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It is acknowledged that the role of fire and climate in determining savanna and 
forest distributions requires comprehensive theoretical reevaluation. In this paper, 
an ordinary differential equation model describing the grassland and forest transition 
is considered. We use a modified Hill function as the nonlinear response of fire 
frequency to grass abundance, and the global dynamics of the model is completely 
classified. It is shown that any solution converges to an equilibrium, and the system 
has one, two or three coexistence equilibria depending on parameter values. Our 
results provide precise parameter range of bistability.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Vegetation growth responding to climate changes is one of the core topics regarding global environment 
change. There is growing evidence within the environmental science community that our planet has entered 
a potentially catastrophic phase of human-induced global climate warming [9,10]. Human activity has a 
huge impact on the changing of vegetation. Excessive deforestation, tourism development, urban expansion 
all influence the amount of tree cover and destroy huge area of forest.

The tree cover is influenced by complex interaction between climate, human activity, animals, soil and 
many other unexpected disturbances. It is interesting that in some area where the environmental conditions 
suggest that forest should dominant, it turns out to be savanna prevailing [19]. Also an intermediate level 
of tree cover rarely happens, and there is a transition from the savanna state to the forest state when 
the environmental condition changes. This suggests that in the ecosystem, there are two alternative stable 
states corresponding to savanna (low tree cover), forest (high tree cover) respectively, and an unstable state 
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(intermediate tree cover). The main factors driving force in determining the distribution of tree cover are 
the rainfall and fires, and the bistability here is due the positive feedback of fire interaction [15,16].

According to the data collected form satellite in [16], when the mean annual rainfall is less than 1000 mm, 
fire is less important since water becomes the main factor of limiting the tree growth. In this situation, tree 
cover often maintains at a relatively low level which may be savanna state. When the mean annual rainfall 
is more than 2000 mm, fire will be less likely to happen because such heavy rain leads to forest state. Only 
when the mean annual rainfall is between 1000 mm and 2000 mm, fire plays a key role in differentiating 
low and high tree cover. It was shown in [19] that fire can restrict the tree cover while climate and other 
external environmental conditions hold lush forest. As long as fire can reduce tree cover, the grass biomass 
drops off rapidly as tree cover increases [13]. Thus fire mainly spread on the land with tree cover less than 
40% [1]. Also fire does not destroy the saplings which will sprout after. So fire drives the tree recruitment 
as a positive feedback [12,20].

In [16] the authors proposed a system of three ordinary differential equations of grass, tree saplings, 
and adult trees which incorporates the fire feedback with a nonlinear response function depending on grass 
abundance. So in their model the tree cover is determined by the combined interaction of rainfall and 
fire. While some qualitative analysis was conducted in [16] in a formal way, here we use a more specific 
nonlinear response function to quantify the model. Moreover we rigorously show the existence of precisely 
three positive steady states, and we also obtain exact parameter ranges of bistable dynamics. We also show 
that there are no limit cycles in the system, hence oscillatory states cannot occur. Note that in another 
system of four equations of grass, savanna saplings, savanna trees and forest trees [17], time-periodic states 
were found for certain parameter values. The spatial effect to the model was also considered in [12].

Bistability and corresponding hysteresis phenomena have arisen in various ecological systems via different 
mechanisms [2,4]. A classical example is the spruce budworm outbreak [7], and a general description is 
provided in [9]. More recently bistability (or alternative stable states) has also been found in shallow lake 
dynamics [11], eutrophication of aquatic ecosystems [3], coral reef dynamics [6,8], and oyster population 
dynamics [5].

In Section 2 we describe the differential equation model in details, and in Section 3 we present our 
main mathematical results accompanied by numerical simulations. Some concluding remarks are given in 
Section 4.

2. Model

We consider an ordinary differential equation model proposed by [16]:
⎧⎪⎪⎨
⎪⎪⎩
G′ = μS + γT − βGT,

S′ = βGT − ω(G)S − μS,

T ′ = ω(G)S − γT.

(2.1)

Here G is the total area of grass, S is the total area of tree saplings and T is the total area of adult trees. 
In (2.1), μ and γ are the mortality rates of saplings and trees respectively. After their death, the areas 
of saplings and trees revert to the one for grass in proportion to the number of trees and saplings. Hence 
the grassland recruitment is in form of μS + γT . On the other hand the grassland loses its area when the 
adult trees establish saplings on. It is assumed that the saplings can only be successfully established on the 
grassland proportional to adult trees with a rate β. The growth rate of trees is proportional to the number 
of saplings with a nonlinear requirement rate ω(G) depending on the grassland. Indeed a higher value of 
G induces a higher possibility of fire, that implies a lower tree recruitment ω(G); while a lower value of 
G reduces the probability of fire and it increases the tree recruitment. Hence the fire feedback process is 
modeled by the nonlinear function ω(G). In [16], it is proposed that ω(G) is a sigmoidal function of grass 
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Fig. 1. Graph of sigmoid recruitment function ω(G) defined in (2.2). Here M = 0.6, m = 0.55, h = 0.4, and n = 2 (left), n = 8
(right).

cover, and the functional form is determined by the forest-savanna dynamics. But they did not give a specific 
expression of the fire factor in their model.

In order to obtain more detailed theoretical results, we propose the tree recruitment rate ω(G) (see Fig. 1) 
to be

ω(G) = Mhn + mGn

hn + Gn
, (2.2)

where m, M, h > 0 satisfying M > m, and n > 1. It is easy to verify that the tree recruitment function 
ω(G) satisfies following properties:

1. m ≤ ω(G) ≤ M for G ≥ 0;
2. ω(0) = M , ω′(0) = 0, ω′(G) < 0 for G ≥ 0, and lim

G→∞
ω(G) = m;

3. ω(h) = M + m

2 and ω′′(h) = 0, so G = h is the half-saturation point where the graph of ω(G) changes 
from concave down to concave up.

Therefore the maximum tree recruitment rate M is achieved when there is no grassland, and the minimum 
tree recruitment rate m occurs when there is a large amount of grassland. The upper bound M and the 
lower bound m of the function ω(G) are affected by the annual rainfall. The half-saturation point h can 
often be interpreted as the transition point from the high recruitment rate to the low one. According to the 
empirical analysis in [16], fire spreads only at tree cover of 40% or less.

The parameter n affects the shape of the sigmoid function, and when n is large, the function ω(G) is more 
similar to a Heaviside type switch function switching from M to m at G = h (see Fig. 1). This is a character 
of Hill’s function or Holling type III functional response, which is used widely in biological models [3,7].

Since in Eq. (2.1), (G + S + T )′ = 0 thus G + S + T = C0 for some C0 > 1. Without loss of generality, 
we assume C0 = 1 otherwise we can consider the quantities G/C0, S/C0 and T/C0 instead. Then Eq. (2.1)
is equivalent to

{
G′ = μ(1 −G− T ) + γT − βGT,

T ′ = ω(G)(1 −G− T ) − γT.
(2.3)
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In the following we take ω(G) to be the one defined in (2.2) with n = 2, then (2.3) becomes
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
G′ = μ(1 −G− T ) + γT − βGT,

T ′ =
(

Mh2

h2 + G2 + mG2

h2 + G2

)
(1 −G− T ) − γT,

G(0) = G0, T (0) = T0.

(2.4)

In the following we mainly consider the dynamical behavior of system (2.4).

3. Analysis

3.1. Boundedness and nonexistence of limit cycles

Firstly we derive some basic properties of solutions of system (2.4), such as the boundedness and nonex-
istence of limit cycles. According to the biological setting of the model described above, we define

Ω = {(G,T ) : G > 0, T > 0, G + T < 1}. (3.1)

Then we have

Theorem 3.1. Let Ω be defined as in Eq. (3.1), and let Ω̄ be the closure of Ω including the boundary ∂Ω.

(1) Suppose that (G0, T0) ∈ Ω̄, then Eq. (2.4) has a unique solution (G(t), T (t)) for t ∈ (0, ∞), and 
(G(t), T (t)) ∈ Ω̄ for all t > 0 so Ω is positively invariant for Eq. (2.4).

(2) System (2.4) has no periodic orbits in Ω.

Proof. The vector field defined by system (2.4) is smooth in Ω, which guarantees the local existence and 
uniqueness of solutions of system (2.4). We show that the orbits starting from Ω̄ cannot escape Ω̄ from 
the boundary ∂Ω = ∂Ω1

⋃
∂Ω2

⋃
∂Ω3, where ∂Ω1 = {(G, T ) : 0 ≤ G ≤ 1, T = 0}, ∂Ω2 = {(G, T ) : 0 ≤

T ≤ 1, G = 0} and ∂Ω3 = {(G, T ) : G > 0, T > 0, G + T = 1}, so the existence of solution is global. If 
(G0, T0) ∈ ∂Ω1, then T0 = 0, T ′ = ω(G)(1 − G) > 0 for 0 ≥ G < 1. If (G0, T0) ∈ ∂Ω2, then G0 = 0, 
G′ = μ(1 − T ) + γT > 0, for 0 ≥ T ≥ 1. If (G0, T0) ∈ ∂Ω3, we define X = G + T . Then, on the upper 
boundary ∂Ω3, we have

dX

dt
= dG

dt
+ dT

dt
= −βGT < 0.

That is, if (G0, T0) ∈ Ω̄ then (G(t), T (t)) ∈ Ω̄ for all t > 0. Hence all orbits starting from Ω̄ stay in Ω̄ for 
all time t > 0.

To exclude the possibility of periodic orbit, we apply the classical Bendixion criterion. Denote
⎧⎨
⎩
G′ = μ(1 −G− T ) + γT − βGT � P (G,T ),

T ′ = Mh2 + mG2

h2 + G2 (1 −G− T ) − γT � Q(G,T ).
(3.2)

An easy computation yields that

∂P

∂G
+ ∂Q

∂T
= −μ− βT − Mh2 + mG2

G2 + h2 − γ < 0.

Therefore the Bendixion criterion [18] can be applied to system (2.4) in Ω and there exist no periodic orbits 
in Ω. �
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3.2. Existence and multiplicity of equilibria

In this subsection, we show the existence and multiplicity of the equilibria. Based on biological meaning, 
we ask all equilibria to be nonnegative. An equilibrium satisfies the following equations:

{
μ(1 −G− T ) + γT − βGT = 0,
w(G)(1 −G− T ) − γT = 0.

(3.3)

Hence it is straightforward to calculate that system (2.4) has only one boundary equilibrium E0 = (1, 0).
Next we consider the coexistence equilibrium E∗ = (G∗, T ∗) such that G∗, T ∗ ∈ (0, 1) and G∗ + T ∗ ≤ 1. 

By using the first equation of system (3.3), we get

T = μ(1 −G)
μ + βG− γ

. (3.4)

Substituting into the second equation of system (3.3), we obtain

w(G) = μγ

βG− γ
� f(G). (3.5)

Since w(G) ≥ 0, then there exists a coexistence equilibrium if and only if βG −γ > 0. Furthermore, because 
of 0 ≤ G ≤ 1, then system (2.4) does not have coexistence equilibria if β ≤ γ. Indeed if β ≤ γ, it is 
easy to show that all positive solutions converge to E0 = (1, 0) from Theorem 3.1. Also if G satisfies (3.5), 
βG − γ > 0 hence T > 0. Therefore in the following we always assume that β > γ > 0.

Set

F (G) = w(G) − f(G), and p(G) = (G2 + h2)(βG− γ)
mβ

F (G). (3.6)

From Eq. (3.4), any positive root of F (G) = 0 or p(G) = 0 satisfying G < 1 corresponds to a coexistence 
equilibrium of system (2.4). From simple calculation, we have

p(G) = G3 − (μ + m)γ
mβ

G2 + Mh2

m
G− (μ + M)h2γ

mβ

� G3 + p1G
2 + p2G + p3,

(3.7)

where

p1 = − (μ + m)γ
mβ

, p2 = Mh2

m
, p3 = − (μ + M)h2γ

mβ
. (3.8)

Since p3 < 0, then p(0) < 0 and p(G) → ∞ as G → ∞, thus p(G) = 0 has at least one positive root. 
Differentiating p(G), we get

p′(G) = 3G2 + 2p1G + p2. (3.9)

If p2
1 ≤ 3p2, then p′(G) ≥ 0 and p(G) is nondecreasing. It is easily seen that p(G) has a unique simple 

positive root (see Fig. 2 (f)). If p2
1 > 3p2, then p′(x) = 0 has two zeros:

x1 = −p1 − 1√
p2
1 − 3p2, x2 = −p1 + 1√

p2
1 − 3p2. (3.10)
3 3 3 3
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Table 1
Parameters values for simulations of equation (2.4).

Parameter μ γ M m h

Value 0.3 0.025 0.6 0.012 0.063

Since p1 < 0 and p2 > 0, then we have 0 < x1 < x2. Furthermore, since p3 < 0, according to the 
Appendix C in [14], we have that if p(x1)p(x2) > 0, then p(x) has a unique positive zero (see Fig. 2 (a) 
and (e)); if p(x1)p(x2) = 0, then p(x) has two positive zeros (see Fig. 2 (b) and (d)); and if p(x1)p(x2) < 0, 
then there are three positive zeros (such as Fig. 2 (c)). Fig. 2 shows the evolution of the graphs of p(G)
when varying β, while the values of other parameters are given by the ones in Table 1.

By straightforward calculation, we get

p(x1)p(x2) = 1
27(−p2

1p
2
2 + 4p3

2 + 4p3
1p3 + 27p2

3 − 18p1p2p3)

� 1
27β4 (Aβ4 + Bβ2 + C) � 1

27β4 Δ(β2),
(3.11)

where Δ(x) = Ax2 + Bx + C is a quadratic polynomial with

A = 4M3h6

m3 , C = 4(μ + m)3(μ + M)γ4h2

m4 ,

B = h4

m2

[
−
(

(μ + m)γM
m

)2

+ 27(μ + M)2γ2 − 18(μ + m)(μ + M)γ2M

m

]
.

(3.12)

To shorten our notations, we introduce a new parameter

a = M(m + μ)
m(M + μ) . (3.13)

Clearly a > 1 since M > m and we can calculate that

B = −h4γ2(μ + M)2

m2 (a2 + 18a− 27), B2 − 4AC = h8γ4(μ + M)4

m4 (a− 1)(a− 9)3. (3.14)

From the solutions of quadratic equation Δ(x) = 0, we obtain that

(1) If a > 9, then B < 0 and B2 − 4AC ≥ 0. That is, Δ(x) has two zeros H2
1 and H2

2 defined by

H1 = γ(μ + m)
mha

√
m + μ−ma

μa

{
(a2 + 18a− 27) −

√
(a− 1)(a− 9)3

}1/2
,

H2 = γ(μ + m)
mha

√
m + μ−ma

μa

{
(a2 + 18a− 27) +

√
(a− 1)(a− 9)3

}1/2
.

(3.15)

Clearly H2 > H1 > 0. Since β > 0 and A > 0, then we obtain that

(i) If 0 < β < H1 or H2 < β ≤ (μ + m)γ
h
√
mM

, then p(x1)p(x2) > 0;

(ii) If β = H1 or β = H2, then p(x1)p(x2) = 0;
(iii) If H1 < β < H2, then p(x1)p(x2) < 0.
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Fig. 2. Graphs of p(G) with the parameters in Table 1.
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(2) If a ≤ 9, by straightforward calculation, we have

p(x1) = 2
27p

3
1 + 2

27p
2
1

√
p2
1 − 3p2 −

1
3p1p2 −

2
9p2

√
p2
1 − 3p2 + p3

= 2
27(p1 +

√
p2
1 − 3p2)(p2

1 − 3p2) −
1
9p1h

2a1(a3 − 9) < 0,
(3.16)

and

p(x2) = 2
27p

3
1 −

2
27p

2
1

√
p2
1 − 3p2 −

1
3p1p2 + 2

9p2

√
p2
1 − 3p2 + p3

< −1
9p1p2 −

2
27(p2

1 − 3p2)3/2 + p3

= −1
9p1h

2a1(a3 − 9) − 2
27(p2

1 − 3p2)3/2 < 0.

(3.17)

Thus p(x1)p(x2) > 0 and p(G) has exactly one positive zero (like Fig. 2 (b)).

We would also need that G < 1 for a coexistence equilibrium. It is easy to know that if β ≥ μγ(1 + h2)
m + Mh2 +γ, 

then p(1) ≥ 1; and if β ≥ 2(μ + m)γ
3m + Mh2 , then x2 ≤ 1. By a simple calculation, we know that μγ(1 + h2)

m + Mh2 +γ >

2(μ + m)γ
3m + Mh2 . Set

H0 = μγ(1 + h2)(m + μ− am)
m(m + μ− am) + amμh2 + γ. (3.18)

Then when β > H0, we have G < 1 if p(G) = 0.
Summarizing the above discussions, we obtain the following theorem.

Theorem 3.2. Let M, m, μ, γ, β, h be positive parameters such that β > γ, let a be defined as in Eq. (3.13), 
and let H0, H1, H2 be defined as in Eq. (3.18) and Eq. (3.15) respectively. Then we have

• If 0 < β ≤ H0, system (2.4) has a unique nonnegative equilibrium E0 = (1, 0).
• If β > H0, besides E0, system (2.4) has at least one coexistence equilibrium.

(1) If a ≤ 9, system (2.4) has a unique simple coexistence equilibrium E∗
0 = (G∗

0, T ∗
0 ).

(2) If a > 9, then
(i) If H0 < β < H1, there is only one coexistence equilibrium E∗

1 = (G∗
1, T

∗
1 );

(ii) If β = H1, there are two coexistence equilibria E∗
1 and E∗

2 = (G∗
2, T

∗
2 ), where G∗

2 < G∗
1;

(iii) If H1 < β < H2, there are three coexistence equilibria E∗
1 , E∗

2 and E∗
3 = (G∗

3, T
∗
3 ), where 

G∗
3 < G∗

2 < G∗
1;

(iv) If β = H2, there are two coexistence equilibria E∗
2 and E∗

3 , where G∗
3 < G∗

2;
(v) If β > H2, there is only one coexistence equilibrium E∗

3 .

Fig. 3 shows the bifurcation diagram of positive equilibria with respect to parameter (a, β) with other 
parameters given by Table 1 except M which determines a. For a fixed a > 0, each of β = Hi (i = 0, 1, 2) 
is a bifurcation point of positive equilibria. For any a > 0, β = H0 is a transcritical bifurcation point 
where a positive equilibrium bifurcates from the boundary equilibrium E0 = (1, 0). For a > 9, β = H1 and 
β = H2 are two saddle-node bifurcation points, with β = H1 a forward one and β = H2 a backward one 
(see Fig. 4(a)). The entire bifurcation diagram is a reversed-S shape. When a = 9, the two saddle-node 
bifurcation points merge at a codimension-two cusp bifurcation point, which is similar to the insect outbreak 
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Fig. 3. The number of coexistence equilibria of system (2.4) for different values of (a, β). Here other parameters are given by Table 1
except M , which is a variable.

Fig. 4. The bifurcation diagrams of positive equilibria with respect to parameter β of system (2.4). Here the parameters in (a) are 
given by Table 1, and the ones in (b) are given by Table 2. In (a), H0 = 0.5486, H1 = 0.6551, H2 = 0.7746; and in (b), H0 = 0.2630.

Table 2
Parameters values for equation (2.4).

Parameter μ γ h M m

Value 0.15 0.1 0.063 0.6 0.025

model studied in [7,18]. When a < 9, only the transcritical bifurcation at β = H0 occurs, and the bifurcation 
diagram is a monotone one (see Fig. 4(b)).

3.3. Stability of equilibria

In this subsection, we analyze the stability of the equilibria. To determine the local stability of those 
equilibria, we consider the Jacobian matrix of system (2.4):
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J =
(

−μ− βT −μ + γ − βG

−w(G) + w′(G)(1 −G− T ) −w(G) − γ

)
. (3.19)

It is easy to see that the trace of J is tr(J) = −μ − βT − w(G) − γ < 0 for any (G, T ). Thus the local 
stability of equilibria is determined by the sign of the determinant Det(J).

The Jacobian matrix of system (2.4) at E0 is

JE0 =

⎛
⎝ −μ −μ + γ − β

−Mh2 + m

1 + h2 −Mh2 + m

1 + h2 − γ

⎞
⎠ . (3.20)

Then,

Det(JE0) = μγ + Mh2 + m

1 + h2 (γ − β) (3.21)

Together with Theorem 3.1, we have the following result:

Theorem 3.3. Let M, m, μ, γ, β be positive parameters such that β > γ, and let H0 be defined as in Eq. (3.18). 
Then, we have

(1) If β ≤ H0, E0 is globally asymptotically stable.
(2) If β > H0, E0 is an unstable saddle.

Next we show the stability of a coexistence equilibrium E∗. By Eq. (3.3) and Eq. (3.5), at a coexistence 
equilibrium, we have

T ∗(μ− γ + βG∗) = μ(1 −G∗), (3.22)

T ∗(w(G∗) + γ) = w(G∗)(1 −G∗), (3.23)

μγ = (βG∗ − γ)w(G∗). (3.24)

Then for the sign of Det(J) at a coexistence equilibrium, we obtain

Det(JE∗) = μγ + βT (w(G∗) + γ) + w′(G∗)(1 −G∗ − T ∗)(μ− γ + βG∗) + (γ − βG∗)w(G∗)

= βw(G∗)(1 −G∗) + w′(G∗)(1 −G∗)(βG∗ − γ)

= (1 −G∗)(βG∗ − γ)(w′(G∗) − f ′(G∗))

= (1 −G∗)(βG∗ − γ)F ′(G∗).

(3.25)

Therefore, when F ′(G∗) < 0, the equilibrium is an unstable saddle, and when F ′(G∗) > 0 the equilib-
rium is locally stable (stable node or stable spiral). Summarizing the above discussion, and together with 
Theorem 3.1 and Poincaré–Bendixon theory, we obtain the following theorem.

Theorem 3.4. Let M, m, μ, γ, β be positive parameters such that β > γ and β > H0.

(1) If a ≤ 9, then E∗
0 is globally asymptotically stable.

(2) If a > 9, then E∗
1 and E∗

3 are locally asymptotically stable, and E∗
2 is an unstable saddle. Moreover, if 

E∗
1 or E∗

3 is the unique positive equilibrium, then it is also globally asymptotically stable.
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Fig. 5. Time series of system (2.1) with parameters in Table 1 and different β.
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Fig. 6. Phase portraits of system (2.4) with parameters in Table 1.

Fig. 5 shows the asymptotic behavior of solutions to (2.1) for different β values, and Fig. 6 shows the 
corresponding phase portraits of (2.4) for the same parameters. When β < H0, the entire landscape is 
occupied by the grass, and there are no trees (see Fig. 5(a) and Fig. 6(a)); and when H0 < β < H1, the 
grass and trees coexist but grass is still in dominating percentage (see Fig. 5(b) and Fig. 6(b)). Next when 
H1 < β < H2, the bistability occurs: if the initial value of trees is large, the ecosystem converges to a final 
state with high percentage of trees and low percentage of grass (see Fig. 5(c) and Fig. 6(c)); and if the 
initial value of trees is low, then the ecosystem still returns to an equilibrium of with about equal amount 
of grass and trees (including saplings) (see Fig. 5(d) and Fig. 6(c)). Finally when β > H2, the trees are in 
commanding high percentage with only very little grass (see Fig. 5(e) and Fig. 6(d)).

4. Conclusions

In this paper, we provide a specific function form of the tree recruiting rate in the grassland-forest model 
(2.1) proposed in [16], and use it to qualitatively and quantitatively analyze the model (2.1) and its reduced 
form (2.4). We rigorously prove the existence and exact number of positive equilibria for all parameter 
ranges, and the stability of all the equilibria are also shown. By proving that the system does not have limit 
cycles, we also classify the dynamics of the system according to the number of equilibria. In particular, 
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the critical values at which bifurcations and stability switches occur are explicitly derived, which could be 
useful for practitioners to determine the ecosystem structure if system parameters can be estimated from 
field data.

We identify two important parameters β (sapling establishment rate) and a = M(m + μ)
m(M + μ) which deter-

mine the regimes of “grass dominating”, “tree dominating” and “alternative stable states”. The parameter 
a is essentially the ratio of the maximum tree recruitment rate M and the minimum one m, which are in 
turn affected by the rainfall. Note that the key condition a > 9 (see Theorem 3.2) for hysteresis bifurcation 
diagram holds if M/m > 9. We believe that the numerical value 9 here is related to our choice of n = 2 in 
the Hill’s function ω(G), and it would be interesting to know how that value change for larger n which makes 
the sigmoid recruitment function having a sharper transition at G = h. Other parameters also affect the 
bifurcation values β = H0, H1 and H2, as these values are explicitly calculated in this paper. For example, 
H1 and H2 are proportional to h−1, which is related to fire spreading.

Note that the model from [16] is still a minimal one, and models with more complexity have been 
developed in [17] and [12] in which time-periodic oscillations and spatial effect have been considered. It 
would be interesting to obtain more detailed results for these models using the form of tree recruiting rate 
provided here.
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