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integral term on a bounded domain in R
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1. Introduction

In 1876, as a generalization of the classical wave equations describing a vibrating
string, Kirchhoff [23] introduced a nonlinear wave equation of the following form:

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2 = 0, (1.1)

to describe the transversal oscillations of a stretched string and consider the effect
of the change in the length of the string during vibration. Here u(x, t) is the dis-
placement of the string at location x ∈ [0, L] and time t, L is the length of the
string, h is the area of the cross-section, E is the Young modulus of the material, ρ
is the mass density and P0 is the initial tension. Since (1.1) contains an integral over
[0, L], it is no longer a pointwise identity, and therefore is often called a non-local
Kirchhoff wave equation. Corresponding higher-dimensional and non-homogeneous
models were developed later in, for example, [3, 30, 38], and the well-posedness,
global existence of dynamical solutions of the non-local Kirchhoff wave equations
have been well studied in [2, 11–13,18] and the references cited therein.

In the last decade or so, there has also been an extensive effort to study the
steady-state solutions of the non-local Kirchhoff wave equation, which satisfy a
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876 Z. Liang, F. Li and J. Shi

nonlinear elliptic equation with a non-local integral term:

−
(

a + b

∫
Ω

|∇u|2 dx

)
∆u = f(x, u) in Ω,

u = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (1.2)

Here a, b > 0 are positive constants, Ω is a domain in R
N and f(x, u) represents

an external force that may depend on the vibration itself. The existence and mul-
tiplicity of solutions of (1.2) have been obtained in, for example, [1, 6, 7, 16, 19, 20,
28, 32, 37, 44, 46, 47, 50] for Ω a bounded smooth domain in R

N with N = 1, 2, 3
and f having subcritical growth. On the other hand, the case when f is subcritical
and Ω = R

N with N = 3 has been studied in [5,15,21,25–27,45,48]. Furthermore,
the critical growth case of f has been considered in [14, 26, 45], and recently the
critical case for N = 4 was considered in [33]. In most early works, it is assumed
that N = 1, 2, 3, and most of these works use variational methods and topological
degree arguments.

Liang et al . [28] and Perera and Zhang [37] considered (1.2) with nonlinearity f
having a prescribed asymptotic behaviour near u = 0 and u = ∞. More precisely,
they assumed that, for f0, f∞ < ∞, the limits

lim
u→0+

f(x, u)
u

= f0, lim
|u|→∞

f(x, u)
u3 = f∞ (1.3)

exist uniformly for x ∈ Ω̄. Similar problems were also considered in [6, 46, 47].
Motivated by the results in [28, 37], in this paper we study a canonical version of
(1.2) with nonlinearity satisfying (1.3):

−
(

1 +
∫

Ω

|∇u|2 dx

)
∆u = λu + µu3 in Ω,

u = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (1.4)

where (λ, µ) ∈ R
2 is a parameter pair, and Ω is a smooth bounded domain in R

N

for N � 1. Such a specific form of f(x, u) was also used in [33] for the N = 4 case.
We emphasize that the only restriction on the spatial dimension is N � 1, unless
otherwise specified.

In order to state the main results of this paper, we introduce some notation and
basic facts. We define

λ1 = inf
{ ∫

Ω

|∇u|2 dx : u ∈ H1
0 (Ω),

∫
Ω

|u|2 dx = 1
}

, (1.5)

where H1
0 (Ω) is the usual Sobolev space defined as the completion of C∞

0 (Ω) with
respect to the norm

‖u‖ =
( ∫

Ω

|∇u|2 dx

)1/2

.

Then it is well known that λ1 is the principal eigenvalue of the problem

−∆ϕ = λϕ in Ω,

ϕ = 0 on ∂Ω.

}
(1.6)
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Positive solutions of Kirchhoff-type non-local elliptic equation 877

Moreover, λ1 is a simple eigenvalue of (1.6); the associated eigenfunction ϕ1 can
be chosen as positive in Ω and any eigenfunction corresponding to an eigenvalue
larger than λ1 must change sign. In the following we also assume that ϕ1 is scaled
so that

∫
Ω

ϕ2
1 dx = 1. On the other hand, we define

µ1 = inf
{( ∫

Ω

|∇u|2 dx

)2

: u ∈ H1
0 (Ω),

∫
Ω

|u|4 dx = 1
}

� 0. (1.7)

If N = 1, 2, 3, as shown in theorem 2.4, µ1 > 0 is the principal eigenvalue of the
problem

−
( ∫

Ω

|∇φ|2
)

∆φ = µφ3 in Ω,

φ = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (1.8)

and there exists a corresponding eigenfunction φ1 > 0 in Ω. We assume that φ1 is
scaled so that

∫
Ω

φ4
1 dx = 1. When N = 4 we still have µ1 > 0, but it cannot be

achieved by any φ ∈ H1
0 (Ω), and when N � 5 we have µ1 = 0 (see theorem 2.4 for

more details). Another critical threshold value for the existence of positive solutions
of (1.4) is

µ̄ =
λ2

1∫
Ω

ϕ4
1 dx

> 0, (1.9)

where (λ1, ϕ1) is the principal eigenpair of (1.6) defined above. Indeed, we can show
that µ̄ > µ1 (see lemma 3.3).

Equation (1.4) can be viewed as a linear combination of the linear eigenvalue
equation (1.6) and the nonlinear eigenvalue equation (1.8). Hence, the values λ =
λ1, µ = µ1 and µ = µ̄ are important for the existence of positive solutions of (1.4).
Our existence, non-existence and uniqueness results for the positive solutions of
(1.4) are summarized as follows.

(1) Assume that N � 1. Then (1.4) has only the trivial solution u = 0 when
(λ, µ) ∈ I = {(λ, µ) ∈ R

2 : λ � λ1, µ � µ1} (proposition 2.2).

(2) Assume that N � 1. Then (1.4) has a unique positive solution when (λ, µ) ∈
IV = {(λ, µ) ∈ R

2 : λ > λ1, µ � 0} (theorem 3.6).

(3) Assume that N � 1. Then (1.4) has at least one positive solution when
(λ, µ) ∈ A = {(λ, µ) ∈ R

2 : λ1 < λ < λ1 + ε∗(µ), µ1 < µ < µ̄} or when
(λ, µ) ∈ B = {(λ, µ) ∈ R

2 : λ1 − ε∗(µ) < λ < λ1, µ > µ̄} (theorem 3.4).

(4) Assume that N = 1, 2, 3. Then (1.4) has at least one positive solution when
(λ, µ) ∈ V = {(λ, µ) ∈ R

2 : λ > λ1, 0 < µ < µ1} (theorem 3.5 or [28,
theorem 1.1]).

(5) Assume that N � 4 and Ω is star-shaped. Then (1.4) has only the trivial
solution u = 0 when (λ, µ) ∈ II = {(λ, µ) ∈ R

2 : λ � 0, µ � 0} (proposi-
tion 2.2).

The parameter regions I–VI defined above are illustrated in figure 1. Note that the
parameter region V does not exist for N � 5 as µ1 = 0, and the non-existence of
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Figure 1. Parameter regions (a) N = 1, 2, 3, 4 and (b) N � 5 for existence, non-existence
and uniqueness of positive solutions of (1.4). Here the horizontal coordinate is λ and the
vertical coordinate is µ.

positive solutions for region II only holds when N � 4. For (λ, µ) ∈ III and N =
1, 2, 3 some partial existence results were proved in [6,28], while for (λ, µ) ∈ III and
N = 4 the existence of a positive solution was shown in [33]. In theorem 3.5, some
additional results for global bifurcation of positive solutions when (λ, µ) ∈ VI∪VII
are also obtained. From these results, we have a clear but still incomplete picture
of the existence, non-existence and uniqueness of the positive solutions of (1.4).

The existence of a positive solution of (1.4) for N = 1, 2, 3 and (λ, µ) ∈ V = {λ >
λ1, 0 < µ < µ1} has been proved in [28, theorem 1.1]. Here we give a different proof
with the view of bifurcation theory given in theorem 3.5. The case when N = 1, 2, 3
and (λ, µ) ∈ III = {0 < λ < λ1, µ > µ1} was also considered in [28, theorem
1.2], and it was shown that either (1.4) has a positive solution or a bifurcation from
infinity occurs at this (λ, µ). The local bifurcation result in theorem 3.4 confirms the
existence of a positive solution when (λ, µ) ∈ A, which is a subset of III. Together
with the global bifurcation results given in theorem 3.5, a new perspective on the
positive solutions of (1.4) is gained here by using a bifurcation approach, while most
previous works use variational methods.

The parameter region diagrams in figure 1 also clearly show the parameter regions
where the existence/non-existence of positive solutions of (1.4) is still unknown. For
region II and N = 1, 2, 3, the existence of positive solutions is not known; and in
regions VI and VII for all N � 1, the existence/non-existence of positive solutions
is still unclear despite some global bifurcation results in theorem 3.5 for the case
N = 1, 2, 3. When N = 4 and in region V, the existence/non-existence of positive
solutions is not known. All these require further investigations.

Note that the solutions of (1.4) satisfy

−∆u = λ′u + µ′u3 in Ω,

u = 0 on ∂Ω,

}
(1.10)

where (λ′, µ′) are rescaled parameter pair. The semilinear elliptic equation (1.10)
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Positive solutions of Kirchhoff-type non-local elliptic equation 879

has been studied extensively since the seminal work [4]. We use the uniqueness of
positive solution when µ′ < 0 in proving the uniqueness of positive solution of (1.4)
when µ < 0. The uniqueness of positive solution of (1.10) is also known when Ω is
a ball and 1 � N � 4 [34–36, 49]. Thus, another interesting open question is the
uniqueness of positive solution of (1.4) when µ > 0 and Ω is a ball.

In § 2 we prove some preliminary results regarding (1.4): we use Pohožaev’s iden-
tity in § 2.1 to prove the non-existence of positive solutions in certain cases; some
previous results on the nonlinear eigenvalue problem (1.8) are reviewed in § 2.2;
explicit solutions when λ = 0 or µ = 0 is discussed in § 2.3; and some abstract local
and global bifurcation theorems are reviewed in § 2.4. In § 3, we prove our main
results on the existence and bifurcation of positive solutions of (1.4).

2. Preliminaries

In this section we provide some preliminary results regarding (1.4).

2.1. Pohožaev’s identity

First, we state a Pohožaev-type identity for solutions of (1.4). The proof is stan-
dard and it is omitted here.

Lemma 2.1. Assume that u is a classical solution of (1.4). Then

λ

∫
Ω

u2 dx +
µ

4
(4 − N)

∫
Ω

u4 dx =
1
2

(
1 +

∫
Ω

|∇u|2 dx

) ∫
∂Ω

|∇u|2(ν · x) dσ, (2.1)

where ν is the unit outer normal to ∂Ω.

By using the definitions of λ1 and µ1 as well as Pohožaev’s identity, we prove the
following non-existence of positive solutions for (1.4) in some parameter regions of
(λ, µ).

Proposition 2.2. Equation (1.4) has only the trivial solution if one of the follow-
ing holds:

(1) N � 1, λ � λ1 and µ � µ1; or

(2) N � 4, Ω is star-shaped, λ � 0 and µ � 0.

Proof.
(1) Suppose that u is a non-trivial solution to (1.4) with λ � λ1 and µ � µ1. Then∫

Ω

|∇u|2 dx +
( ∫

Ω

|∇u|2 dx

)2

= λ

∫
Ω

u2 dx + µ

∫
Ω

u4 dx

� λ1

∫
Ω

u2 dx + µ1

∫
Ω

u4 dx. (2.2)

On the other hand, it follows from (1.5) and (1.7) that∫
Ω

|∇u|2 dx +
( ∫

Ω

|∇u|2 dx

)2

� λ1

∫
Ω

u2 dx + µ1

∫
Ω

u4 dx. (2.3)
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Assume that u is not identically zero. If λ < λ1 or µ < µ1, then (2.2) is a strict
inequality. Hence, a contradiction is reached from (2.3) and (2.2). If λ = λ1 and
µ = µ1, then from (2.2) and (2.3) we must have u = kϕ1. From (1.4), we must also
have that µ1ϕ

2
1 ≡ λ2

1, which is impossible. Hence, u ≡ 0 if λ � λ1 and µ � µ1.

(2) Suppose that u is a solution to (1.4). Then from Pohožaev’s identity in lemma 2.1
and the assumption that Ω is star-shaped, we know that

λ

∫
Ω

u2 dx +
µ

4
(4 − N)

∫
Ω

u4 dx =
1
2

(
1 +

∫
Ω

|∇u|2 dx

) ∫
∂Ω

|∇u|2(ν · x) dσ � 0.

(2.4)
On the other hand, from N � 4, λ � 0 and µ � 0, we get

λ

∫
Ω

u2 dx +
µ

4
(4 − N)

∫
Ω

u4 dx � 0. (2.5)

Combining (2.4) and (2.5) we get u ≡ 0.

2.2. A nonlinear eigenvalue problem

The existence and properties of positive solutions of (1.4) are closely related to
the parameter values of λ and µ and also the nonlinear eigenvalue problem (1.8).
Here we recall some well-known and some lesser known results about the solutions of
(1.8). The positive solutions of (1.8) are rescaled solutions of the following equation:

−∆u = u3 in Ω,

u = 0 on ∂Ω.

}
(2.6)

We have the following results for the positive solutions of (2.6).

Proposition 2.3. Assume that Ω is a bounded domain in R
N for N � 1 with a

smooth boundary ∂Ω.

(1) If N = 1, 2, 3, then (2.6) possesses at least one positive solution u1; if N � 4
and Ω is star-shaped, then the only non-negative solution of (2.6) is u = 0.

(2) The positive solution of (2.6) is unique if one of the following holds:

(i) Ω is an open ball in R
N for N = 1, 2, 3;

(ii) Ω ⊂ R
2 is symmetric in x and y, and is convex in the x- and y-directions.

(3) The positive least energy solution of (2.6) is unique if Ω ⊂ R
2 is convex.

(4) Suppose that N = 1, 2, 3. Then for any k ∈ N, there exists a bounded smooth
domain Ωk such that (2.6) has at least 2k − 1 positive solutions.

(5) Suppose that α > 0. A function u1 is a positive solution of (2.6) if and only
if uα = α−1/2u1 is a positive solution of

−∆u = αu3 in Ω,

u = 0 on ∂Ω.

}
(2.7)
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Positive solutions of Kirchhoff-type non-local elliptic equation 881

Proof. The existence result in (1) is a standard result in variational methods (see,
for example, [43, theorem I.2.1]), and the non-existence one follows from the stan-
dard Pohožaev’s identity [43, lemma III.1.4].

Part (2)(i) is a classical result in [17], and part (2)(ii) was proved in [9, 10]. The
result in (3) was proved in [29]. Here, the least energy solution is the one which
achieves

inf
u∈H1

0 (Ω), u �=0

( ∫
Ω

|∇u|2 dx

)( ∫
Ω

|u|4 dx

)−1/2

. (2.8)

Finally, (4) is a result in [10], and (5) can be obtained with a simple calculation.

We now turn to the nonlinear eigenvalue problem (1.8). A real number µ∗ ∈ R

is an eigenvalue of (1.8) if there exists a u(�≡ 0) ∈ H1
0 (Ω) satisfying (1.8) for

µ = µ∗, and µ = u∗ is called a principal eigenvalue of (1.8) if µ∗ is the least element
of the set of eigenvalues of (1.8). An eigenvalue µ∗ of (1.8) is simple if any two
solutions u1 and u2 of (1.8) with µ = µ∗ satisfies u1 = ku2 for k ∈ R. By using the
results in proposition 2.3, we prove the following results on the nonlinear eigenvalue
problem (1.8).

Theorem 2.4. Assume that Ω is a bounded domain in R
N for N � 1 with a smooth

boundary ∂Ω, and let µ1 be defined as in (1.7).

(1) If 1 � N � 4, then µ1 > 0, and when N = 1, 2, 3 µ1 is the principal eigen-
value of (1.8) and there exists a corresponding eigenfunction φ1 > 0 with∫

Ω
φ4

1 dx = 1.

(2) If N � 5, then µ1 = 0.

(3) µ = µ1 is a simple eigenvalue of (1.8) if one of conditions (2) or (3) in propo-
sition 2.3 is satisfied. Moreover, if one of the conditions in proposition 2.3(2)
is satisfied, then any eigenfunction of (1.8) corresponding to an eigenvalue
larger than µ1 must change sign.

(4) Suppose that N = 1, 2, 3. Then, for any k ∈ N, there exists a bounded smooth
domain Ωk such that (1.8) possesses at least 2k − 1 eigenvalues µi satisfying
µ1 � µ2 � · · · � µ2k−1 and the corresponding eigenfunction φi is positive,
i = 1, 2, 3, . . . , 2k − 1.

Proof.
(1) If 1 � N � 4, then the Sobolev embedding H1

0 (Ω) ↪→ L4(Ω) implies that
µ1 > 0. Moreover, when N = 1, 2, 3, the embedding H1

0 (Ω) ↪→ L4(Ω) is also
compact. Hence, µ1 defined in (1.7) can be achieved by some u ∈ H1

0 (Ω). Then it
is standard to prove that µ1 is the principal eigenvalue of (1.8) and there exists a
corresponding eigenfunction φ1 > 0 with

∫
Ω

φ4
1 dx = 1. It is also known that, when

N = 4, µ1 > 0 but this cannot be achieved in H1
0 (Ω) (see, for example, [43, remark

I.4.7, theorem III.1.2]).
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(2) To prove that µ1 = 0 when N � 5, without loss of generality we may assume
that 0 ∈ Ω. Define

U(x) =
(N(N − 2))(N−2)/4

(1 + |x|2)(N−2)/2

and let ξ ∈ C∞
0 (Ω) be a non-negative function satisfying ξ ≡ 1 in Bρ(0) ⊂ Ω for

some ρ > 0. We define, for 0 < ε < ρ,

Uε(x) = ε(2−N)/2U(x/ε), uε(x) = ξ(x)Uε(x).

By computation, we have∫
Ω

|∇uε(x)|2 dx = SN/2 + O(εN−2),

where

S = inf
u∈D1,2(RN ),u �≡0

( ∫
RN

|∇u|2 dx

)( ∫
RN

|u|2N/(N−2) dx

)−(N−2)/2

.

On the other hand, we have∫
Ω

|uε(x)|4 dx �
∫

B(0,ε)
U4

ε (x) dx = cε4−N ,

for some c > 0. Hence, for N � 5, we know that

0 � µ1 �
( ∫

Ω

|∇uε(x)|2 dx

)2( ∫
Ω

|uε(x)|4 dx

)−1

→ 0 as ε → 0.

This proves that µ1 = 0 when N � 5.

(3) We prove only the claim that µ = µ1 is a simple eigenvalue of (1.8) if the
conditions in proposition 2.3(3) are satisfied. The proof of other claims here is
similar to that in [28, lemma 5.3]. Suppose that u1 and u2 are positive solutions of
(1.8) with µ = µ1. Then both u1 and u2 are minimizers of the minimization problem
(2.8). Then, from proposition 2.3(3) or [29, theorem 1], u1 ≡ ku2 for some k > 0,
as the minimizer of (2.8) is unique in this case. Hence, µ1 is a simple eigenvalue of
(1.8) if the conditions in proposition 2.3(3) are satisfied.

(4) Assume that N = 1, 2, 3. For given k ∈ N, it follows from proposition 2.3(4)
that there exists a bounded smooth domain Ωk such that (2.6) has at least 2k − 1
positive solutions vi, i = 1, 2, . . . , 2k −1. Without loss of generality, we may assume
that

µi =
( ∫

Ω

|∇vi|2 dx

)2( ∫
Ω

|vi|4 dx

)−1

, i = 2, . . . , 2k − 1,

satisfying µ1 � µ2 � · · · � µ2k−1. Then µi is an eigenvalue of (1.8) and the
corresponding eigenfunction φi = vi is positive, i = 1, 2, . . . , 2k − 1.

Remark 2.5. The results stated in theorem 2.4(1) when N = 1, 2, 3 are shown
in [37]. Other results collected here are also more or less known, and we recall them
here for applications. The results in theorem 2.4(4) suggest that in general µ1 may
not be simple, and there may also exist eigenvalues µi > µ1 that still have positive
eigenfunctions.
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Positive solutions of Kirchhoff-type non-local elliptic equation 883

2.3. Degenerate cases

In this subsection we consider the cases when either λ = 0 or µ = 0 in (1.4). In
these cases, positive solutions of (1.4) are constant multiples of positive eigenfunc-
tions ϕ1 of (1.6) or φ1 of (1.8).

Theorem 2.6. Assume that Ω is a bounded domain in R
N for N � 1 with a smooth

boundary ∂Ω.

(1) If λ = 0 and N = 1, 2, 3, then (1.4) has a positive solution uµ when

µ > µ1 and uµ =
µ

1/4
1√

µ − µ1
φ1. (2.9)

(2) If µ = 0 and N � 1, then (1.4) has a unique positive solution uλ when

λ > λ1 and uλ =
√

λ − λ1

λ1
ϕ1. (2.10)

Proof.
(1) Assume that λ = 0 and N = 1, 2, 3. Then (1.4) possesses a positive solution uµ

if and only if uµ is a positive solution of

−∆u = µ

(
1 +

∫
Ω

|∇u|2 dx

)−1

u3 in Ω,

u = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (2.11)

Hence,

µ

(
1 +

∫
Ω

|∇uµ|2 dx

)−1

= µ1

( ∫
Ω

|∇uµ|2 dx

)−1

and uµ = kφ1. From theorem 2.4, (1.8) has a positive solution φ1 with µ = µ1 and∫
Ω

φ4
1 dx = 1. Then, by a direct calculation, we know that (µ, uµ) given as in (2.9)

is a positive solution of (1.4) with λ = 0.

(2) Assume that µ = 0 and λ > λ1. Then (1.4) possesses a positive solution uλ if
and only if uλ is a positive solution of

−∆u = λ

(
1 +

∫
Ω

|∇u|2 dx

)−1

u in Ω,

u = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (2.12)

Hence,

λ

(
1 +

∫
Ω

|∇uλ|2 dx

)−1

= λ1

and uλ = kϕ1 with k > 0, which imply that (1.4) possesses exactly one positive
solution uλ when (2.10) is satisfied.
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We note that the solutions given in (2.9) are on the boundary between regions II
and III, while those given in (2.10) are on the boundary between regions V and IV
when N = 1, 2, 3, 4, or between IV and VI when N � 5. The form in (2.9) suggests
that (λ, µ) = (0, µ1) is a parameter point where a bifurcation from infinity occurs.
In the case when λ = 0 and µ > µ1, if (1.8) has another solution (µ2, φ2) with
µ2 � µ1 and φ2 > 0, then another solution of (1.4) can be obtained, as in (2.9)
with (µ1, φ1) replaced by (µ2, φ2).

2.4. Bifurcation theorems

Before concluding this section, we recall some global and local bifurcation the-
orems that will be used to prove some of the main theorems in our paper. The
following are [42, theorems 4.3 and 4.4], respectively, and generalize earlier results
in [8, 39].

Theorem 2.7. Assume that X and Y are Banach spaces. Let U be an open con-
nected subset of R × X and (λ0, u0) ∈ U , and let F be a continuously differentiable
mapping from U into Y . Suppose that

(1) F (λ, u0) = 0 for (λ, u0) ∈ U ,

(2) the partial derivative Fλu(λ, u) exists and is continuous in (λ, u) near (λ0, u0),

(3) Fu(λ0, u0) is a Fredholm operator with index 0, and dim N (Fu(λ0, u0)) = 1,

(4) Fλu(λ0, u0)[w0] /∈ R(Fu(λ0, u0)), where w0 ∈ X spans N (Fu(λ0, u0)).

Let Z be any complement of span{w0} in X. Then there exist an open interval
I = (−ε, ε) and continuous functions λ : I → R, ψ : I → Z, such that λ(0) = λ0,
ψ(0) = 0, and if u(s) = u0 + sw0 + sψ(s) for s ∈ I, then F (λ(s), u(s)) = 0.
Moreover, F−1({0}) near (λ0, u0) consists precisely of the curves u = u0 and Γ =
{(λ(s), u(s)) : s ∈ I}. If, in addition,

(5) Fu(λ, u) is a Fredholm operator for all (λ, u) ∈ U ,

then the curve Γ is contained in C, which is a connected component of S̄ where
S = {(λ, u) ∈ U : F (λ, u) = 0, u �= u0}; and either C is not compact in U or C
contains a point (λ∗, u0) with λ∗ �= λ0.

Theorem 2.8. Suppose that all the conditions in theorem 2.7 are satisfied. Let
C be defined as in theorem 2.7. We define Γ+ = {(λ(s), u(s)) : s ∈ (0, ε)} and
Γ− = {(λ(s), u(s)) : s ∈ (−ε, 0)}. In addition, we assume that

(1) Fu(λ, u0) is continuously differentiable in λ for (λ, u0) ∈ U ,

(2) the norm function u �→ ‖u‖ in X is continuously differentiable for any u �= 0,

(3) for k ∈ (0, 1), if (λ, u0) and (λ, u) are both in U , then (1 − k)Fu(λ, u0) +
kFu(λ, u) is a Fredholm operator.

Let C+ (respectively, C−) be the connected component of C \ Γ− that contains Γ+
(respectively, the connected component of C \ Γ+ that contains Γ−). Then each of
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the sets C+ and C− satisfies one of the following:

(i) it is not compact;

(ii) it contains a point (λ∗, u0) with λ∗ �= λ0; or

(iii) it contains a point (λ, u0 + z), where z �= 0 and z ∈ Z.

3. Bifurcation

In this section, we use a bifurcation approach to study the positive solutions of
(1.4). For that purpose we set X = W 2,p(Ω) ∩ W 1,p

0 (Ω) and Y = Lp(Ω) for p >
max{N, 2}. Because of the smoothness of nonlinearities in (1.4), the weak solution
u ∈ X is indeed a classical solution. Assuming µ ∈ R is fixed, we define a nonlinear
operator F : R × X → Y by

F (λ, u) =
(

1 +
∫

Ω

|∇u|2 dx

)
∆u + λu + µu3. (3.1)

First, we show that the nonlinear mapping F is continuously differentiable and we
calculate the Fréchet derivatives of F . The proof is standard and omitted here.

Lemma 3.1. F ∈ C3(R × X, Y ) and for (λ, µ) ∈ R
2 and u, v, w, z ∈ X we have the

following:

Fu(λ, u)[w] =
(

1 +
∫

Ω

|∇u|2 dx

)
∆w

+ 2
( ∫

Ω

∇u∇w dx

)
∆u + λw + 3µu2w;

Fλ(λ, u) = u, Fλu(λ, u)[w] = w;

Fuu(λ, u)[w, v] = 2
( ∫

Ω

∇u∇v dx

)
∆w + 2

( ∫
Ω

∇u∇w dx

)
∆v

+ 2
( ∫

Ω

∇w∇v dx

)
∆u + 6µuwv;

Fuuu(λ, u)[w, v, z] = 2
( ∫

Ω

∇z∇v dx

)
∆w + 2

( ∫
Ω

∇z∇w dx

)
∆v

+ 2
( ∫

Ω

∇w∇v dx

)
∆z + 6µwvz.

Second, we prove that F is a Fredholm operator of index 0 for any (λ, u) ∈ R×X,
and Fu can be extended to a self-adjoint operator.

Lemma 3.2. Let µ ∈ R be fixed. Then for every (λ, u) ∈ R × X,

(1) Fu(λ, u) : X → Y is a Fredholm operator of index zero,

(2) Fu(λ, u) : L2(Ω) → L2(Ω) is a densely defined closed symmetric operator,

(3) Fu(λ, u) can be extended to a self-adjoint operator from H2(Ω) ∩ H1
0 (Ω) to

L2(Ω), and the spectrum of Fu(λ, u) consists of real eigenvalues.
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Proof.
(1) For given λ, µ ∈ R and u ∈ X, define q(x) = λ+3µu2. Then q ∈ L∞(Ω). Hence,
Lq : X → Y defined by

Lq[w] =
(

1 +
∫

Ω

|∇u|2 dx

)
∆w + q(x)w

is a Fredholm operator of index zero. Moreover, the map L1 : X → Y defined by

L1[w] = 2
( ∫

Ω

∇u∇w dx

)
∆u

is a rank-1 operator whose range is one dimensional. Hence, Fu(λ, u) = Lq + L1 is
a Fredholm operator of index zero, as it is a compact perturbation of a Fredholm
operator (see [22, theorem IV.5.26]).

(2) We denote by 〈·, ·〉 the inner product of L2(Ω). Then, for given λ ∈ R, u, w, v ∈
D ≡ H2(Ω) ∩ H1

0 (Ω), we have

〈Fu(λ, u)[w], v〉 =
(

1 +
∫

Ω

|∇u|2 dx

)
〈∆w, v〉

+ 2
( ∫

Ω

∇u∇w dx

)
〈∆u, v〉 + 〈λw + 3µu2w, v〉

=
(

1 +
∫

Ω

|∇u|2 dx

)
〈∆v, w〉

+ 2
( ∫

Ω

∇u∇v dx

)
〈∆u, w〉 + 〈λv + 3µu2v, w〉

= 〈Fu(λ, u)[v], w〉.

Hence, Fu(λ, u) is a symmetric operator densely defined on L2(Ω).

(3) We prove that −Fu(λ, u) is bounded from below. Since u ∈ X, we assume that
‖u‖∞ � M for some M > 0. Then, for w ∈ D,

〈−Fu(λ, u)[w], w〉 =
(

1 +
∫

Ω

|∇u|2 dx

) ∫
Ω

|∇w|2 dx

+ 2
( ∫

Ω

∇u∇w dx

)2

− λ

∫
Ω

w2 dx − 3µ

∫
Ω

u2w2

� −(λ + 3µM2)
∫

Ω

w2 dx = c〈w, w〉,

where c = −(λ + 3µM2). Now from the Friedrichs extension theorem [24, the-
orem 33.4], Fu(λ, u) can be extended to a self-adjoint operator defined on D =
H2(Ω) ∩ H1

0 (Ω). In particular, the spectrum of Fu(λ, u) is real valued. Also, since
Lc ≡ −Fu(λ, u)+(−c+1): D → L2(Ω) is positively definite, Lc is invertible by the
Lax–Milgram theorem, and the inverse, L−1

c : L2(Ω) → L2(Ω), is compact. Thus,
the spectrum of Lc (and consequently the spectrum of Fu(λ, u)) consists only of
eigenvalues.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210516000378
Downloaded from https://www.cambridge.org/core. Vanderbilt University Library, on 13 Aug 2017 at 16:35:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210516000378
https://www.cambridge.org/core


Positive solutions of Kirchhoff-type non-local elliptic equation 887

Recalling µ̄ defined in (1.9), we have the following relation between µ̄ and µ1
defined in (1.7).

Lemma 3.3. Let µ̄ and µ1 be defined as in (1.9) and (1.7), respectively. Then
µ̄ > µ1.

Proof. If µ1 = 0, then it is clear that µ̄ > µ1. So we assume that µ1 > 0. Since
µ̄ = λ2

1/
∫

Ω
ϕ4

1 dx = ‖ϕ1‖4/‖ϕ1‖4
4 and ϕ1 ∈ H1

0 (Ω), we know that µ̄ � µ1 by (1.7).
Suppose that µ̄ = µ1. Then ϕ1 satisfies (1.8) with µ = µ1, and a similar argument
to that in the proof of proposition 2.2 leads to ϕ1 equalling a constant, which is
impossible. Hence, µ̄ cannot be achieved by ϕ1, and consequently we have µ̄ >
µ1.

Now we consider the bifurcation of positive solutions of (1.4) from the line of
trivial solutions Γ0 = {(λ, 0) ∈ R × X : λ ∈ R}, where µ ∈ R is fixed. First we have
the following local bifurcation result for any bounded smooth domain Ω ⊂ R

N for
N � 1 and any fixed µ ∈ R.

Theorem 3.4. Assume that Ω is a bounded domain in R
N for N � 1 with a smooth

boundary ∂Ω. Let µ ∈ R be a fixed constant. Then the principal eigenvalue λ = λ1
of (1.6) is a bifurcation point of (1.4) where solutions of (1.4) bifurcate from the
line of trivial solutions Γ0 = {(λ, 0) : λ ∈ R}; near (λ1, 0), all the solutions of (1.4)
lie on a smooth curve Γ1 = {(λ(s), u(s)) : s ∈ (−δ, δ)} for some δ > 0 such that
s �→ (λ(s), u(s)) is a smooth function from (−δ, δ) to R × X, λ(0) = λ1, λ′(0) = 0,
u(s) = sϕ1 + o(s) and

λ′′(0) = 2
(

λ2
1 − µ

∫
Ω

ϕ4
1 dx

)
. (3.2)

In particular, if µ > µ̄, then there exists ε∗ = ε∗(µ) > 0 such that (1.4) has at least
one positive solution when λ ∈ (λ1 − ε∗, λ1), and if µ < µ̄, then there exists ε∗ =
ε∗(µ) > 0 such that (1.4) has at least one positive solution when λ ∈ (λ1, λ1 + ε∗).

Proof. Fix µ ∈ R. Define a nonlinear operator F : R × X → Y as in (3.1). We
consider the bifurcation of solutions to F (λ, u) = 0 at (λ, u) = (λ1, 0). By lemma 3.1,
we know that

F (λ, 0) = 0, Fu(λ1, 0)[w] = ∆w + λ1w,

Fλu(λ1, 0)[w] = w, Fuu(λ1, 0)[w, v] = 0,

}
(3.3)

and

Fuuu(λ1, 0)[w, v, z] = 2
( ∫

Ω

∇z∇v dx

)
∆w + 2

( ∫
Ω

∇z∇w dx

)
∆v

+ 2
( ∫

Ω

∇w∇v dx

)
∆z + 6µzwv, (3.4)

where λ ∈ R, w, v, z ∈ X. It is easy to verify that the kernel N (Fu(λ1, 0)) =
span{ϕ1}, the range space

R(Fu(λ1, 0)) =
{

w ∈ Y :
∫

Ω

ϕ1(x)w(x) dx = 0
}

(3.5)
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and Fλu(λ1, 0)[ϕ1] = ϕ1. It follows from
∫

Ω
ϕ2

1(x) dx = 1 that Fλu(λ1, 0)[ϕ1] /∈
R(Fu(λ1, 0)). Thus, conditions (1)–(4) in theorem 2.7 are all satisfied, and we can
apply the first part of theorem 2.7 to conclude that the set of solutions to (1.4)
near (λ1, 0) is a smooth curve Γ1 = {(λ(s), u(s)) : s ∈ (−δ, δ)} such that λ(0) =
λ1, u(s) = sϕ1 + o(s). Moreover, λ′(0) and λ′′(0) can be calculated as in [31,40]:

λ′(0) = −〈l, Fuu(λ1, 0)[ϕ1, ϕ1]〉
2〈l, Fλu(λ1, 0)[ϕ1]〉

= 0, (3.6)

and

λ′′(0) = −〈l, Fuuu(λ1, 0)[ϕ1, ϕ1, ϕ1]〉 + 3〈l, Fuu(λ1, 0)[ϕ1, 0]〉
3〈l, Fλu(λ1, 0)[ϕ1]〉

= − 1
〈l, ϕ1〉

(
2
〈

l,

∫
Ω

|∇ϕ1|2 dx∆ϕ1 + µϕ3
1

〉)

= 2
[( ∫

Ω

|∇ϕ1|2 dx

)2

− µ

∫
Ω

ϕ4
1 dx

]

= 2
(

λ2
1 − µ

∫
Ω

ϕ4
1 dx

)
, (3.7)

where l is a linear functional on Y defined as 〈l, w〉 =
∫

Ω
ϕ1(x)w(x) dx.

When µ > µ̄, we have λ′′(0) < 0 from (3.7). Then there exists some ε∗ > 0
such that (1.4) has a pair of solutions when λ ∈ (λ1 − ε∗, λ1). When s ∈ (0, δ),
u(s) = sϕ1 + o(s) > 0 is a positive solution, and clearly u(−s) = −u(s) from the
oddness of (1.4). The case for µ < µ̄ is similar.

From the global bifurcation result in theorem 2.7, the set Γ1 is indeed a part
of global continuum. To further explore the global nature of the set of positive
solutions of (1.4), we define

Sµ = {(λ, u) ∈ R × X : (λ, u) is a positive solution of (1.4)}. (3.8)

We shall discuss the nature of the connected component Σ1 of S̄µ containing (λ1, 0)
for the following parameter ranges for µ:

• 0 < µ < µ1;

• µ > µ1; and

• µ � 0.

In the following result, we consider the 0 < µ < µ1 and µ > µ1 cases, and in
theorem 3.6 we consider the µ � 0 case.

Theorem 3.5. Assume that Ω is a bounded domain in R
N for N � 1 with a

smooth boundary ∂Ω. Let Γ1 = {(λ(s), u(s)) : s ∈ (−δ, δ)} be the curve of non-
trivial solutions of (1.4) in theorem 3.4, and let Sµ be defined as in (3.8). Then
there exists a connected component Σ1 of S̄µ containing {(λ(s), u(s)) : s ∈ (0, δ)},
and Σ1 is unbounded in R×X. Moreover, let Projλ Σ1 be the projection of Σ1 into
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the λ-axis, and assume that µ1 > 0. Then

(1) for 0 < µ < µ1 and N = 1, 2, 3, Projλ Σ1 = (λ1,∞),

(2) for µ > µ1, if one of the following conditions is satisfied:

(a) Ω is an open ball in R
N for N = 1, 2, 3;

(b) Ω ⊂ R
2 is symmetric in x and y, and convex in x- and y-directions; or

(c) Ω ⊂ R
2 is convex,

then Projλ Σ1 is unbounded so that either

(λ1,∞) ⊂ Projλ Σ1 or (−∞, λ1) ⊂ Projλ Σ1. (3.9)

Proof. We first we prove that Σ1 is unbounded in R × X. We apply theorem 2.8 at
(λ1, 0) with U = R×X. In the proof of theorem 3.4, we showed that conditions (1)–
(4) of theorem 2.7 are satisfied. By lemma 3.2(1), theorem 2.7(5) is also met, and
the proof of lemma 3.2 also implies that theorem 2.8(3) is satisfied. Theorem 2.8(1)
is clearly satisfied by lemma 3.1, and finally theorem 2.8(2) is satisfied for X and
Y chosen here from the remark after [42, theorem 4.4].

Now we can apply theorem 2.8 to obtain a connected component C+ of the set
C \ Γ− of solutions of (1.4) emanating from (λ1, 0), where Γ− = {(λ(s), u(s)) : s ∈
(−δ, 0)}. Clearly, C+ contains Γ+ = {(λ(s), u(s)) : s ∈ (0, δ)}. Indeed, from the
maximum principle, any (λ, u) ∈ C+ satisfies u > 0 or u ≡ 0 for all x ∈ Ω. Thus,
C+ is a connected component of S̄µ. In the following we call it Σ1.

From theorem 2.8, we have the following possibilities:

(i) Σ1 is not compact in U ,

(ii) Σ1 contains a point (λ∗, 0) with λ∗ �= λ1, or

(iii) Σ1 contains (λ, z) for some z(�= 0) ∈ Z, where Z is a complement of the kernel
space span{ϕ1}.

The alternative (iii), is impossible as any (λ, u) ∈ Σ1 satisfies u > 0 or u ≡ 0 for
all x ∈ Ω, while any element in Z is sign changing. Next we prove that alternative
(ii) is also impossible. We claim that there is no λ∗ ∈ R with λ∗ �= λ1 such that Σ1
contains (λ∗, 0). Suppose on the contrary that there exists {(λn, un)} ⊂ Σ1 such
that un �= 0 and

(λn, un) → (λ∗, 0) in R × X, n → ∞.

Hence, un → 0 in H1
0 (Ω). Let wn = un/‖un‖ for any n. Then we have, for any

v ∈ X,∫
Ω

∇wn · ∇v dx =
λn

1 + ‖un‖2

∫
Ω

wnv dx +
µ

1 + ‖un‖2

∫
Ω

wnu2
nv dx. (3.10)

Since {wn} is bounded in H1
0 (Ω), passing to a subsequence if necessary, we may

assume that wn ⇀ w0 ∈ H1
0 (Ω). Letting n → ∞ in (3.10), we obtain∫
Ω

∇w0 · ∇v dx = λ∗

∫
Ω

w0v dx. (3.11)
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Taking v = wn in (3.10) and again letting n → ∞, we have 1 = λ∗
∫

Ω
w2

0 dx, which
implies that w0 �≡ 0 and w0 is a non-trivial eigenfunction of (1.6) since (0, 0) is
not a bifurcation point. But the assumption λ∗ �= λ1 implies that w0 must be sign
changing, which contradicts w0 � 0. Therefore, the alternative (ii) is impossible,
and we must have that Σ1 is unbounded.

We now consider the projection of Σ1 into the λ-axis in different cases. Here we
assume that µ1 > 0. Since we have proved that Σ1 is unbounded in R×X, then Σ1
is unbounded in either R or X. We prove that, under some conditions, Σ1 cannot
be unbounded in X for a finite value λ∗. That is, we prove that bifurcation from
infinity cannot occur at a finite λ∗ > 0.

(1) Assuming that 0 < µ < µ1, we shall prove that Projλ Σ1 is unbounded. Suppose,
to the contrary, Projλ Σ1 is bounded. Since Σ1 is unbounded, there exist (λn, un) ⊂
Σ1 such that λn → λ0 ∈ R, ‖un‖ → ∞. For any v ∈ H1

0 (Ω), we have

(1 + ‖un‖2)
∫

Ω

∇un∇v dx = λn

∫
Ω

unv dx + µ

∫
Ω

u3
nv dx. (3.12)

Let vn = un/‖un‖. Then, for v ∈ H1
0 (Ω), we have

1 + ‖un‖2

‖un‖2

∫
Ω

∇vn∇v dx =
λn

‖un‖2

∫
Ω

vnv dx + µ

∫
Ω

v3
nv dx. (3.13)

Since {vn} is bounded in H1
0 (Ω), we may assume, by passing to a subsequence if

necessary, that vn ⇀ v0 in H1
0 (Ω). Taking v = vn in (3.13) and letting n → ∞, we

have that µ
∫

Ω
v4
0 dx = 1. Hence, it follows from (1.7) that µ � µ1, which contradicts

0 < µ < µ1. From elliptic regularity theory, Projλ Σ1 is unbounded in R. By
proposition 2.2, we know that Projλ Σ1 = (λ1,∞).

(2) Similarly to (1), we have (3.13). Passing to the limit in (3.13) and passing to
the limit with v = vn − v0 in (3.13), we know that∫

Ω

∇v0 · ∇v = µ

∫
Ω

v3
0v, v ∈ H1

0 (Ω), (3.14)

and ‖v0‖ = 1. Hence, v0 is a positive solution to (1.8). Theorem 2.4 implies that
µ = µ1, which contradicts the condition µ > µ1. Hence, Projλ Σ1 is unbounded in
R, i.e. either (λ1,∞) ⊂ Projλ Σ1 or (−∞, λ1) ⊂ Projλ Σ1.

Finally, we consider the µ � 0 case. Here we prove the existence and uniqueness
of positive solution of (1.4).

Theorem 3.6. Assume that Ω is a bounded domain in R
N (N � 1) with a smooth

boundary ∂Ω. Suppose that µ � 0. Then (1.4) has no positive solution if λ � λ1,
and it has exactly one positive solution, uλ, if λ > λ1.

Proof. The µ = 0 case has been considered in theorem 2.6. Hence, we only consider
the µ < 0 case. The non-existence of a positive solution of (1.4) when λ � λ1 follows
from proposition 2.2. So, in the following, we assume that µ < 0 and λ > λ1.
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(1) We prove the existence of a positive solution to (1.4). Assume that λ > λ1. For
the existence of a positive solution of (1.4), we define g : [0,∞) → R,

g(r) =

⎧⎪⎪⎨
⎪⎪⎩

1
1 + r

∫
Ω

λ

(
1 +

µ

λ
u2

r

)
u2

r dx, 0 � r <
λ − λ1

λ1
,

0, r � λ − λ1

λ1
,

(3.15)

where ur is the unique positive solution of

−(1 + r)∆ur = λ

(
1 +

µ

λ
u2

r

)
ur in Ω,

u = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (3.16)

From [41, theroem 2.3], (3.16) has a unique positive solution ur if and only if
λ/(1 + r) > λ1, which is equivalent to r < (λ − λ1)/λ1. Moreover, the result
in [41, theroem 2.3] implies that ur is continuously differentiable and decreasing in
r for r ∈ [0, (λ − λ1)/λ1), and that for r0 = (λ − λ1)/λ1, limr→r−

0
ur = 0 uniformly

for x ∈ Ω̄. Hence, g(r) is well defined and continuous on [0,∞). Since 0 � ur(x) �√
−λ/µ for any r ∈ [0, r0) and x ∈ Ω̄, we have

0 � g(r) =
1

1 + r

∫
Ω

λ

(
1+

µ

λ
u2

r

)
u2

r dx � λ2|Ω|
(1 + r)|µ| � λ2|Ω|

|µ| , r ∈ [0,∞). (3.17)

Moreover, g(0) > 0, and hence there exists R ∈ (0, r0) such that g(R) = R and
uλ = uR is a positive solution of (1.4) for the given λ since

R = g(R) =
λ

1 + R

∫
Ω

(
1 +

µ

λ
u2

R

)
u2

R dx =
∫

Ω

|∇uR|2 dx. (3.18)

(2) We prove the uniqueness of the positive solution of (1.4) for given λ > λ1.
Assume that w and v are two positive solutions of (1.4). We claim that∫

Ω

|∇w|2 dx =
∫

Ω

|∇v|2 dx,

which guarantees that w = v from the uniqueness of the positive solution of (3.16).
Suppose, by contradiction, that

r1 =
∫

Ω

|∇w|2 dx >

∫
Ω

|∇v|2 dx = r2.

Then, from the decreasing property of positive solutions to (3.16), we have ur1 =
w < v = ur2 . Hence,

0 <

∫
Ω

(|∇w|2 − |∇v|2) dx

=
∫

Ω

∇(w − v)∇(w + v) dx

= −
∫

Ω

(w − v)∆(w + v) dx

� 0, (3.19)
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which is a contradiction. Hence, we must have∫
Ω

|∇w|2 dx =
∫

Ω

|∇v|2 dx,

and consequently w ≡ v.
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