions given by

Wm
nλ∗ := (

zm
nλ∗ , β

m
nλ∗ , h

m
nλ∗ , θ

m
nλ∗
)

=
((

1 − i cosn+1 (ηm
nλ∗
))

ξλ∗ ,1, cosn+1 (ηm
nλ∗
)
, tan

(
ηm

nλ∗
))

,
(2.22)

where θm
nλ∗ ∈ �n (here |�n| is the number of elements in the set �n). Moreover,

(i) if n = 0, |�n| = 0;
(ii) if n ∈N, |�n| = mn + 1 where mn := [(n − 1)/4] (here [k] is the integer part of k ∈R);

(iii) if n ∈Q+ −N, |�n| < ∞;
(iv) if n ∈R+ −Q+, |�n| = ∞.

Proof. Our purpose is to solve G(zn, βn, hn, θn, λ) = (g1, g2) = 0 when λ = λ∗. Firstly, we have 
βm

nλ∗ = 1 through solving g2|λ=λ∗ = 0. When λ = λ∗, g1 = 0 is equivalent to

(d� + λ∗)zn + (1 − ihn)φ + λ∗αλ∗f
′(0)

(
1 + 1

(1 + iθn)n+1

)
φ2 = 0. (2.23)

Multiplying Eq. (2.23) with φ and integrating over �, we obtain that

(1 − ihn)

∫
�

φ2dx + λ∗αλ∗f
′(0)

(
1 + 1

(1 + iθn)n+1

)∫
�

φ3dx

=
(

1 − ihn −
(

1 + 1

(1 + iθn)n+1

))∫
�

φ2dx = 0,

which implies that

1

(1 + iθn)n+1
+ ihn = 0. (2.24)

Separating the real and imaginary parts of Eq. (2.24), we have{
(1 + θ2

n)−(n+1)/2 cos((n + 1)ηn) = 0,

−(1 + θ2
n)−(n+1)/2 sin((n + 1)ηn) + hn = 0,

(2.25)

where tanηn = θn. Since θn = ωnτ > 0 and hn > 0 which is from the second equation of (2.25), 
then we have

ηn = (4m + 1)π

2(n + 1)
, m =N∪ {0}, θn = tan (ηn) , with sin (ηn) > 0, cos (ηn) > 0. (2.26)

Hence we have θn = θm
nλ∗ ∈ �n defined in (2.21) when λ = λ∗. When n = 0, from (2.25), there 

is no solution satisfying G = 0. When n ∈ N, since k(m) = tan

(
(4m + 1)π

2(n + 1)

)
is periodic in m, 

and from (2.26), the number of θm
nλ∗ is determined by 0 <

(4m + 1)π
<

π
or equivalently −1 <
2(n + 1) 2
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4m < n. It is easy to see that the number of integers m satisfying −1 < 4m < n is mn + 1 for 
n ∈ N. When n is rational but not an integer, that is n ∈ Q+ − N, then we can write n as a 
fraction. By an analogous argument of the n ∈N case, it can be shown that the number of θm

nλ∗ is 
still finite. When n is irrational, the function k(m) defined above is not periodic, so the number 
of solutions of G = 0 is infinite.

By the second equation of Eq. (2.25), hn is obtained when λ = λ∗:

hm
nλ∗ = cosn+1 (ηm

nλ∗
)
.

Substituting Eq. (2.24) into Eq. (2.23), we get

(d� + λ∗)zm
nλ∗ + (1 − ihm

nλ∗)
(
φ + λ∗αλ∗f

′(0)φ2
)

= 0. (2.27)

Because (d� + λ∗)−1 is bijective in (X1)C, so the solution of (2.27) is given by

zm
nλ∗ = −

(
1 − i cosn+1 (ηm

nλ∗
))

(d� + λ∗)−1
(
φ + λ∗αλ∗f

′(0)φ2
)

=
(

1 − i cosn+1 (ηm
nλ∗
))

ξλ∗ ,

where ξλ∗ is the unique solution of Eq. (2.3). This completes the proof. �
Lemma 2.4 shows that θn (frequency parameter) can be explicitly solved as in (2.21) for 

any real-valued shape parameter n > 0. For simplicity, in the following we will only consider the 
case of n being a positive integer, although the rational n case can also be established with similar 
approach. Note that in the integer or rational case, the number of potential critical frequencies θm

n

is finite, which is different from previous case of discrete delay case in [36] (which corresponds 
to the distribution function is a Dirac delta function). For that case, it was shown that θm =
(4m + 1)π

2
is a critical frequency for any m ∈N ∪ {0}.

Now by applying the implicit function theorem, we obtain the following result regarding the 
eigenvalue problem for λ near λ∗.

Theorem 2.5. For n ∈N and 0 ≤ m ≤ mn, and with Wm
nλ∗ defined in Eq. (2.22), we have

(i) for each m, there is a unique continuously differentiable map Wm : [λ∗, λ∗] → (X1)C ×R3

defined by Wm(λ) := (
zm
nλ,β

m
nλ,h

m
nλ, θ

m
nλ

)
such that G(Wm(λ), λ) = 0 and Wm(λ∗) = Wm

nλ∗ . 

Moreover, if there exists Wm
1 (λ) :=

(
z̃m
nλ, β̃

m
nλ, h̃

m
nλ, θ̃

m
nλ

)
such that G 

(
Wm

1 (λ), λ
) = 0 with 

h̃m
nλ > 0, θ̃m

nλ > 0, then Wm
1 (λ) = Wm(λ);

(ii) for λ ∈ (λ∗, λ∗], the eigenvalue problem

�(λ, iωn, τn)ψn = 0, τn > 0, ψn ∈ XC \ {0}
with � defined in (2.9) has solutions, that is, iωn ∈ σ(Anτ (λ)) if and only if

ωn = ωm
nλ := (λ − λ∗)hm

nλ, τn = τm
nλ := θm

nλ/ω
m
nλ,

ψn = rnψ
m
nλ with ψm

nλ := βm
nλφ + (λ − λ∗)zm

nλ,
(2.28)

where rn is a nonzero constant and 
(
zm ,βm ,hm , θm

)= Wm(λ) is defined in part (i).
nλ nλ nλ nλ
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Proof. We define T = (T1, T2) : (X1)C×R3 
→ YC×R by T := D(zn,βn,hn,θn)G 
(
Wm

nλ∗ , λ∗
)

, that 

is the Fréchet derivative of G with respect to (zn, βn, hn, θn) at (zm
nλ∗ , β

m
nλ∗ , h

m
nλ∗ , θ

m
nλ∗). Then we 

have

T1(χ, κ, ε,ϑ) = (d� + λ∗)χ + (
1 − ihm

nλ∗
)
κφ
[
1 + λ∗αλ∗f

′(0)φ
]− iεφ

− i(n + 1)ϑλ∗αλ∗f
′(0)φ2(

1 + iθm
nλ∗

)n+2
,

T2(κ) = 2κ‖φ‖2
YC

,

where αλ∗ is defined in Lemma 2.1. It can be verified that T is bijective from (X1)C×R3 to YC×
R. By the implicit function theorem, for each m, there exists a unique continuously differentiable 
mapping Wm(λ) : [λ∗, λ∗] → (X1)C × R3 such that G (Wm(λ),λ) = 0 with Wm(λ∗) = Wm

nλ∗ . 
This completes the proof of existence. And we need also to prove the uniqueness of the solution.

From the implicit function theorem, we need to verify that if G 
(
Wm

1 (λ), λ
) = 0, then 

Wm
1 (λ) → Wm

nλ∗ as λ → λ∗ in the norm of XC × R3. From Lemma 2.3 and Eq. (2.23), we 

see that {h̃m
nλ}, {β̃m

nλ} and {θ̃m
nλ} are bounded for each n. From Lemma 2.3 and the first equation 

of Eq. (2.23), we have

‖z̃m
nλ‖2

YC
≤ 1

λ2 − λ∗

[∣∣∣〈(1 + λm1(αλ, ξλ, λ) − ih̃m
nλ

)(
β̃m

nλφ + (λ − λ∗)z̃m
nλ

)
, z̃m

nλ

〉∣∣∣

+

∣∣∣∣∣∣∣
〈

λαλ(φ + (λ − λ∗)ξλ)f
′(uλ)(

1 + iθ̃m
nλ

)n+1

(
β̃m

nλφ + (λ − λ∗)z̃m
nλ

)
, z̃m

nλ

〉∣∣∣∣∣∣∣
⎤
⎥⎦

= 1

λ2 − λ∗

∣∣∣〈(1 + λm1(αλ, ξλ, λ) − ih̃m
nλ

− iλαλ(φ + (λ − λ∗)ξλ)f
′(uλ)h̃

m
nλ

)(
β̃m

nλφ + (λ − λ∗)z̃m
nλ

)
, z̃m

nλ

〉∣∣∣ .
The boundedness of {h̃m

nλ}, 
{
α̃m

nλ

}
, {f ′(uλ)} and {ξλ} implies that there exists M2 > 0 such that

1

λ2 − λ∗

∥∥∥1 + λm1(αλ, ξλ, λ) − ih̃m
nλ − iλαλ(φ + (λ − λ∗)ξλ)f

′(uλ)h̃
m
nλ

∥∥∥∞ ≤ M2,

then we have

∥∥z̃m
nλ

∥∥2
YC

≤ M2‖φ‖YC

∣∣∣β̃m
nλ

∣∣∣ ∥∥z̃m
nλ

∥∥
YC

+ M2(λ − λ∗)
∥∥z̃m

nλ

∥∥2
YC

. (2.29)

We can choose proper M2 such that M2(λ − λ∗) < 1/2, then Eq. (2.29) implies that

∥∥z̃m
nλ

∥∥2 ≤ 2M2

∣∣∣β̃m
nλ

∣∣∣‖φ‖2
Y . (2.30)
YC C
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Hence, 
{
z̃m
nλ

}
is bounded in YC when λ ∈ [λ∗, λ∗]. Since the operator d� + λ∗ : (X1)C 
→ (Y1)C

has a bounded inverse, by applying (d� + λ∗)−1 on g1

(
z̃m
nλ, β̃

m
nλ, h̃

m
nλ, θ̃

m
nλ, λ

)
= 0, we find that {

z̃m
nλ

}
is also bounded in XC, and hence 

{
Wm

1 (λ) : λ ∈ (λ∗, λ∗]} is precompact in YC×R3. There-

fore, there is a subsequence 
{
Wm

1 (λj ) :=
(
z̃m
nλj , β̃

m
nλj , h̃

m
nλj , θ̃

m
nλj

)}
such that

Wm
1 (λj ) → Wm

1 (λ∗), λj → λ∗ as j → ∞.

By taking the limit of the equation (d� + λ∗)−1G 
(
Wm

1 (λj ), λj
) = 0 as j → ∞, we have that 

G 
(
Wm

1 (λ∗), λ∗
)= 0. Also, by Lemma 2.4, we know that G (zn,βn,hn, θn, λ∗) = 0 has a unique 

solution given by (zn, βn, hn, θn) = Wm
nλ∗ , thus Wm

1 (λ∗) = Wm
nλ∗ . Hence, W1(λ) → Wm

nλ∗ as λ →
λ∗ in the norm of XC × R3. This proves part (i), and part (ii) is immediately observed from 
part (i). �

When using the delay τ as bifurcation parameter, Theorem 2.5 identifies mn +1 possible Hopf 
bifurcation values τm

nλ for 0 ≤ m ≤ mn. We show that the bifurcation values τm
nλ are monotonic 

with respect to n and m.

Proposition 2.6. For λ ∈ (λ∗, λ∗], n ∈ N and 0 ≤ m ≤ mn, we have the following results:

(i) for a fixed n, τm
nλ is strictly increasing with respect to m;

(ii) for a fixed m, τm
nλ is strictly decreasing with respect to n.

Proof. It is sufficient to show that the monotonicity holds for

q(m,n) := lim
λ→λ∗

(λ − λ∗)τm
nλ =

tan
(
ηm

nλ∗

)
cosn+1

(
ηm

nλ∗

) . (2.31)

From ηm
nλ∗ = (4m + 1)π

2(n + 1)
, we see that ηm

nλ∗ is strictly increasing in m and strictly decreasing 

in n. Moreover, by definition 0 < ηm
nλ∗ < π/2, and the function G1(x) = tan(x)

cosn+1(x)
is strictly 

increasing in (0, π/2). This shows that q(m, n) is strictly increasing with respect to m and strictly 
decreasing with respect to n. �

Proposition 2.6 shows that the possible Hopf bifurcation values satisfy

0 < τ 0
nλ < τ 1

nλ < · · · < τ
mn

nλ ,

and the minimum value τ 0
nλ is where the steady state uλ of Eq. (1.1) loses stability.

Next we verify that the simplicity and transversality conditions for Hopf bifurcation are satis-
fied.
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Lemma 2.7. For each λ ∈ (λ∗, λ∗], n ∈N and 0 ≤ m ≤ mn, we have

(i) Sm
nλ :=

∫
�

(
1 + (n + 1)λτm

nλuλf
′(uλ)(

1 + iθm
nλ

)n+2

)(
ψm

nλ(x)
)2

dx �= 0;

(ii) μ = μ 
(
τm
nλ

) := iωm
nλ is a simple eigenvalue of Anτ (λ) when τ = τm

nλ;

(iii) Re

(
dμ

dτ

(
τm
nλ

))
> 0.

Proof. For part (i), substituting Eq. (2.24) into the definition of Sm
nλ, we have

Sm
nλ =

∫
�

(
ψm

nλ(x)
)2

dx −
∫
�

i(n + 1)λf ′(uλ)uλθ
m
nλ

(λ − λ∗)
(
1 + iθm

nλ

) (
ψm

nλ(x)
)2

dx.

Let λ → λ∗, we obtain that

lim
λ→λ∗

Sm
nλ =

∫
�

φ2(x)dx −
∫
�

i(n + 1)λ∗f ′(0)αλ∗θ
m
nλ∗

1 + iθm
nλ∗

φ3(x)dx

=
⎛
⎜⎝1 + (n + 2)

(
θm
nλ∗

)2

1 +
(
θm
nλ∗

)2
+ i

(n + 1)θm
nλ∗

1 +
(
θm
nλ∗

)2

⎞
⎟⎠∫

�

φ2(x)dx

=1 + (n + 1) sin2 (ηm
nλ∗
)+ i

n + 1

2
sin
(
2ηm

nλ∗
)
.

(2.32)

This shows that Sm
nλ �= 0 and it proves part (i). The proof of part (ii) is similar to that of Theo-

rem 3.5 in [36], so we omit it here.
Now we come to the proof of part (iii), by applying the implicit function theorem, we obtain 

that there exists a neighborhood O×D×H ⊂R ×C ×XC of 
(
τm
nλ, iωm

nλ, ψm
nλ

)
and a continuous 

differential function (μ, ψ) : O → D ×H such that, for each τ ∈ O , μ(τ) is the only eigenvalue 
of Anτ (λ) with its associated eigenfunction ψ(τ) and the following equalities hold:

μ
(
τm
nλ

)= iωm
nλ, ψ

(
τm
nλ

)= ψm
nλ,

�(λ,μ(τ), τ ) =
[
A(λ) + λuλf

′(uλ)
∫ 0
−∞ gn(τ,−s)eμ(τ)sds − μ(τ)

]
ψ(τ) = 0, τ ∈ O.

(2.33)

Differentiating Eq. (2.33) with respect to τ at τ = τm
nλ, we get

dμ

dτ

(
τm
nλ

)⎡⎣1 − λuλf
′(uλ)

0∫
−∞

sgn(τ,−s)eiωm
nλsds

⎤
⎦ψm

nλ

+ �
(
λ, iωm

nλ, τ
m
nλ

) dψ

dτ

(
τm
nλ

)+ λuλf
′(uλ)

0∫
∂gn(τ,−s)

∂τ
eiωm

nλsdsψm
nλ = 0.
−∞
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Multiplying the equation by ψm
nλ and integrating over �, we obtain

dμ

dτ

(
τm
nλ

)=

0∫
−∞

∂gn(τ,−s)

∂τ
eiωm

nλsds

∫
�

λuλf
′(uλ)

(
ψm

nλ

)2
dx

∫
�

(
1 + (n + 1)λτm

nλuλf
′(uλ)(

1 + iθm
nλ

)n+2

)(
ψm

nλ

)2
dx

=

−i(n + 1)θm
nλ

τm
nλ

(
1 + iθm

nλ

)n+2

∫
�

λuλf
′(uλ)

(
ψm

nλ

)2
dx

∫
�

(
1 − (n + 1)λτm

nλuλf
′(uλ)ih

m
nλ

1 + iθm
nλ

)(
ψm

nλ

)2
dx

= 1∣∣Sm
nλ

∣∣2
⎛
⎝−(n + 1)θm

nλh
m
nλ

τm
nλ

(
1 + iθm

nλ

) ∫
�

(
ψm

nλ

)2
dx

∫
�

λuλf
′(uλ)

(
ψm

nλ

)2
dx

− iθm
nλ

∣∣∣∣∣∣
(n + 1)hm

nλ

1 + iθm
nλ

∫
�

λuλf
′(uλ)

(
ψm

nλ

)2
dx

∣∣∣∣∣∣
2
⎞
⎟⎠ .

Then, we have

Re

(
dμ

dτ

(
τm
nλ

))= −(λ − λ∗)2(n + 1)
(
hm

nλ

)2(
1 + (

θm
nλ

)2) ∣∣Sm
nλ

∣∣2
∫
�

(
ψm

nλ

)2
dx

∫
�

λuλf
′(uλ)

(
ψm

nλ

)2
λ − λ∗

dx.

When λ → λ∗,

lim
λ→λ∗

∫
�

λuλf
′(uλ)

(
ψm

nλ

)2
λ − λ∗

dx = −
∫
�

φ2(x)dx = −1,

so we have

lim
λ→λ∗

1

(λ − λ∗)2
Re

(
dμ

dτ

(
τm
nλ

))=
(n + 1) cos2(n+1)

(
ηm

nλ∗

)
sin2

(
ηm

nλ∗

) ∣∣∣Sm
nλ∗

∣∣∣2 > 0,

where

∣∣Sm
nλ∗
∣∣=

√(
1 + (n + 1) sin2

(
ηm

nλ∗

))2 +
(
(n + 1) sin

(
2ηm

nλ∗

))2/
4.

This implies that Re

(
dμ (

τm
nλ

))
> 0 for λ ∈ (λ∗, λ∗]. �
dτ
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Now from Theorem 2.5, Proposition 2.6 and Lemma 2.7, we have the following results for 
the Hopf bifurcations near the positive steady state uλ of (1.1) when the delay is near the critical 
value τ = τm

nλ.

Theorem 2.8. Suppose that f satisfies (H1) and (H2), d > 0 and gn is Gamma distribution 
function with shape parameter n ∈N ∪ {0}. For each λ ∈ (λ∗, λ∗],

(i) when n = 0 (weak kernel), all the eigenvalues of Anτ (λ) have negative real parts for all 
τ > 0, and the positive steady state uλ of (1.1) is locally asymptotically stable for all τ > 0;

(ii) when n ∈ N, there exists an increasing finite sequence τm
nλ > 0 for 0 ≤ m ≤ mn such that 

all the eigenvalues of Anτ (λ) have negative real parts when τ ∈ (0, τ 0
nλ

)
, Anτ (λ) has a pair 

of purely imaginary eigenvalues ±iωm
nλ

(
ωm

nλ > 0
)

when τ = τm
nλ, Anτ (λ) has 2(m + 1)

eigenvalues with positive real parts when τ ∈
(
τm
nλ, τ

m+1
nλ

)
, and Anτ (λ) has 2(mn + 1)

eigenvalues with positive real parts when τ ∈ (τmn

nλ ,∞)
;

(iii) for n ∈ N and 0 ≤ m ≤ mn, a Hopf bifurcation occurs at τ = τm
nλ for (1.1) so that there is a 

continuous family of periodic orbits of (1.1) in form of

{(
τm
n (s), um

n (x, t, s), T m
n (s)

) : s ∈ (0, δ1)
}
,

where um
n (x, t, s) is a T m

n (s)-periodic solution of (1.1) with τ = τm
n (s), and τm

n (0) = τm
nλ, 

lim
s→0+ um(x, t, s) = uλ(x) and lim

s→0+ T m
n (s) = 2π/ωm

nλ;

(iv) for n ∈ N, the positive steady state uλ of Eq. (1.1) is locally asymptotically stable when 
τ ∈ (0, τ 0

nλ

)
, and it is unstable when τ ∈ (τ 0

nλ,∞
)
.

Proof. Part (ii) and (iii) follow from Theorem 2.5, Proposition 2.6, Lemma 2.7 and the Hopf 
Bifurcation Theorem [22]. Part (iv) is a straightforward corollary of part (ii). We prove part (i)
by modifying an approach in [5,7].

Assume that the conclusion of (i) is not true, then there exist two sequences {λj }∞j=1 and 

{τ j }∞j=1, satisfying λj > λ∗ for j ≥ 1, lim
j→∞λj = λ∗ and τ j > 0, and for each j , the eigenvalue 

problem

⎧⎪⎪⎨
⎪⎪⎩

A(λj )ψ + λjuλj f
′(uλj )

0∫
−∞

1

τ j
es/τ j

eμsdsψ = μψ, x ∈ �,

ψ(x) = 0, x ∈ ∂�,

(2.34)

has an eigenvalue μλj with nonnegative real part and corresponding eigenfunction ψλj satis-
fying ‖ψλj ‖YC = 1. Then, we write ψλj as ψλj = cλj uλj + φλj , where cλj ∈ C and cλj =
〈uλj , ψλj 〉/〈uλj , uλj 〉. Here uλj is the positive steady state of Eq. (1.1) for λ = λj , and φλj ∈ XC

satisfies 〈φλj , uλj 〉 = 0.
Substituting ψ = ψλj = cλj uλj + φλj and μ = μλj into Eq. (2.34), multiplying by ψλj and 

integrating, we have
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〈A(λj )φλj , φλj 〉 = μλj − λj

〈
uλj f ′(uλj )

0∫
−∞

1

τ j
es/τ j

eμ
λj sdsψλj ,ψλj

〉
, (2.35)

from that 〈A(λj )φλj , uλj 〉 = 〈φλj , A(λj )uλj 〉 and A(λj )uλj = 0. Define

Dj = λj

〈
uλj f ′(uλj )

0∫
−∞

1

τ j
es/τ j

eμ
λj sdsψλj ,ψλj

〉
,

then we can obtain that

|Dj | ≤ λj‖uλj ‖∞
|f ′(uλj )|

1 + μλj τ j
→ 0, as j → ∞. (2.36)

From Eq. (2.35) and the fact that 〈A(λj )φλj , φλj 〉 < 0, it can be inferred that

0 ≤ Re(μλj ) ≤ |Dj |, 0 ≤ ∣∣Im(μλj )
∣∣≤ |Dj |,

hence by (2.36), we have

lim
j→∞Re(μλj ) = lim

j→∞
∣∣Im(μλj )

∣∣= 0.

From (2.35) and using similar argument as in the proof of Lemma 2.3 part (i), we have

∣∣Dj

∣∣+ |μλj | ≥ |〈A(λj )φλj , φλj 〉| ≥ |λ2(λ
j )| · ‖φλj ‖2

YC
, (2.37)

where λ2(λ
j ) is the second eigenvalue of A(λj ). When j → ∞, both |Dj | and |μλj | go to zero 

because of limj→∞ ‖uλj ‖∞ = 0, so the inequality (2.37) implies that lim
j→∞‖φλj ‖YC = 0.

Since ψλj = cλj uλj + φλj and ‖ψλj ‖YC = 1, then we obtain

lim
n→∞|cλj |(λj − λ∗) lim

j→∞

∥∥∥∥ uλj

λj − λ∗

∥∥∥∥
YC

= 1,

and hence lim
j→∞|cλj |(λj − λ∗) = 1

αλ∗
> 0. Now we calculate that

Dj

λj − λ∗
= 1

λj − λ∗
λj

〈
uλj f

′(uλj )

0∫
−∞

1

τ j
es/τ j

eμ
λj sds(cλj uλj + φλj ), (cλj uλj + φλj )

〉

= λj

1 + μλj τ j
(J1 + J2 + J3 + J4),

(2.38)

where



Q. Shi et al. / J. Differential Equations 263 (2017) 6537–6575 6555
J1 = |cλj |2(λj − λ∗)2
∫
�

u3
λj (x)f ′(uλj (x))

(λj − λ∗)3
dx,

J2 = cλj (λ
j − λ∗)

∫
�

u2
λj (x)f ′(uλj (x))φλj (x)

(λj − λ∗)2
dx,

J3 = cλj (λj − λ∗)
∫
�

u2
λj (x)f ′(uλj (x))φλj (x)

(λj − λ∗)2
dx,

J4 =
∫
�

φλj (x)φλj (x)uλj (x)

λj − λ∗
dx.

Since lim
j→∞‖φλj ‖YC = 0, then lim

j→∞‖φλj ‖L1 = 0, so

lim
j→∞J1 = αλ∗f

′(0)

∫
�

φ3dx = − 1

λ∗
, lim

j→∞Ji = 0, i = 2,3,4.

Therefore, by letting μλj = μR
λj + iμI

λj , when j → ∞,

Dj

λj − λ∗
= − 1 + o(1)

1 + μλj τ j
= − 1 + o(1)

1 + μR
λj τ

j + iμI
λj τ

j
= −(1 + μR

λj τ
j ) + iμI

λj τ
j + o(1)

(1 + μR
λj τ

j )2 + (μI
λj τ

j )2
.

So, Re(Dj ) < 0 which implies that

Re(μλj ) = 〈A(λj )φλj , φλj 〉 +Re(Dj ) < 0. (2.39)

That is a contradiction with Re(μλj ) ≥ 0 for j ≥ 1. Therefore, all the eigenvalues of A0τ (λ)

have negative real parts for all τ > 0, which implies that the steady state of Eq. (1.1) is locally 
asymptotically stable when n = 0 for any τ > 0. �
3. Stability and direction of Hopf bifurcation

In the previous section, when n ∈N, we obtain conditions under which system (1.1) undergoes 
a Hopf bifurcation near the positive steady state uλ at τ = τm

nλ. In this section, we apply the theory 
in [10,11,38] to compute the normal form of the Hopf bifurcation to determine the bifurcation 
direction and the stability of bifurcating periodic orbits. Firstly, by letting U(t) = u(·, t) − uλ

and Ut = U(t + a) ∈ C = C((−∞, 0], YC), α = τ − τm
nλ and t → t/τ , for each λ ∈ (λ∗, λ∗], we 

translate the steady state and parameter τ to the origin, then α = 0 is the Hopf bifurcation value. 
For the simplicity of writing, we give the following new notations:

τnλ := τm
nλ, ψnλ := ψm

nλ, θnλ := θm
nλ, ηnλ := ηm

nλ, ωnλ := ωm
nλ, Snλ := Sm

nλ, (3.1)

for λ ∈ [λ∗, λ∗], where θm
nλ, τm

nλ, ψm
nλ, ωm

nλ are defined in Theorem 2.5, Sm
nλ is defined in 

Lemma 2.7. Also we recall the following limits for the subsequent computation:
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lim
λ→λ∗

uλ

λ − λ∗
= αλ∗φ, lim

λ→λ∗
ψnλ = φ,

lim
λ→λ∗

Snλ = Snλ∗ := 1 + (n + 1) sin2 (ηnλ∗
)+ i

n + 1

2
sin
(
2ηnλ∗

) (3.2)

with uλ, αλ∗ defined in Lemma 2.1 and φ being the eigenfunction of −d� with eigenvalue λ∗
and norm 

∫
�

φ2dx = 1. For the simplicity of writing, we define

T (F) =
0∫

−∞

(−s)nesF(s)

n! ds,

where F(s) can be a function or a vector-valued function defined on (−∞, 0]. Then, we rewrite 
Eq. (1.1) as follows:

dU(t)

dt
= τnλd�Ut(0) + L0(Ut ) + F(Ut ,α), (3.3)

where

L0(Ut ) =λτnλ

(
f (uλ)U(t) + uλf

′(uλ)T (Ut )
)
,

F (Ut ,α) =α
(
(d� + λf (uλ))U(t) + λuλf

′(uλ)T (Ut )
)+ λ(α + τnλ)f

′(uλ)U(t)T (Ut )

+ λ(α + τnλ)(U(t) + uλ)
[
f (T (Ut ) + uλ) − f (uλ) − f ′(uλ)T (Ut )

]
.

For the convenience of computation, we rewrite F(Ut, α) as

F(Ut ,α) = 1

2!F2(Ut ), α) + 1

3!F3(Ut , α) + h.o.t., (3.4)

where h.o.t . stands for “high order terms”, and

F2(Ut , α) = 2!α ((d� + λf (uλ))U(t) + λuλf
′(uλ)T (Ut )

)
+ 2!λτnλ

(
f ′(uλ)U(t)T (Ut ) + uλf

′′(uλ)

2! (T (Ut ))
2
)

,

F3(Ut , α) = 3!
[
αλf ′(uλ)U(t)T (Ut ) + 1

2!λ(τnλU(t) + αuλ)f
′′(uλ) (T (Ut ))

2

+ 1

3!λτnλuλf
′′′(uλ) (T (Ut ))

3
]

.

The linearized equation of (3.3) is

dU(t) = τnλd�U(t) + L0(Ut ). (3.5)

dt



Q. Shi et al. / J. Differential Equations 263 (2017) 6537–6575 6557
Denote the infinitesimal generator of Eq. (3.5) by Aτ , we have Aτψ = ψ̇ , with its domain

D(Aτ ) =
{
ψ ∈ CC

⋂
C1
C

: ψ̇(0)=τnλ

(
A(λ)ψ(0) + λuλf

′(uλ)T (ψ)
)}

.

Then Eq. (3.3) can be rewritten in the abstract form:

dU(t)

dt
=AτUt + χ0F(Ut ,α) (3.6)

with

χ0(a) =
{

0, a ∈ (−∞,0),

I, a = 0.

For ψ ∈ C, ϕ ∈ C∗ = C((−∞, 0], X∗), we introduce a bilinear functional 〈〈·, ·〉〉 defined by

〈〈ϕ,ψ〉〉 = 〈ϕ(0),ψ(0)〉 −
0∫

−∞

a∫
0

〈ϕ(ξ − a), dδ(a)ψ(ξ)〉dξ, (3.7)

where 〈·, ·〉 is the formal duality between X and X∗ and δ(a) is a bounded variation function 
such that

L0ψ =
0∫

−∞
dδ(a)ψ(a), ψ ∈ C.

By Theorem 2.8, ±iωnλτnλ are a pair of simple purely imaginary eigenvalues of Aτ and we 
denote ωnλτnλ as θnλ. Let � = {iθnλ, −iθnλ}, then the eigenspace associated with � is

P = Span{�}, �(a) =
(
ψnλe

iθnλa, ψ̄nλe
−iθnλa

)
, a ∈ (−∞,0].

Then C can be decomposed as C = P
⊕

Q with

Q = {ϕ ∈ C : 〈〈ψ,ϕ〉〉 = 0, for all ψ ∈ P ∗},

where P ∗ is the generalized eigenspace of the adjoint equation associated with � and

P ∗ = Span{�}, �(s) =
(

1

Snλ

ψnλe
−iθnλs ,

1

S̄nλ

ψ̄nλe
iθnλs

)T

, s ∈ [0,+∞).

In order to apply the method in [10] to compute the normal form, we consider the enlarged 
phase space

BC = {ψ : (−∞,0] → X : ψ is continuous on (−∞,0) with a positive jump discontinuity at 0},
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and BC can be decomposed as BC = P
⊕

Ker(π) with π is the projection from BC to P and 
defined by

π(ϕ + χ0y) = �(〈〈�,ϕ〉〉 + 〈�(0), y〉), ϕ ∈ C, y ∈ X.

The extension of Aτ : C1
0 → BC is

Aτ v = v̇(a) + χ0[τnλd�v(0) + L0v − v̇(0)]

with v(a) = Ut(a) and C1
0 = {ϕ ∈ C : ϕ̇ ∈ C, ϕ(0) ∈ X} ⊂ BC. So Eq. (3.6) can be rewritten as

dv(0)

dt
=Aτ v + χ0F(v,α). (3.8)

By letting v = �z(t) + y(t) and following the process of [10], Eq. (3.8) can be decomposed as

{
ż(t) = Bz(t) + 〈�(0),F (�z(t) + y(t), α)〉,
ẏ(t) =Aτ1y(t) + (I − π)χ0F(�z(t) + y(t), α),

(3.9)

where z(t) ∈ C2, y(t) ∈ Q1
0 = Q ∩ C1

0 ,

B =
(

iθnλ 0
0 −iθnλ

)
,

and Aτ1 : Q1
0 → Ker(π) with Aτ1v =Aτ v, v ∈ Q1

0.
We write the Taylor expansion of the high order terms of Eq. (3.9) as follows:

⎧⎪⎪⎨
⎪⎪⎩

〈�(0),F (�z(t) + y(t), α)〉 = 1

2!f
1
2 (z, y,α) + 1

3!f
1
3 (z, y,α) + h.o.t.,

(I − π)χ0F(�z(t) + y(t), α) = 1

2!f
2
2 (z, y,α) + 1

3!f
2
3 (z, y,α) + h.o.t.,

where

f 1
j (z, y,α) = 〈�(0),Fj (�z + y,α)〉, f 2

j (z, y,α) = (I − π)χ0Fj (�z + y,α) (3.10)

are homogeneous polynomials in (z, y, α) of degree j with j = 2, 3.
Then, by using the transformation (z, y) = (z̄, ȳ) + 1

j ! (U
1
j (z̄), U2

j (z̄)), we obtain the normal 
form of Eq. (3.9)

⎧⎪⎨
⎪⎩

ż(t) = Bz(t) + 1

2!g
1
2(z, y,α) + 1

3!g
1
3(z, y,α) + h.o.t.,

ẏ(t) =Aτ1y(t) + 1
g2

2(z, y,α) + 1
g2

3(z, y,α) + h.o.t.,

(3.11)
2! 3!
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where

⎧⎨
⎩

g1
j (z, y,α) = f 1

j (z, y,α) − [DzU
1
j Bz − BU1

j (z)],
g2

j (z, y,α) = f 2
j (z, y,α) − [DzU

2
j Bz −Aτ1(U

2
j (z))].

Define

M1
j (p)(z,α) = Dzp(z,α)Bz − Bp(z,α), j ≥ 2,

M2
j (p)(z,α) = Dzp(z,α)Bz −Aτ1(p(z,α)), j ≥ 2,

(3.12)

then we have

g1
j (z, y,α) = ProjKer(M1

2 )f
1
j (z, y,α),

g2
j (z, y,α) = ProjKer(M2

2 )f
2
j (z, y,α).

(3.13)

By the results of Faria [10], g2
j = 0 for any j ≥ 2. So on the center manifold, we have y = 0

and Eq. (3.11) has the following form:

ż(t) = Bz(t) + 1

2!g
1
2(z,0, α) + 1

3!g
1
3(z,0, α) + h.o.t.. (3.14)

And we can calculate that

Ker(M1
2 ) = Span

{(
z1α

0

)
,

(
0

z2α

)}
,

Ker(M1
3 ) = Span

{(
z2

1z2
0

)
,

(
z1α

2

0

)
,

(
0

z1z
2
2

)
,

(
0

z2α
2

)}
.

First we compute g1
2(z, 0, α). From (3.13), we need to compute f 1

2 (z, 0, α) which is defined in 
Eq. (3.10). According to its definition, we have

1

2!f
1
2 (z,0, α) = 1

2! 〈�(0),F2(�z + y,α)〉∣∣
y=0

=
〈
�(0), α

[
d��(0)z + λf (uλ)�(0)z + λuλf

′(uλ)T (�)z
]

= λτnλf
′′(uλ)(�(0)z)(T (�)z) + 1

2
λτnλuλf

′′(uλ) (T (�)z)2
〉

=
〈
�(0),

α�̇(0)z

τnλ

〉
+ λτnλ

〈
�(0), f ′(uλ)(�(0)z)(T (�)z)

〉

+ 1
λτnλ

〈
�(0), uλf

′′(uλ) (T (�)z)2
〉

2
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=
⎛
⎝ iωnλ

Snλ
〈ψnλ,ψnλ〉z1α

−iωnλ

S̄nλ
〈ψ̄nλ, ψ̄nλ〉z2α

⎞
⎠+ λτnλ

〈
�(0), f ′(uλ)(�(0)z)(T (�)z)

〉

+ 1

2
λτnλ

〈
�(0), uλf

′′(uλ) (T (�)z)2
〉
,

so by the definition of Ker(M1
2 ) we can get

1

2!g
1
2(z,0, α) = ProjKer(M1

2 )

1

2!f
1
2 (z,0, α) =

⎛
⎝ iωnλ

Snλ
〈ψnλ,ψnλ〉z1α

−iωnλ

S̄nλ
〈ψ̄nλ, ψ̄nλ〉z2α

⎞
⎠�

(
A1z1α

Ā1z2α

)
(3.15)

with

A1 = iωnλ

Snλ

〈ψnλ,ψnλ〉. (3.16)

Let K1 := Re(A1), then from (3.2), we have

lim
λ→λ∗

τnλK1 = θnλ∗Re

(
i

Snλ∗

)
= n + 1

2
sin
(
2ηnλ∗

)
θnλ∗ = (n + 1) sin2 (ηnλ∗

)
> 0. (3.17)

Note that K1 is an important number in determining the direction of Hopf bifurcation and K1 =
O(|λ − λ∗|).

Next, we calculate g1
3(z, 0, α). By Eq. (3.13) and the definition of Ker(M1

3 ), we know that

1

3!g
1
3(z,0, α) = ProjKer(M1

3 )

1

3! f̃
1
3 (z,0, α) = ProjS

1

3! f̃
1
3 (z,0,0) + O(|z|α2) (3.18)

with

S = Span

{(
z2

1z2
0

)
,

(
0

z1z
2
2

)}
,

and f̃ 1
3 (z, 0, 0) is given in [10] as follows,

f̃ 1
3 (z,0,0) = f 1

3 (z,0,0) + 3

2
[Dzf

1
2 (z,0,0)U1

2 (z,0) − DzU
1
2 (z,0)g1

2(z,0,0)

+ Dyf
1
2 (z,0,0)U2

2 (z,0)],
where

U1
2 (z,0) = U1

2 (z,α)
∣∣
α=0 = (M1

2 )−1ProjKer(M1
2 )f

1
2 (z,0,0), (3.19)

and U2
2 (z, 0) is determined by

(M2U2)(z,0) = f 2(z,0,0). (3.20)
2 2 2
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By Eq. (3.15), we know that g1
2(z, 0, 0) = 0. Therefore, f̃ 1

3 (z, 0, 0) has there terms left: 
f 1

3 (z, 0, 0), Dzf
1
2 (z, 0, 0)U1

2 (z, 0) and Dyf
1
2 (z, 0, 0)U2

2 (z, 0) which will be computed one by 
one in the following.

By the definition of f 1
3 (z, 0, 0) which is in Eq. (3.10), we can get

1

3!f
1
3 (z,0,0) = 〈�(0),

1

3!F3(�z,0)〉

=
〈
�(0),

1

2
λτnλf

′′(uλ)�(0)z (T (�)z)2 + 1

3!λτnλuλf
′′′(uλ) (T (�)z)3

〉
= (E, Ē)T ,

where

E =
〈

1

Snλ

ψnλ,
1

2
λτnλf

′′(uλ)(ψnλz1 + ψ̄nλz2)
(
ρnλψnλz1 + ρ̄nλψ̄nλz2

)2
+ 1

3!λτnλuλf
′′′(uλ)

(
ρnλψnλz1 + ρ̄nλψ̄nλz2

)3〉

with ρnλ := 1

(1 + iθnλ)n+1
. Therefore, we can get

ProjS

(
1

3!f
1
3 (z,0,0)

)
=
(

C0z
2
1z2

C̄0z1z
2
2

)

with

C0 = λτnλ

Snλ

(
〈ψnλ,f

′′(uλ)ψnλ|ψnλ|2〉|ρnλ|2 + 1

2
〈ψnλ,f

′′(uλ)ψ̄nλψ
2
nλ〉ρ2

nλ

+ 1

2
〈ψnλ,uλf

′′′(uλ)ψ
2
nλψ̄nλ〉ρ2

nλρ̄nλ

)
.

(3.21)

When λ → λ∗, according to Eq. (3.2), we have

lim
λ→λ∗

C0

τnλ

= λ∗f ′′(0)h2
nλ∗

∫
�

φ4dx

2Snλ∗
,

which means that C0 = O(|λ − λ∗|−1), thus we have

lim
λ→λ∗

C0

τ 2
nλ

= 0. (3.22)

Next we calculate Dzf
1
2 (z, 0, 0)U1

2 (z, 0). First of all, we have

f 1
2 (z,0,0) =〈�(0),F 1

2 (�z,0)〉
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=λτnλ

〈
�(0),2f ′(uλ)(�(0)z)(T (�)z) + uλf

′(uλ) (T (�)z)2
〉

=λτnλ(H, H̄ )T

with

H = 2

Snλ

[(
ρnλ〈ψnλ,f

′(uλ)ψ
2
nλ〉 + 1

2
ρ2

nλ〈ψnλ,uλf
′′(uλ)ψ

2
nλ〉
)

z2
1

+
(

2Re (ρnλ) 〈ψnλ,f
′(uλ)|ψnλ|2〉 + |ρnλ|2〈ψnλ,uλf

′′(uλ)|ψnλ|2〉
)

z1z2

+
(

ρ̄nλ〈ψnλ,f
′(uλ)ψ̄

2
nλ〉 + 1

2
ρ̄2

nλ〈ψnλ,uλf
′(uλ)ψ̄

2
nλ〉
)

z2
2

]
.

Hence, by the definition of U1
2 (z, 0) and M1

2 which are in Eqs. (3.19) and (3.12) respectively, we 
obtain

U1
2 (z,0) = (M1

2 )−1f 1
2 (z,0,0) = 2λτnλ

iθnλ

(U1,U2)
T

with

U1 = 2

Snλ

[(
ρnλ〈ψnλ,f

′(uλ)ψ
2
nλ〉 + 1

2
ρ2

nλ〈ψnλ,uλf
′′(uλ)ψ

2
nλ〉
)

z2
1

−
(

2Re (ρnλ) 〈ψnλ,f
′(uλ)|ψnλ|2〉 + |ρnλ|2〈ψnλ,uλf

′′(uλ)|ψnλ|2〉
)

z1z2

− 1

3

(
ρ̄nλ〈ψnλ,f

′(uλ)ψ̄
2
nλ〉 + 1

2
ρ̄2

nλ〈ψnλ,uλf
′(uλ)ψ̄

2
nλ〉
)

z2
2

]
,

U2 = 2

S̄nλ

[
1

3

(
ρnλ〈ψ̄nλ, f

′(uλ)ψ
2
nλ〉 + 1

2
ρ2

nλ〈ψ̄nλ, uλf
′′(uλ)ψ

2
nλ〉
)

z2
1

+
(

2Re (ρnλ) 〈ψ̄nλ, f
′(uλ)|ψnλ|2〉 + |ρnλ|2〈ψ̄nλ, uλf

′′(uλ)|ψnλ|2〉
)

z1z2

−
(

ρ̄nλ〈ψ̄nλ, f
′(uλ)ψ̄

2
nλ〉 + 1

2
ρ̄2

nλ〈ψ̄nλ, uλf
′(uλ)ψ̄

2
nλ〉
)

z2
2

]
.

Therefore,

ProjS(Dzf
1
2 (z,0,0)U1

2 (z,0)) =
(

C1z
2
1z2

C̄1z1z
2
2

)
,

where

C1 = 8λ2τ 2
nλ

iθnλ

[
Re (ρnλ)

S2
nλ

〈ψnλ,f
′(uλ)|ψnλ|2〉

×
(

ρnλ〈ψnλ,f
′(uλ)ψ

2
nλ〉 + ρ2

nλ

2
〈ψnλ,uλf

′′(uλ)ψ
2
nλ〉
)
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− ρnλ

S2
nλ

〈ψnλ,f
′(uλ)ψ

2
nλ〉

(
2Re (ρnλ) 〈ψnλ,f

′(uλ)|ψnλ|2〉 + |ρnλ|2〈ψnλ,uλf
′′(uλ)|ψnλ|2〉

)

+ ρ̄nλ

3|Snλ|2 〈ψnλ,f
′(uλ)ψ̄

2
nλ〉

(
ρnλ〈ψ̄nλ, f

′(uλ)ψ
2
nλ〉 + 1

2
ρ2

nλ〈ψ̄nλ, uλf
′′(uλ)ψ

2
nλ〉
)

+ Re (ρnλ)

|Snλ|2 〈ψnλ,f
′(uλ)|ψnλ|2〉

(
2Re (ρnλ) 〈ψ̄nλ, f

′(uλ)|ψnλ|2〉

+ |ρnλ|2〈ψ̄nλ, uλf
′′(uλ)|ψnλ|2〉

)]
.

With the fact that Re (ρnλ) = Re(−ihnλ) = 0, C1 can be reduced as:

C1 = 8iλ2τ 2
nλ

θnλ

[
1

S2
nλ

|ρnλ|2ρnλ〈ψnλ,f
′(uλ)ψ

2
nλ〉〈ψnλ,uλf

′′(uλ)|ψnλ|2〉

− 1

3|Snλ|2
(
|ρnλ|2〈ψ̄nλ, f

′(uλ)ψ
2
nλ〉〈ψnλ,f

′(uλ)ψ̄
2
nλ〉

+ 1

2
|ρnλ|2ρnλ〈ψnλ,f

′(uλ)ψ̄nλ〉〈ψ̄nλ, uλf
′′(uλ)ψ

2
nλ〉
)]

.

(3.23)

When λ → λ∗, we have

lim
λ→λ∗

C1

τ 2
nλ

= −8iλ∗h2
nλ∗

∫
�

φ3dx

3αλ∗θnλ∗ |Snλ∗ |2
. (3.24)

Therefore,

lim
λ→λ∗

Re

(
C1

τ 2
nλ∗

)
= 0. (3.25)

Finally, we determine ProjS

(
Dyf

1
2 (z,0,0)U2

2 (z,0)
)
, and define h(z, a) = U2

2 (z, 0) with 
h(z, a) = h20(a)z2

1 + h11(a)z1z2 + h02(a)z2
2. Then, h20(a), h11(a), h02(a) can be uniquely 

determined by

(M2
2 h)(z) = f 2

2 (z,0,0), (3.26)

which is equivalent to

Dzh(z, a)Bz −Aτ1(h(z, a)) = (I − π)χ0F2(�z,0)

=2λτnλ

[
χ0f

′(uλ)(�(0)z)(T (�)z) − �
〈
�(0), f ′(uλ)(�(0)z)(T (�)z)

〉]
+ λτnλ

[
χ0uλf

′′(uλ) (T (�)z)2 − �
〈
�(0), uλf

′′(uλ) (T (�)z)2
〉]

.

(3.27)
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Applying the definition of Aτ1 and χ0, we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ḣ(z, a) − Dzh(z, a)Bz = 2λτnλ�
〈
�(0), f ′(uλ)(ψnλz1 + φ̄nλz2)(ψnλρnλz1 + φ̄nλρ̄nλz2)

〉
+ λτnλ�

〈
�(0), uλf

′′(uλ)(ψnλρnλz1 + φ̄nλρ̄nλz2)
2
〉
,

ḣ(z,0) − τnλd�h(z,0) − L0h(z, a) = 2λτnλf
′(uλ)(ψnλz1 + φ̄nλz2)(ψnλρnλz1 + φ̄nλρ̄nλz2)

+ λτnλ(ψnλρnλz1 + φ̄nλρ̄nλz2)
2.

(3.28)

Matching the coefficients of z2
1 and z1z2 of Eq. (3.28), we can get the following equations about 

h20 and h11,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ḣ20(a) − 2iθnλh20(a)

= 2λτnλρnλ

(
〈ψnλ,f

′(uλ)ψ
2
nλ〉ψnλe

iθnλa

Snλ

+ 〈ψ̄nλ, f
′(uλ)ψ

2
nλ〉ψ̄nλe

−iθnλa

S̄nλ

)

+ λτnλρ
2
nλ

(
〈ψnλ,uλf

′′(uλ)ψ
2
nλ〉ψnλe

iθnλa

Snλ

+ 〈ψ̄nλ, uλf
′′(uλ)ψ

2
nλ〉ψ̄nλe

−iθnλa

S̄nλ

)
,

ḣ20(0) − τnλ

[
A(λ)h20(0) + λuλf

′(uλ)T (h20)
]= λτnλ(2f ′(uλ)ρnλ + uλf

′′(uλ)ρ
2
nλ)ψ

2
nλ,

(3.29)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ḣ11(a) = 4λτnλRe (ρ̄nλ)

( 〈ψnλ,f
′(uλ)|ψnλ|2〉ψnλe

iθnλa

Snλ

+ 〈ψ̄nλ, f
′(uλ)|ψnλ|2〉ψ̄nλe

−iθnλa

S̄nλ

)

+ 2λτnλ|ρnλ|2
( 〈ψnλ,uλf

′′(uλ)|ψnλ|2〉ψnλe
iθnλa

Snλ

+ 〈ψ̄nλ, uλf
′′(uλ)|ψnλ|2〉ψ̄nλe

−iθnλa

S̄nλ

)
,

ḣ11(0) − τnλ

[
A(λ)h11(0) + λuλf

′(uλ)T (h11)
]= 2λτnλ(2f ′(uλ)Re (ρnλ)

+ uλf
′′(uλ)|ρnλ|2)|ψnλ|2,

(3.30)

where A(λ) is defined by (2.5). Moreover,

f 1
2 (z, y,0) =2λτnλ

〈
�(0), f ′(uλ)(�(0)z + y(0))(T (�)z + T (y))

〉
+ λτnλ

〈
�(0), uλf

′′(uλ) (T (�)z + T (y))2
〉
,

so we have

Dyf
1
2 (z,0,0)y =2λτnλ

[〈
�(0), f ′(uλ)T (�)zy(0) + f ′(uλ)�(0)zT (y)

〉
+ 〈�(0), uλf

′′(uλ)T (�)zT (y)
〉]= 2λτnλ(J, J̄ )T ,

where

J = 1

Snλ

〈
ψnλ,f

′(uλ)(ψnλz1 + ψ̄nλz2)T (y) + f ′(uλ)
(
ρnλψnλz1 + ρ̄nλψ̄nλz2

)
y(0)

+u f ′′(u )
(
ρ ψ z + ρ̄ ψ̄ z

)
T (y)

〉
.
λ λ nλ nλ 1 nλ nλ 2
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Therefore,

ProjS(Dyf
1
2 (z,0,0)h) =

(
C2z

2
1z2

C̄2z1z
2
2

)

with

C2 = 2λτnλ

Snλ

[〈
ψnλ,f

′(uλ)ψnλ (ρnλh11(0) + T (h11))
〉

+ 〈
ψnλ,f

′(uλ)ψ̄nλ (ρ̄nλh20(0) + T (h20))
〉

+ 〈ψnλ,uλf
′′(uλ)

(
ψ̄nλρ̄nλT (h20) + ψnλρnλT (h11)

)〉]
.

(3.31)

We define

w20(a) := h20(a)

τnλ

, w11 := h11(a)

τnλ

, a ∈ (−∞,0], (3.32)

then when λ → λ∗, we have

lim
λ→λ∗

C2

τ 2
nλ

= 2λ∗f ′(0)

Snλ∗

∫
�

φ2 [(ρnλ∗w
∗
11(0) + T (w∗

11)
)+ (

ρ̄nλ∗w
∗
20(0) + T (w∗

20)
)]

dx, (3.33)

where w∗
20 = lim

λ→λ∗
w20, w∗

11 = lim
λ→λ∗

w11. For Eqs. (3.29) and (3.30), dividing them by τnλ and 

letting λ → λ∗, we can get the following limit equations:

⎧⎪⎨
⎪⎩

ẇ∗
20(a) − 2iθnλ∗w

∗
20(a) = 2ihnλ∗φ

αλ∗

(
eiθnλ∗a

Snλ∗
+ e−iθnλ∗a

S̄nλ∗

)
,

ẇ∗
20(0) − τnλ∗ [A(λ∗)w∗

20(0) + λ∗uλ∗f
′(0)T (w∗

20)] = −2ihnλ∗λ∗f ′(0)φ2,

(3.34)

and {
ẇ∗

11(a) = 0,

ẇ∗
11(0) − τnλ∗ [A(λ∗)w∗

11(0) + λ∗uλ∗f
′(0)T (w∗

11)] = 0.
(3.35)

In Eq. (3.35), we know that ẇ∗
11(0) = 0 from the first equation, and we substitute it into the 

second equation and obtain

A(λ∗)w11(0) = (d� + λ∗)w∗
11(0) = 0.

Hence we have w∗
11(0) = cnφ for some constant cn and φ is the eigenfunction of −d� corre-

sponding to the eigenvalue λ∗. Again, we use the first equation of Eq. (3.35) and obtain that 
w∗

11(a) = w∗
11(0) which implies that w∗

11(a) is constant for a ∈ (−∞, 0]. Therefore, w∗
11(0) = 0

and w∗
11(a) = 0. Then, the following conclusion can be reached:

ρnλ∗w
∗ (0) + T (w∗ ) = 0. (3.36)
11 11
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With the same method, we solve Eq. (3.34). By the first equation of Eq. (3.34), we get the 
expression of ẇ∗

20(0), submit it into the second equation and have

A(λ∗)w∗
20(0) = Lλ∗ := − λ∗uλ∗f

′(0)T (w∗
20) + 2iθnλ∗

τnλ∗
w∗

20(0)

+ 2ihnλ∗φ

αλ∗τnλ∗

(
1

Snλ∗
+ 1

S̄nλ∗

)
+ 2iλ∗f ′(0)hnλ∗φ

2

τnλ∗
.

(3.37)

It can be inferred that Lλ∗ = 0 from the definition of uλ and τnλ, so Eq. (3.37) becomes (d� +
λ∗)w∗

20(0) = 0 which implies that w∗
20(0) = dnφ. Here dn is a constant depending on n ∈N. On 

the other hand, by solving the first equation of Eq. (3.34), we can obtain

w∗
20(a) = e2iθnλ∗aw∗

20(0) − 2hnλ∗φ

αλ∗θnλ∗

(
eiθnλ∗a − e2iθnλ∗a

Snλ∗
+ e−iθnλ∗a − e2iθnλ∗a

3S̄nλ∗

)
. (3.38)

By using the integral (2.10), we can compute T (w∗
20) as follows,

T (w∗
20) =

0∫
−∞

(−s)nesw∗
20(s)

n! ds = γnλ∗w
∗
20(0) − 2hnλ∗φ

αλ∗θnλ∗

(
ρnλ∗ − γnλ∗

Snλ∗
+ ρ̄nλ∗ − γnλ∗

3S̄nλ∗

)
,

then we have

ρ̄nλ∗w
∗
20(0) + T (w∗

20) = (ρ̄nλ∗ + γnλ∗)w
∗
20(0) − 2hnλ∗φ

αλ∗θnλ∗

(
ρnλ∗ − γnλ∗

Snλ∗
+ ρ̄nλ∗ − γnλ∗

3S̄nλ∗

)
,

(3.39)

where γnλ∗ := (1 + 2iθnλ∗)
−(n+1). Substituting Eqs. (3.36) and (3.39) into Eq. (3.33), we obtain

lim
λ→λ∗

C2

τ 2
nλ

= −2dn(ρ̄nλ∗ + γnλ∗)

αλ∗Snλ∗
+ 4hnλ∗

α2
λ∗Snλ∗θnλ∗

(
ρnλ∗ − γnλ∗

Snλ∗
+ ρ̄nλ∗ − γnλ∗

3S̄nλ∗

)
. (3.40)

Now we determine the value of dn. Applying the duality (3.7) on w20, we have

0 = 〈〈�,w20〉〉 = 〈�(0),w20(0)〉 + λτnλ

0∫
−∞

(−s)nes

n!
s∫

0

〈�(ξ − s), uλw20(ξ)〉dξds.

When λ → λ∗, by using

lim
λ→λ∗

uλ

λ − λ∗
= αλ∗φ,

we have
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〈φ,w∗
20(0)〉 = −λ∗θnλ∗αλ∗

hnλ∗

0∫
−∞

(−s)neseiθnλs

n!
s∫

0

∫
�

φ2w∗
20(ξ)e−iθnλξ dξdxds. (3.41)

Substituting w∗
20(0) = dnφ into Eq. (3.41), we have

dn

∫
�

φ2dx =〈φ,dnφ〉 = λ∗θnλ∗αλ∗f
′(0)

hnλ∗

0∫
−∞

(−s)neseiθnλ∗ s

n!
s∫

0

∫
�

φ2e−iθnλ∗ξ

[
dnφe2iθnλ∗ ξ

− 2hnλ∗φ

αλ∗θnλ∗

(
1

Snλ∗
(eiθnλ∗ ξ − e2iθnλ∗ ξ ) + 1

3S̄nλ∗
(e−iθnλ∗ ξ − e2iθnλ∗ ξ )

)]
dxdξds

= idn

hnλ∗
(γnλ∗ − ρnλ∗) + 2

αλ∗

[
1

Snλ∗

(
i(n + 1)hnλ∗

1 + iθnλ∗
− 1

iθnλ∗
(γnλ∗ − ρnλ∗)

)

− 1

3S̄nλ∗

(
1

2iθnλ∗
(ρ̄nλ∗ − ρnλ∗) + 1

iθnλ∗
(γnλ∗ − ρnλ∗)

)]
.

(3.42)

Note that dn here should be dm
n , but because we use the abbreviated notations which are stated 

in (3.1) in this chapter, so here we also simplify dm
n as dn. Then dm

n is uniquely determined by 
Eq. (3.42) for each n ∈ N and m ∈ [0, mn]. Later we will show that (3.42) can be simplified for 
more specific n and m. Finally we obtain

1

3!g
1
3(z,0,0) =

(
A2z

2
1z2

Ā2z1z
2
2

)
,

where

A2 = C0 + 1

4
(C1 + C2) (3.43)

with C0, C1, C2 defined in Eqs. (3.21), (3.23) and (3.31), respectively. On the center manifold, 
the normal form of Eq. (3.3) is given by

ż = Bz +
(

A1z1α

Ā1z2α

)
+
(

A2z
2
1z2

Ā2z1z
2
2

)
+ h.o.t . (3.44)

By letting z1 = ω1 − iω2, z2 = ω1 + iω2 and ω1 = ρ cos ξ, ω2 = ρ sin ξ , we transform Eq. (3.44)
into Eq. (3.45).

In the beginning of this section, we change some notations into an easier form for the sim-
plicity of the writing. But now, in order to avoid confusion, we use the notations in Section 2 to 
elaborate our results.

Theorem 3.1. For each λ ∈ (λ∗, λ∗) and n ∈ N, with f satisfying (H1), (H2), Eq. (3.3)
has a 2-dimensional local center manifold near the positive steady state uλ at τ = τm for 
nλ
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0 ≤ m ≤ mn := [n−1
4 ]. On the center manifold, the reduced flow is given by a norm form or-

dinary differential equation in polar coordinates (ρ, ξ) as

{
ρ̇ = K1

(
τ − τm

nλ

)
ρ + K2ρ

3 + O
((

τ − τm
nλ

)2
ρ + ∣∣(τ − τm

nλ,ρ
)∣∣4) ,

ξ̇ = −iθm
nλ + O

(∣∣(τ − τm
nλ,ρ

)∣∣) , (3.45)

where K1 =Re(A1), K2 =Re(A2) and

A1 = iωm
nλ

Sm
nλ

〈
ψm

nλ,ψ
m
nλ

〉
, A2 = C0 + 1

4
(C1 + C2) (3.46)

with C0, C1, C2 given by Eqs. (3.21), (3.23) and (3.31), respectively. Especially, when λ → λ∗, 
we have the following results for the limits of K1 and K2:

lim
λ→λ∗

τm
nλK1 = (n + 1) sin2 (ηm

nλ∗
)
> 0,

lim
λ→λ∗

K2(
τm
nλ

)2 = 1

4
lim

λ→λ∗
Re

(
C2(
τm
nλ

)2
)

,

(3.47)

and

lim
λ→λ∗

C2(
τm
nλ

)2 = − 2dm
n

αλ∗S
m
nλ∗

[(
1 − iθm

nλ∗
)−(n+1) + (

1 + 2iθm
nλ∗
)−(n+1)

]

+ 4hm
nλ∗

α2
λ∗S

m
nλ∗θ

m
nλ∗

[
1

Sm
nλ∗

((
1 + iθm

nλ∗
)−(n+1) − (

1 + 2iθm
nλ∗
)−(n+1)

)

+ 1

3S̄m
nλ∗

((
1 − iθm

nλ∗
)−(n+1) − (

1 + 2iθm
nλ∗
)−(n+1)

)]
(3.48)

with dm
n being a complex number and uniquely determined by Eq. (3.42) and αλ∗, θnλ∗ , Snλ∗

defined in Lemmas 2.1, 2.4 and 2.7, respectively. Moreover, the direction of Hopf bifurcation near 
uλ at τ = τm

nλ and the bifurcating periodic orbit can be determined according to the following 
rules:

(i) when K2 < 0, the periodic orbit is locally asymptotically stable. Then, if K1 > 0, the direc-
tion of Hopf bifurcation is forward; if K1 < 0, the bifurcation direction is backward;

(ii) when K2 > 0, the periodic orbit is always unstable. If K1 > 0, the direction of Hopf bifurca-
tion is backward; if K1 < 0, the bifurcation direction is forward.

Theorem 3.1 holds for any n ∈ N. To conclude this section, we show that when n = 1 (the 
strong kernel case), we can more concretely determine the direction of Hopf bifurcation and the 
stability of bifurcating periodic orbits of Eq. (1.1), as given in the following corollary.

Corollary 3.2. For each λ ∈ (λ∗, λ∗] and f satisfying (H1), (H2), when n = 1, there is a unique 

bifurcation value τ = τ 0
1λ ≈ 2

where a Hopf bifurcation from the positive steady state uλ

λ − λ∗
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occurs. Moreover the direction of the Hopf bifurcation at τ = τ 0
1λ is forward, and the bifurcating 

periodic orbit is locally asymptotically stable.

Proof. The occurrence of Hopf bifurcation at the bifurcating critical value τ 0
1λ is proved in The-

orem 2.8. Moreover τ 0
1λ is the unique bifurcating value for the case n = 1 by Lemma 2.4. From 

Theorem 3.1, we determine the constants d0
1 and K1 to completely determine the bifurcation 

direction and stability of periodic orbits. Substituting

θ0
1λ∗ = 1, h0

1λ∗ = 1

2
, S0

1λ∗ = 2 + i,

into Eq. (3.42), we obtain that

d0
1 = 1 + i

20αλ∗
. (3.49)

Then by Eqs. (3.40) and (3.49), we know that

lim
λ→λ∗

Re

(
C2(
τ 0

1λ

)2
)

= − 1

20αλ∗
< 0. (3.50)

Thus, by Eq. (3.47), we have

lim
λ→λ∗

K2(
τ 0

1λ

)2 = − 1

80αλ∗
< 0

Then, by the continuity of K1, K2 in λ, we have K1 > 0, K2 < 0 in a small neighbor of λ∗. 
By applying the results in Theorem 3.1, we know that the Hopf bifurcation is forward, and the 
bifurcating periodic orbit is locally asymptotically stable. �

From our results in this section, when λ is close enough to λ∗, the direction of the Hopf bifur-
cations for (1.1) is determined by only f ′(0) and does not depend on the higher order derivative 
of f . Because we always have f ′(0) < 0 which is the condition for the existence of locally stable 
steady state without delay, so the Hopf bifurcation in Eq. (1.1) is always forward and bifurcating 
periodic orbits are stable. This is in consistence with the local delay case considered in [3,36]. 
This is precisely verified for the most typical case of strong kernel case (n = 1), and the higher 
but specific n case can also be calculated from the formulas given in (3.46), (3.47) and (3.48).

4. Examples and simulations

In this section, we apply our general results to two population models and perform some 
numerical simulations. From Theorem 2.8, the critical delay value of stability switching for 
Eq. (1.1) is τ 0

nλ which is independent of geometry of the function f (u), and the direction of 
Hopf bifurcation depends only on f ′(u) which is negative in our model. Therefore, the Hopf 
bifurcations in the two following examples are both forward and stable periodic orbits arise. 
However the parameters in f (u) will affect the amplitude of the steady state and bifurcating 
periodic orbits.
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4.1. A diffusive logistic model

When f (u) = 1 −u/K , we have the diffusive logistic model with a distributed delayed growth 
rate per capita:

⎧⎪⎨
⎪⎩

ut (x, t) = d�u(x, t) + λu(x, t)

(
1 −

∫ t

−∞ gn(τ, t − s)u(x, s)ds

K

)
= 0, x ∈ (0,π), t > 0,

u(x, t) = 0, x = 0,π, t > 0,

(4.1)

where u(x, t) is the population density of a biological species, λ > 0 is the maximum intrinsic 
growth rate and K > 0 denotes the carrying capacity. And for the purpose of numerical simula-
tion, we use the one-dimensional spatial domain � = (0, π), so that we can compute the exact 
values of λ∗ and τ 0

nλ∗ . The kernel function gn is the Gamma distribution function defined in (1.2). 
This is exactly the example considered in Busenberg and Huang [3] but the delay is a local one 
there. Then all results proved in Theorems 2.8, 3.1 and Corollary 3.2 hold for (4.1).

Numerical simulations of (1.1) or (4.1) is challenging as the delay is an integral over an infinite 
interval. Here we use a method motivated by Gourley and So [16] by defining

v(x, t) =
t∫

−∞
g0(τ, t − s)u(x, s)ds =

0∫
−∞

g0(τ,−s)u(x, s)ds,

then the equation (4.1) when n = 0 becomes an equivalent new system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut (x, t) = d�u(x, t) + λu(x, t)

(
1 − v(x, t)

K

)
, x ∈ (0,π), t > 0,

vt (x, t) = 1

τ
(u(x, t) − v(x, t)), x ∈ [0,π], t > 0,

u(0, t) = u(π, t) = 0, t > 0,

u(x,0) = u0(x,0), x ∈ (0,π),

v(x,0) =
0∫

−∞
g0(τ,−s)u0(x, s)ds, x ∈ (0,π).

(4.2)

The simulation of (4.2) can be treated as a regular reaction–diffusion system with a single 
evaluation of an integral in the initial condition of v(x, 0). Especially converging to a steady 
state or periodic orbit for (4.2) is equivalent to the same convergence for the original sys-
tem (4.1). For each n ∈ N, a similar change of variables can generate a new system with 
n + 1 variables which does not have an explicit delay in the system, and the system con-
sists of one diffusive equation and n linear equations without diffusion. So numerical sim-
ulations of (1.1) or (4.1) can be achieved through integrating the new (n + 1)-variable sys-
tem.

In Figs. 1 and 2, the parameter values are λ = 1.1, d = 1, K = 1, with λ∗ = 1 here. For τ =
22, when n = 0, Fig. 1 shows the convergence to the positive steady state uλ, but for n = 1, the 
solution with same initial value converges to a periodic orbit (see Fig. 2). In this case when n = 1, 
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Fig. 1. Dynamic behavior of Eq. (4.1) with weak kernel (n = 0). Here λ = 1.1, d = 1, K = 1 and τ = 22.

Fig. 2. Dynamic behavior of Eq. (4.1) with strong kernel (n = 1). Here λ = 1.1, d = 1, K = 1, and the critical value 
of Hopf bifurcation τ0

1λ
≈ 20. (Left): τ = 17 < τ0

1λ
, convergence of a positive steady state; (Right): τ = 22 > τ0

1λ
, 

convergence to a stable periodic orbit.

we can compute the critical delay value to be τ 0
1λ ≈ 2/(λ − λ∗) ≈ 20. Then, the positive steady 

state is stable for τ ∈ [0, 20) and unstable for τ > 20. For τ = 17, from the left panel of Fig. 2, 
we can see that the solution of Eq. (4.1) with strong kernel converges to the positive steady state, 
while when τ = 22, as depicted in the right panel of Fig. 2, a stable spatially nonhomogeneous 
periodic orbit arises.

4.2. A reaction–diffusion food-limited population model

Here we consider the food-limited model which is the case f (u) = 1 − u

1 + cu
. The model is as 

follows:

⎧⎨
⎩

∂u(x, t)

∂t
= d�u(x, t) + λu(x, t)

1 − gn ∗ u(x, s)

1 + cgn ∗ u(x, s)
= 0, x ∈ (0,π), t > 0,

u(x, t) = 0, x = 0,π, t > 0,

(4.3)
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Fig. 3. Dynamic behavior of Eq. (4.3) when n = 1. With λ = 1.1, d = 1, c = 1, the critical value of Hopf bifurcation 
τ0

1λ
≈ 20. (Left): τ = 17 < τ0

1λ
, convergence of a positive steady state; (Right): τ = 22 > τ0

1λ
, convergence to a stable 

periodic orbit.

where gn ∗ u(x, s) =
t∫

−∞
gn(τ, t − s)u(x, s)ds. Here, u(x, t), d, λ, gn have the same meaning 

as in logistic case (4.1), and c > 0 is the replacement of mass in the population at saturation. 
The model without delay was originally proposed by Smith [33] who argued that a food-limited 
species demands food for both maintenance and growth in its growing stage, while food is needed 
for maintenance only when the population has reached saturation level. In [9], the dynamics 
of (4.3) with a single discrete delay is considered. They proved the existence of the spatially 
nonhomogeneous steady state and derived the condition under which the steady state loses its 
stability. Su et al. [35] revisited this model and gave another method to prove the existence of 
steady state. And in [36], Su et al. rigorously proved the occurrence of Hopf bifurcation for the 
discrete delay case.

Again when the distributed delay is incorporated in this model, Theorems 2.8, 3.1 and 
Corollary 3.2 can be applied to obtain the occurrence and stability switch of Hopf bifurca-
tion. The stability switching point is still τ 0

1λ ≈ 2/(λ − λ∗). Then, we choose the parameters 
as λ = 1.1, d = 1, c = 1, and we have λ∗ = 1. The dynamics of this model is demonstrated in 
Fig. 3 which is similar to the logistic case: when τ < τ 0

1λ, the solution of Eq. (4.3) converges to 
the stable steady state (see the left panel); when τ > τ 0

1λ, the steady state uλ loses its stability and 
the solution will eventually converge to a periodic orbit (see the right panel).

5. Conclusion

In this paper we consider a general reaction–diffusion equation with distributed delay under 
Dirichlet boundary condition. The delay feedback effect which reflects the dependence of growth 
rate on the past time states are of significance in biological and physical systems. And it is reason-
able to consider dynamical system which is influenced not only by the information of a particular 
past temporal point, but also the whole historical information of the system. Hence a distributed 
delay is a more general setting for considering the delay effect and it can be used to incorpo-
rate different biological situations. In the present paper, we consider a distributed delay tuned by 
a Gamma distribution function and we use the average delay as a parameter to investigate the 
stability and bifurcation of spatially nonhomogeneous steady state of this system.
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Fig. 4. The effect of the shape parameter n on the critical delay values and critical periods of (4.1). Here 1 ≤ n ≤ 10
and λ = 1.1, d = 1, K = 1. The star: the smallest Hopf bifurcation value τ0

nλ; the dot: the period of bifurcating periodic 
orbits.

Our analytic results show that the shape parameter n of Gamma kernel function affects the dy-
namics of system (1.1) significantly. Firstly, the parameter n determines whether a Hopf bifurca-
tion occurs or not in system (1.1): when n = 0, that is the weak kernel case, there is no Hopf bifur-
cation and the steady state uλ is always locally asymptotically stable for any τ > 0; when n ≥ 1, 
Hopf bifurcations can occur and the critical bifurcating values can be obtained for each n. Sec-
ondly, the number of Hopf bifurcation values is mn = [(n −1)/4] which depends on n: the bigger 
n, the more bifurcation points. Moreover, n also effects the smallest critical values of Hopf bifur-
cation and the values of periods of the bifurcating periodic orbits. We have obtained the smallest 

critical values for Hopf bifurcation is τ 0
nλ ≈ tan

(
π

2(n + 1)

)/(
(λ − λ∗) cosn+1

(
π

2(n + 1)

))
which is strictly decreasing with respect to n, which means that it become easier for the occur-
rence of Hopf bifurcation in system (1.1) with a larger shape parameter n. Also the period of the 

bifurcating periodic orbits can be calculated as T = 2π
/(

(λ − λ∗)h0
nλ∗

)
is also declining (see 

Fig. 4).
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