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Abstract. We study a host-pathogen system in a bounded spatial habitat

where the environment is closed. Extinction and persistence of the disease
are investigated by appealing to theories of monotone dynamical systems and

uniform persistence. We also carry out a bifurcation analysis for steady state
solutions, and the results suggest that a backward bifurcation may occur when

the parameters in the system are spatially dependent.

1. Introduction. Mathematical disease models play an important role in studying
the mechanism of infectious disease. Recent evidences have shown that diseases can
affect the dynamics of animal populations and communities. In classical epidemio-
logical models, the host population is divided into infected and susceptible classes,
with one differential equation representing each class. Anderson and May [3] intro-
duced an additional class representing the population of infectious pathogen parti-
cles. These particles are found in invertebrate pathogens and they allow pathogens
to survive in the environment for several decades. The following host-pathogen
system was proposed by Anderson and May [3]:

du1

dt
= r (u1 + u2)− βu1u3,

du2

dt
= βu1u3 − αu2,

du3

dt
= −δu3 + λu2 − β(u1 + u2)u3,

(1.1)

2000 Mathematics Subject Classification. Primary: 35K57, 92B05; Secondary: 92D25.

Key words and phrases. Extinction, persistence, steady states, pathogen, backward bifurcation.
Research of F.B. Wang is supported in part by Ministry of Science and Technology, Taiwan.

Research of J. Shi is partially supported by NSF DMS-1313243. Research of X. Zou is partially
supported by NSERC.

2535

http://dx.doi.org/10.3934/cpaa.2015.14.2535


2536 FENG-BIN WANG, JUNPING SHI AND XINGFU ZOU

where u1(t) is the density of susceptible hosts, u2(t) is the density of infected hosts,
u3(t) is the density of pathogen particles, r is the reproductive rate of the host, β
is the transmission coefficient, α is the rate of disease-induced mortality, λ is the
rate of production of pathogen particles by infected hosts, and δ is the decay rate
of the pathogens.

Dwyer [9] revised the system (1.1) and obtained a mathematical disease model
that includes density-dependent host population dynamics:

du1

dt
= r

(
1− u1 + u2

K

)
u1 − βu1u3,

du2

dt
= βu1u3 − αu2 − r

u1 + u2

K
u2,

du3

dt
= −δu3 + λu2 − β(u1 + u2)u3,

(1.2)

where the new parameter K is the carrying capacity for the hosts. In order to
simplify the system (1.2), Dwyer [9] further ignored the consumption of the pathogen
by the hosts and investigated the following system:

du1

dt
= r

(
1− u1 + u2

K

)
u1 − βu1u3,

du2

dt
= βu1u3 − αu2 − r

u1 + u2

K
u2,

du3

dt
= −δu3 + λu2.

(1.3)

In many situations ordinary differential equations are appropriate mathematical
models for the progress of infectious diseases. However, it has been recognized
that spatial structure is also a central factor that affects the spatial spreading of a
disease. Taking into consideration the host movement, the author in [9] modified
(1.3) to a reaction-diffusion model in a spatial environment:

∂u1

∂t
= d∆u1 + r

(
1− u1 + u2

K

)
u1 − βu1u3,

∂u2

∂t
= d∆u2 + βu1u3 − αu2 − r

u1 + u2

K
u2,

∂u3

∂t
= −δu3 + λu2.

(1.4)

Here the host movement is described by the diffusion terms d∆u1 and d∆u2 where
∆ is the usual Laplacian operator; d > 0 denotes the diffusion coefficient, which
represents the rate of host movement; x and t represent location and time, respec-
tively. All coefficients in (1.4) are positive constants. Dwyer [9] assumed that the
habitat in (1.4) is one-dimensional and unbounded, and accordingly, investigated
the existence of travelling wave and spreading speed.

In the real world, a habitat in which a host population settles is typically
bounded, and this motivates us to consider a mathematical system modelling the
dynamics of a disease in a bounded spatial domain (not necessarily one-dimensional).
Also, the parameters in a model involving space are typically space dependent due to
the spatial heterogeneity. Based on these basic facts, we will, in this paper, further
modify the more general (than (1.4)) model system (1.2) by replacing the constant
parameters with spatial dependent parameters, and consider the solution dynamics
on a general bounded domain with zero-flux boundary condition. In other words,
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we consider the following problem:

∂u1

∂t
= d∆u1 + r

(
1− u1 + u2

K(x)

)
u1 − β(x)u1u3, x ∈ Ω, t > 0,

∂u2

∂t
= d∆u2 + β(x)u1u3 − αu2 − r

u1 + u2

K(x)
u2, x ∈ Ω, t > 0,

∂u3

∂t
= −δu3 + λ(x)u2 − β(x)(u1 + u2)u3, x ∈ Ω, t > 0,

∂u1

∂ν
=
∂u2

∂ν
= 0, x ∈ ∂Ω, t > 0,

ui(x, 0) = u0
i (x), x ∈ Ω, i = 1, 2, 3.

(1.5)

Here Ω ⊂ Rm is a bounded open set with smooth boundary ∂Ω; ∂
∂ν denotes the

differentiation along the unit outward normal ν to ∂Ω; K(x) is the carrying capacity.
The spatially dependent functions β(x), λ(x), K(x) are assumed to be continuous
and positive in Ω.

We point out that although there have been numerous ODE models for disease
and/or pathogen dynamics in literature, the studies of PDE models with spatial
variables are much fewer, among which are Allen et. al. [2], Capasso and Mad-
dalena [4], Capasso and Wilson [5], Guo et. al. [12], Li and Zou [18], Peng [24],
Peng and Yi [25], Vaidya et. al. [34], Wang and Zhao [36, 37]. The main reason
is that a PDE model with spatial variables (important in disease spread), such as
(1.5), is infinite dimensional, and thus, is much harder to analyze. Taking basic
reproduction number as an example, for an ODE model, following the “recipe”
given in [33], the basic reproduction number can be easily identified as the spectral
radius of the next generation that enjoys some nice properties, and can be conve-
niently calculated in most cases. However, for a PDE model, one needs to work on
operators between function spaces in order to obtain the next generation operator.
Moreover the spectral radius of a general operator is very hard, or even impossible
in most cases, to calculate, and thus, one has to heavily depend on numerical sim-
ulations. See, e.g., [2, 4, 12, 24, 25, 34, 36, 37] for a taste of what is stated above.
Furthermore, unlike in [2, 4, 12, 24, 25, 34, 36, 37] where all equations in the models
have diffusion terms and hence the solution semiflows are alway compact, here in
our model (1.5), the compactness is an issue because of the lack of diffusion term
in the u3 equation, and this makes analysis more challenging. In [5], a model on
temporal and spatial evolution of orofecal transmitted disease with immobile human
population and Dirichlet boundary condition was considered, but our approach is
quite different.

In the rest of this paper, we will investigate the dynamics of this modified model.
In Section 2, we explore the solution properties of the system (1.5) by appealing to
the theories of monotone dynamical systems and uniform persistence. In Section 3,
we utilize bifurcation theory to investigate the steady state solutions of the system
(1.5). A brief discussion section concludes the paper.

2. Basic properties of solutions. This section is devoted to establishing some
basic properties of (1.5), starting with the well-posedness.

2.1. Well-posedness. We first show the existence of solutions to (1.5) via a semi-
group approach. Let X := C(Ω,R3) be the Banach space with the supremum
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norm ‖ · ‖X. Define X+ := C(Ω,R3
+), then (X,X+) is a strongly ordered Ba-

nach space. Let Γ be the Green function associated with the parabolic equa-
tion ∂v

∂t = ∆v in Ω subject to the Neumann boundary condition. Suppose that

T1(t), T2(t) : C(Ω,R) → C(Ω,R) are the C0 semigroups associated with d∆ and
d∆ − α subject to the Neumann boundary condition, respectively. It then follows
that for any ϕ ∈ C(Ω,R), t ≥ 0,

(T1(t)ϕ)(x) =

∫
Ω

Γ(dt, x, y)ϕ(y)dy,

and

(T2(t)ϕ)(x) = e−αt
∫

Ω

Γ(dt, x, y)ϕ(y)dy. (2.1)

From [29, Section 7.1 and Corollary 7.2.3], it follows that Ti(t) : C(Ω,R)→ C(Ω,R)
is compact and strongly positive for any t > 0 and i = 1, 2. We also define

(T3(t)ϕ)(x) = e−δtϕ(x).

Then T (t) := (T1(t), T2(t), T3(t)) : X→ X, t ≥ 0, defines a C0 semigroup (see, e.g.,
[23]). Define F = (F1, F2, F3) : X+ → X by

F1(φ)(x) = r

(
1− φ1 + φ2

K(x)

)
φ1 − β(x)φ1φ3,

F2(φ)(x) = β(x)φ1φ3 − r
φ1 + φ2

K(x)
φ2,

F3(φ)(x) = λ(x)φ2 − β(x)(φ1 + φ2)φ3,

for x ∈ Ω and φ = (φ1, φ2, φ3) ∈ X+. Then (1.5) can be rewritten as the following
integral equation

u(t) = T (t)φ+

∫ t

0

T (t− s)F (u(·, s))ds.

The following lemma gives some basic properties of the local solution flow on
X+.

Lemma 2.1. For any φ := (φ1, φ2, φ3) ∈ X+, the system (1.5) has a unique mild
solution u(·, t;φ) := (u1(·, t), u2(·, t), u3(·, t)) on (0, τφ) with u(·, 0;φ) = φ, where
τφ ≤ ∞. Furthermore for t ∈ (0, τφ), u(·, t;φ) ∈ X+ and u(·, t;φ) is a classical
solution of (1.5).

Proof. By [19, Corollary 4] or [29, Theorem 7.3.1], it suffices to show that for any
φ ∈ X+,

lim
h→0+

dist(φ+ hF (φ),X+) = 0. (2.2)

Let β̄ := max
x∈Ω

β(x) and K̃ := min
x∈Ω

K(x). Then for any φ ∈ X+ and h ≥ 0, we have

φ+ hF (φ) =


φ1 + h

(
r(1− φ1 + φ2

K(x)
)φ1 − β(x)φ1φ3

)
φ2 + h

(
β(x)φ1φ3 − r

φ1 + φ2

K(x)
φ2

)
φ3 + h[λ(x)φ2 − β(x)(φ1 + φ2)φ3]



≥


φ1[1− h(

r

K̃
(φ1 + φ2) + β̄φ3)]

φ2[1− h r
K̃

(φ1 + φ2)]

φ3[1− hβ̄(φ1 + φ2)]

 .
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The above inequalities imply that (2.2) holds and thus the lemma is proved.

For convenience of discussions later, we recall some well-known results for some
auxiliary systems. First consider the following equation

∂w(x, t)

∂t
= λ(x)−A(x)w(x, t), x ∈ Ω, t > 0. (2.3)

It is easy to see that system (2.3) has a unique positive steady state λ(x)
A(x) if A(x) > 0.

By [38, Theorem 2.2.1], we have the following result:

Lemma 2.2. Suppose that A(x) > 0 and λ(x) > 0 for x ∈ Ω, then the system (2.3)

admits a unique positive steady state λ(x)
A(x) which is globally asymptotically stable in

C(Ω,R).

Secondly we consider the dynamics of the following diffusive logistic equation:
∂W

∂t
= d∆W + r

(
1− W

K(x)

)
W, x ∈ Ω, t > 0,

∂W

∂ν
= 0, x ∈ ∂Ω, t > 0,

W (x, 0) = W 0(x), x ∈ Ω.

(2.4)

The dynamics of the system (2.4) is well-known (see for example, [38, Theorem
3.1.5 and the proof of Theorem 3.1.6]):

Lemma 2.3. For any d, r > 0 and W 0(x) 6≡ 0, the diffusive logistic equation (2.4)
admits a unique positive steady state u∗1(x) which is globally asymptotically stable
in C(Ω,R) .

Now we are in a position to show that solutions of the system (1.5) exist globally
for t ∈ [0,∞) in X+.

Lemma 2.4. For every initial value function φ ∈ X+, the system (1.5) has a unique
solution u(x, t;φ) defined on [0,∞) with u(·, 0;φ) = φ and a semiflow Ψ(t) : X+ →
X+ is generated by (1.5) which is defined by

Ψ(t)φ = u(·, t;φ), t ≥ 0. (2.5)

Furthermore Ψ(t) : X+ → X+ is point dissipative.

Proof. Let U(x, t) := u1(x, t) + u2(x, t). Then U(x, t) satisfies
∂U

∂t
≤ d∆U + r

(
1− U

K(x)

)
U, x ∈ Ω, t > 0,

∂U

∂ν
= 0, x ∈ ∂Ω, t > 0.

(2.6)

The system (2.6) is bounded from above by the system (2.4) and the standard
parabolic comparison theorem (see, e.g., [29, Theorem 7.3.4]) implies that U(x, t)
is uniformly bounded. By Lemma 2.1, it follows that u1(x, t) and u2(x, t) are
uniformly bounded. This, together with the comparison arguments, implies that
u3(x, t) is also uniformly bounded.

Comparing (2.6) with (2.4), we see from Lemma 2.3 and the comparison principle
that

lim sup
t→∞

U(x, t) ≤ u∗1(x) uniformly for x ∈ Ω. (2.7)
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More precisely, there exist t1 > 0 and a > 0 such that

U(·, t) ≤ u∗1(·) + a, ∀ t ≥ t1.
This implies that U(x, t) is ultimately bounded. It follows from Lemma 2.1 that
ui(x, t) is also ultimately bounded, i = 1, 2. Then there exists a positive number A
such that the third equation of system (1.5) for u3 satisfies

∂u3(x, t)

∂t
≤ A− δu3(x, t), ∀ x ∈ Ω, t ≥ t1. (2.8)

By standard comparison theorem and Lemma 2.2, it follows that u3 is also ulti-
mately bounded. Thus, the solution exists globally, i.e., for all t ∈ [0,∞), and
moreover, the solution semiflow generated by (1.5) is point dissipative.

Since the third equation in (1.5) has no diffusion term, the solution map Ψ(t)
is not compact. In order to overcome this problem, we introduce the Kuratowski
measure of noncompactness κ (see [7]), which is defined by

κ(B) := inf{r : B has a finite cover of diameter < r}, (2.9)

for any bounded set B. We set κ(B) =∞ whenever B is unbounded. It is easy to
see that B is precompact (i.e. B̄ is compact) if and only if κ(B) = 0. Then the
solution map Ψ(t) has some partial compactness in the following sense.

Lemma 2.5. Ψ(t) is κ-contracting in the sense that

lim
t→∞

κ(Ψ(t)B) = 0 for any bounded set B ⊂ X+.

Proof. Let
G(u1, u2, u3) = −δu3 + λ(x)u2 − β(x)(u1 + u2)u3

represent the reaction term for the third equation of (1.5). Then

∂G(u1, u2, u3)

∂u3
= −δ − β(x)(u1 + u2) ≤ −δ, (u1, u2, u3) ∈ X+.

With this inequality, the rest of the proof is similar to the one in [15, Lemma 4.1]
(see also [15, Lemma 3.2]).

Now we are ready to show that solutions of system (1.5) converge to a compact
attractor in X+.

Theorem 2.1. Ψ(t) admits a connected global attractor on X+.

Proof. By Lemma 2.4 and Lemma 2.5, it follows that Ψ(t) is point dissipative and
κ-contracting on X+. From the proof of Lemma 2.4 (see (2.6) and (2.8)), we also
know that the positive orbits of bounded subsets of X+ for Ψ(t) are (uniformly)
bounded. By [20, Theorem 2.6], Ψ(t) has a global attractor that attracts every
bounded set in X+.

2.2. Extinction. In this subsection, an extinction result for large α is established.
We first consider the following linear system:

∂u2

∂t
= d∆u2 + β(x)u∗1(x)u3 − αu2, x ∈ Ω, t > 0,

∂u3

∂t
= −δu3 + λ(x)u2, x ∈ Ω, t > 0,

∂u2

∂ν
= 0, x ∈ ∂Ω, t > 0,

ui(x, 0) = u0
i (x), x ∈ Ω, i = 2, 3.

(2.10)
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Denote by Σ(t) the solution semiflow Σ(t) of (2.10), that is, Σ(t) : C→ C is defined
by

Σ(t)(φ) = (u2(·, t, φ), u3(·, t, φ)), φ ∈ C, t ≥ 0,

where (u2(·, t, φ), u3(·, t, φ)) is the solution of (2.10) with initial function φ ∈ C
where C = C(Ω,R2). Since (2.10) is cooperative, Σ(t) is a positive C0-semigroup
on C, and its generator B can be written as

B =

(
d∆− α β(x)u∗1(x)
λ(x) −δ

)
.

Further, B is a closed and resolvent positive operator (see, e.g., [32, Theorem 3.12]).
Substituting ui(x, t) = eµtψi(x), i = 2, 3, into (2.10), we get the following associated
eigenvalue problem:

µψ2(x) = d∆ψ2 + β(x)u∗1(x)ψ3 − αψ2, x ∈ Ω,

µψ3(x) = −δψ3 + λ(x)ψ2, x ∈ Ω,
∂ψ2(x)

∂ν
= 0, x ∈ ∂Ω.

(2.11)

We point out that Σ(t) is not compact since the second equation in (2.10) has no
diffusion term and its sign.

The following lemma concerns with the existence of the principal eigenvalue of
(2.11).

Lemma 2.6. Let s(B) be the spectral bound of B. Then

(i) s(B) is the principal eigenvalue of the eigenvalue problem (2.11) which has a
strongly positive eigenfunction;

(ii) s(B) has the same sign as ξ0, where ξ0 is the principal eigenvalue of the
eigenvalue problem

d∆ϕ+

(
β(x)λ(x)u∗1(x)

δ
− α

)
ϕ = ξϕ, x ∈ Ω,

∂ϕ(x)

∂ν
= 0, x ∈ ∂Ω.

(2.12)

Proof. In order to make use of the results in [37, Theorem 2.3 (i)], we define an
one-parameter family of linear operators on C(Ω̄,R):

Lµ = d∆− α+
β(x)λ(x)u∗1(x)

µ+ δ
, µ > −δ.

Let A := minx∈Ω̄[β(x)λ(x)u∗1(x)] > 0. It is easy to see that the eigenvalue problemη̂φ(x) = d∆ϕ(x)− αϕ(x), x ∈ Ω,
∂ϕ(x)

∂ν
= 0, x ∈ ∂Ω,

admits a principal eigenvalue, denoted by η̂0 = −α, with an associated eigenvector
ϕ0 � 0. Let µ∗ be the larger root of the algebraic equation

µ2 + (δ − η̂0)µ− (A+ η̂0δ) = 0.

Then µ∗ = 1
2 [(η̂0 − δ) +

√
(η̂0 + δ)2 + 4A] > −δ. It is easy to see that

Lµ∗ϕ0 = d∆ϕ0 − αϕ0 +
β(x)λ(x)u∗1(x)

µ∗ + δ
ϕ0 ≥ (η̂0 +

A

µ∗ + δ
)ϕ0 = µ∗ϕ0.

By [37, Theorem 2.3 (i)], we complete the proof of (i).
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Since −δ < 0, it follows from [37, Theorem 2.3 (ii)] that s(B) has the same sign
as s(L0), where

L0 = d∆− α+
β(x)λ(x)u∗1(x)

δ
.

Now we are ready to show that s(B) is an index for disease extinction.

Theorem 2.2. Let µ̂ = s(B) be the principal eigenvalue of the eigenvalue problem
(2.11). If µ̂ < 0, then the disease free equilibrium (u∗1(x), 0, 0) is globally attractive
for the system (1.5). More precisely, if u(x, t;φ) is the solution of system (1.5) with
u(·, 0;φ) = φ ∈ X+, we have

lim
t→∞

(u1(x, t), u2(x, t), u3(x, t)) = (u∗1(x), 0, 0), uniformly for all x ∈ Ω.

Proof. For ε ≥ 0, one can use the same arguments to those in Lemma 2.6 to show
that the eigenvalue problem

µψ2(x) = d∆ψ2 + β(x) (u∗1(x) + ε)ψ3 − αψ2, x ∈ Ω,

µψ3(x) = −δψ3 + λ(x)ψ2, x ∈ Ω,
∂ψ2(x)

∂ν
= 0, x ∈ ∂Ω,

(2.13)

has a principal eigenvalue, denoted by µ̂ε, with an associated eigenvector (ψε2(x),
(ψε3(x)) � 0. Since µ̂ < 0, there exists a small ε0 > 0 such that µ̂ε0 < 0 and it
corresponds to an associated eigenvector (ψε02 (x), ψε03 (x))� 0.

From (2.7), it follows that

lim sup
t→∞

u1(x, t) ≤ u∗1(x) uniformly for x ∈ Ω.

This implies that there exists a large t0 > 0 such that

u1(x, t) ≤ u∗1(x) + ε0, t ≥ t0, x ∈ Ω.

From the second and third equations of (1.5), it follows that

∂u2

∂t
≤ d∆u2 + β(x)(u∗1(x) + ε0)u3 − αu2, x ∈ Ω, t ≥ t0,

∂u3

∂t
≤ −δu3 + λ(x)u2, x ∈ Ω, t ≥ t0,

∂u2

∂ν
= 0, x ∈ ∂Ω, t ≥ t0.

(2.14)

For any given φ ∈ X+, there exists some a > 0 such that (u2(x, t0;φ), u3(x, t0;φ)) ≤
a(ψε02 (x), ψε03 (x)), for all x ∈ Ω̄. Note that the following linear system

∂u2

∂t
= d∆u2 + β(x)(u∗1(x) + ε0)u3 − αu2, x ∈ Ω, t ≥ t0,

∂u3

∂t
= −δu3 + λ(x)u2, x ∈ Ω, t ≥ t0,

∂u2

∂ν
= 0, x ∈ ∂Ω, t ≥ t0,

admits a solution aeµ̂ε0
(t−t0)(ψε02 (x), ψε03 (x)), for all t ≥ t0. The comparison prin-

ciple implies that

(u2(x, t;φ), u3(x, t;φ)) ≤ aeµ̂ε0
(t−t0)(ψε02 (x), ψε03 (x)), t ≥ t0,
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which implies that limt→∞(u2(x, t;φ), u3(x, t;φ)) = 0 uniformly for x ∈ Ω̄. Then the
equation for u1 is asymptotic to the system (2.4) and we get limt→∞ u1(x, t;φ) =
u∗1(x) uniformly for x ∈ Ω̄ by Lemma 2.3 and the theory for asymptotically au-
tonomous semiflows (see, e.g., [31, Corollary 4.3]). The proof is completed.

Remark 2.1. From Lemma 2.6 (ii), it follows that s(B) < 0 if

max
x∈Ω̄

[β(x)λ(x)u∗1(x)] < αδ. (2.15)

By Theorem 2.2 and (2.15), it follows that the disease will become extinct if αδ is
large or maxx∈Ω̄ [β(x)λ(x)] is small.

2.3. Persistence. Next we show the persistence for small α in the system (1.5).
We establish some lemmas for that purpose. First we show the strict positiveness
of solutions of (1.5).

Lemma 2.7. Suppose that u(x, t;φ) is the solution of system (1.5) with u(·, 0;φ) =
φ ∈ X+.

(i) If there exists some t0 ≥ 0 such that u1(·, t0;φ) 6≡ 0, then u1(x, t;φ) > 0 for
all x ∈ Ω, t > t0;

(ii) If there exists some t0 ≥ 0 such that u2(·, t0;φ) 6≡ 0, then ui(x, t;φ) > 0 for
all x ∈ Ω, t > t0, and i = 2, 3.

Proof. (i) From Lemma 2.1, it follows that u1(x, t) satisfies

d∆u1(x, t)− ∂u1(x, t)

∂t
+ h1(x, t)u1(x, t) = −ru1(x, t) ≤ 0, x ∈ Ω, t > 0,

where h1(x, t) := − r
K(x) [u1(x, t)+u2(x, t)]−β(x)u3(x, t) ≤ 0. By similar arguments

to that in [14, Lemma 2.1] and [35, Proposition 3.1], it follows from the strong
maximum principle (see, e.g., [26, p. 172, Theorem 4]) and the Hopf boundary
lemma (see, e.g., [26, p. 170, Theorem 3]) that part (i) holds.

(ii) From Lemma 2.1, it follows that u2(x, t) satisfies

d∆u2(x, t)− ∂u2(x, t)

∂t
+ h2(x, t)u2(x, t) = −β(x)u1(x, t)u3(x, t) ≤ 0, x ∈ Ω, t > 0,

where h2(x, t) := −α− r
K(x) [u1(x, t) + u2(x, t)] ≤ 0. Since u2(·, t0;φ) 6≡ 0, it follows

from the strong maximum principle and the Hopf boundary lemma that

u2(x, t;φ) > 0, x ∈ Ω, t > t0. (2.16)

For fixed x ∈ Ω, u3(·, t) satisfies an ordinary differential equation, then u3(x, t) > 0
for x ∈ Ω, t > t0 from u2 > 0 and the equation of u3. This completes the proof of
part (ii).

It is easy to see that system (1.5) has a trivial equilibrium at M1 = (0, 0, 0)
and a disease-free equilibrium at M2 = (u∗1(·), 0, 0), where u∗1(x) is the unique
positive steady state of (2.4) which is globally asymptotically stable in C(Ω,R)
for the dynamics of (2.4). Linearizing system (1.5) at the disease-free equilibrium
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(u∗1(x), 0, 0), we get the following linear system:



∂w1

∂t
= d∆w1 +

r

K(x)
(K(x)− 2u∗1(x))w1

− r

K(x)
u∗1(x)w2 − β(x)u∗1(x)w3, x ∈ Ω, t > 0,

∂w2

∂t
= d∆w2 − αw2 −

r

K(x)
u∗1(x)w2 + β(x)u∗1(x)w3, x ∈ Ω, t > 0,

∂w3

∂t
= −δw3 + λ(x)w2 − β(x)u∗1(x)w3, x ∈ Ω, t > 0,

∂w1

∂ν
=
∂w2

∂ν
= 0, x ∈ ∂Ω, t > 0,

wi(x, 0) = w0
i (x), x ∈ Ω, i = 1, 2, 3.

(2.17)
Note that the equations for the infected host (w2) and pathogen populations (w3)
decouple from the that for uninfected host population (w1) in (2.17), forming the
following subsystem which is cooperative:



∂w2

∂t
= d∆w2 − αw2 −

r

K(x)
u∗1(x)w2 + β(x)u∗1(x)w3, x ∈ Ω, t > 0,

∂w3

∂t
= −δw3 + λ(x)w2 − β(x)u∗1(x)w3, x ∈ Ω, t > 0,

∂w2

∂ν
= 0, x ∈ ∂Ω, t > 0,

wi(x, 0) = w0
i (x), x ∈ Ω, i = 2, 3.

(2.18)

The perturbation of the eigenvalue problem (2.18) will play a central role in
proving the persistence of the system (1.5). To proceed further, we first consider
the following more general linear parabolic system:



∂w2

∂t
= d∆w2 − αw2 −

r

K(x)
h1(x)w2 + β(x)h2(x)w3, x ∈ Ω, t > 0,

∂w3

∂t
= −δw3 + λ(x)w2 − β(x)h1(x)w3, x ∈ Ω, t > 0,

∂w2

∂ν
= 0, x ∈ ∂Ω, t > 0,

wi(x, 0) = w0
i (x), x ∈ Ω, i = 2, 3.

(2.19)

where h1(x) > 0 and h2(x) > 0 for x ∈ Ω.
Denote by Πt the solution semiflow of (2.17) on C. The it is easy to see that Πt

is a positive C0-semigroup on C, and its generator Bh1,h2 can be written as

Bh1,h2 =

(
d∆− α− r

K(x)
h1(x) β(x)h2(x)

λ(x) −δ − β(x)h1(x)

)
.

Furthermore Bh1,h2 is a closed and resolvent positive operator (see, e.g., [32, The-
orem 3.12]). Again, Πt is not compact since the second equation in (2.19) has no
diffusion term.
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Substituting wi(x, t) = eΛtψi(x), i = 2, 3, into (2.19), we obtain the following
eigenvalue problem:

Λψ2 = d∆ψ2 − αψ2 −
r

K(x)
h1(x)ψ2 + β(x)h2(x)ψ3, x ∈ Ω,

Λψ3 = −δψ3 + λ(x)ψ2 − β(x)h1(x)ψ3, x ∈ Ω,
∂ψ2

∂ν
= 0, x ∈ ∂Ω.

(2.20)

The following lemma concerns with the existence of the principal eigenvalue of
(2.20).

Lemma 2.8. Suppose that h1(x) > 0 and h2(x) > 0 for x ∈ Ω and let s(Bh1,h2) be
the spectral bound of Bh1,h2 . If s(Bh1,h2) ≥ 0, then s(Bh1,h2) is the principal eigen-
value of the eigenvalue problem (2.20), corresponding to which, there is a strongly
positive eigenfunction.

Proof. We first show that for each t > 0, Πt is an κ-contraction on C in the sense
that

κ(ΠtB) ≤ e−δtκ(B) (2.21)

for any bounded set B in C, where κ is the Kuratowski measure of noncompactness
as defined in (2.9). Recall that T2(t) is the analytic semigroup on C(Ω,R) defined
by (2.1). Let U2(t) = T2(t) and U3(t)φ3 = e−(δ+β(·)h1(·))tφ3 for φ3 ∈ C(Ω,R).
Obviously, U(t) = (U2(t), U3(t)) is a linear semigroup on C.

Define a linear operator

I(t)φ = (0, U3(t)φ3), φ = (φ2, φ3) ∈ C, (2.22)

and a nonlinear operator

Q(t)φ =

(
w2(·, t, φ),

∫ t

0

U3(t− s)[λ(·)w2(., s, φ))]ds

)
, φ = (φ2, φ3) ∈ C,

where

w2(·, t, φ) = U2(t)φ2 +

∫ t

0

U2(t− s)g(w2(·, s, φ), w3(·, s, φ))ds,

where g(w2, w3) = − r
K(·)h1(·)w2 + β(·)h2(·)w3. It is easy to see that

Πt(φ) = I(t)φ+Q(t)φ, φ ∈ C, t ≥ 0.

By (2.22), it follows that

sup
φ∈C,||φ||6=0

‖I(t)φ‖
‖φ‖

≤ sup
φ∈C,||φ||6=0

‖e−(δ+β(·)h1(·))tφ3‖
‖φ‖

≤ sup
φ∈C,||φ||6=0

‖e−δtφ3‖
‖φ‖

≤ e−δt,

and hence ‖I(t)‖ ≤ e−δt.
From the boundedness of Πt and the compactness of U2(t) for t > 0, it follows

that Q(t) : C → C is compact for each t > 0. For any bounded set B in C, there
holds κ(Q(t)B) = 0 since Q(t)B is precompact, and consequently,

κ(ΠtB) ≤ κ(I(t)B) + κ(Q(t)B) ≤ ‖I(t)‖κ(B) ≤ e−δtκ(B), t > 0.

In the above inequality, we have used the fact that

κ(I(t)B) ≤ ‖I(t)‖κ(B), t > 0,
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since I(t) is a linear operator. Thus, Πt is an κ-contraction on C with a contracting
function e−δt. From (2.21), it follows that the essential spectral radius re(Πt) of Πt

satisfies

re(Πt) ≤ e−δt < 1, t > 0.

On the other hand, the spectral radius r(Πt) of Πt satisfies

r(Πt) = es(B
h1,h2 ))t ≥ 1, t > 0.

This implies that re(Πt) < r(Πt) for any t > 0. Since Πt is a strongly positive and
bounded operator on C, it follows from a generalized Krein-Rutman Theorem (see,
e.g., [21]) that the stated conclusion holds.

Now we are ready to prove the main result of this section, which indicates that
s(Bu∗

1 ,u
∗
1 ) is a crucial index for disease persistence.

Theorem 2.3. Assume that s(Bu∗
1 ,u

∗
1 ) > 0. Then, the infection is uniformly per-

sistent in the sense that there exists an η > 0 such that for any φ ∈ X+ with φi ≡/ 0
for i = 1, 2, we have

lim inf
t→∞

ui(x, t) ≥ η, ∀ i = 1, 2, uniformly for all x ∈ Ω.

Moreover, System (1.5) admits at least one (componentwise) positive steady state
û(x).

Proof. Let

W0 = {φ ∈ X+ : φi(·) ≡/ 0, ∀ i = 1, 2.},

and

∂W0 = X+\W0 = {φ ∈ X+ : φ1(·) ≡ 0 or φ2(·) ≡ 0}.

By Lemma 2.7, it follows that for any φ ∈W0, we have ui(x, t, φ) > 0, ∀ x ∈ Ω, t >
0, i = 1, 2, 3. In other words, Ψ(t)W0 ⊆W0, ∀ t ≥ 0.

Let

M∂ := {φ ∈ ∂W0 : Ψ(t)φ ∈ ∂W0,∀ t ≥ 0},

and ω(φ) be the omega limit set of the orbit Γ+(φ) := {Ψ(t)φ : t ≥ 0}.
Claim: ω(ψ) = M1 ∪ M2, ∀ ψ ∈ M∂ , where M1 = {(0, 0, 0)} and M2 =

{(u∗1, 0, 0)}.
Since ψ ∈M∂ , we have Ψ(t)ψ ∈M∂ , ∀ t ≥ 0. Thus u1(·, t, ψ) ≡ 0 or u2(·, t, ψ) ≡

0, ∀ t ≥ 0. In the case where u2(·, t, ψ) ≡ 0, ∀ t ≥ 0, it follows from the second
equation of (1.5) that β(·)u1(·, t, ψ)u3(·, t, ψ) ≡ 0. From the third equation of (1.5),
it follows that

∂u3(·, t, ψ)

∂t
= −δu3(·, t, ψ), x ∈ Ω, t > 0. (2.23)

This implies that limt→∞ u3(x, t, ψ) = 0 uniformly for x ∈ Ω. Thus, the equation
for u1 is asymptotic to the reaction-diffusion equation (2.4), and the theory for
asymptotically autonomous semiflows (see, e.g., [31, Corollary 4.3]) and Lemma 2.3
imply that limt→∞ u1(x, t, φ) = u∗1(x) or limt→∞ u1(x, t, φ) = 0 uniformly for x ∈
Ω. In the case where u2(·, t̃0, ψ) 6≡ 0, for some t̃0 ≥ 0, Lemma 2.7 implies that
u2(x, t, ψ) > 0, ∀ x ∈ Ω, t > t̃0. Hence, u1(·, t, ψ) ≡ 0, ∀ t > t̃0. It follows from the
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second equation of (1.5) that
∂u2

∂t
= d∆u2 − αu2 −

r

K(x)
(u2)2, x ∈ Ω, t > t̃0,

∂u2

∂ν
= 0, x ∈ ∂Ω, t > t̃0,

u2(x, 0) = ψ(x), x ∈ Ω.

It is easy to see that limt→∞ u2(x, t, ψ) = 0 uniformly for x ∈ Ω. Hence, the equation
for u3 is asymptotic to the reaction-diffusion equation (2.23) and the theory for
asymptotically autonomous semiflows (see, e.g., [31, Corollary 4.3]) implies that
limt→∞ u3(x, t, ψ) = 0 uniformly for x ∈ Ω. Thus, ω(ψ) = M1 ∪M2, ∀ ψ ∈M∂ .

For convenience, we let Λ(h1, h2) = s(Bh1,h2). By similar arguments to that in
Lemma 2.8 and [16, Lemma 4.5], we can show that there is a small σ0 > 0 such

that Λ̃ := Λ(u∗1 + σ0, u
∗
1 − σ0) is the principal eigenvalue of the eigenvalue problem

(2.20) with h1 ≡ u∗1 + σ0, h2 ≡ u∗1 − σ0 and Λ̃ := Λ(u∗1 + σ0, u
∗
1 − σ0) > 0. Let

ψ̃ := (ψ̃2, ψ̃3) be the strongly positive eigenfunction corresponding to Λ̃. We may
further assume σ0 satisfies

1− σ0 max
x∈Ω

(
1

K(x)
+ β(x)) > 0.

Claim: lim supt→∞ ‖Ψ(t)φ−Mi‖ ≥ σ0

2 , ∀ φ ∈W0, ∀ i = 1, 2.
Suppose, by contradiction, there exists φ0 ∈W0 such that

lim sup
t→∞

‖Ψ(t)φ0 −M1‖ <
σ0

2
or lim sup

t→∞
‖Ψ(t)φ0 −M2‖ <

σ0

2
.

In the case that lim supt→∞ ‖Ψ(t)φ0 −M2‖ < σ0

2 , there exists t1 > 0 such that

u∗1(x) + σ0

2 > u1(x, t, φ0) > u∗1(x)− σ0

2 and u2(x, t, φ0) < σ0

2 , ∀ t ≥ t1, x ∈ Ω. Thus
u2(x, t, φ0) and u3(x, t, φ0) satisfies

∂u2

∂t
≥ d∆u2−αu2 −

r

K(x)
(u∗1(x) + σ0)u2 + β(x)(u∗1(x)− σ0)u3, x ∈ Ω, t > t1,

∂u3

∂t
≥ −δu3 + λ(x)u2 − β(x)(u∗1(x) + σ0)u3, x ∈ Ω, t > t1,

∂u2

∂ν
= 0, x ∈ ∂Ω, t > t1.

(2.24)
By Lemma 2.7, it follows that ui(x, t, φ0) > 0, ∀ x ∈ Ω, t > 0, i = 2, 3, and

hence, there exists ε0 > 0 such that (u2(x, t1, φ0), u3(x, t1, φ0)) ≥ ε0ψ̃. Note that

ε0e
Λ̃(t−t1)ψ̃ is a solution of the following linear system:

∂v2

∂t
= d∆v2−αv2 −

r

K(x)
(u∗1(x) + σ0)v2 + β(x)(u∗1(x)− σ0)v3, x ∈ Ω, t > t1,

∂v3

∂t
= −δv3 + λ(x)v2 − β(x)(u∗1(x) + σ0)v3, x ∈ Ω, t > t1,

∂v2

∂ν
= 0, x ∈ ∂Ω, t > t1.

(2.25)
The comparison principle implies that

(u2(x, t, φ0), u3(x, t, φ0)) ≥ ε0eΛ̃(t−t1)ψ̃, ∀ t > t1, x ∈ Ω.

Since Λ̃ > 0, it follows that u(x, t, φ0) is unbounded. This is a contradiction.
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In the case that lim supt→∞ ‖Ψ(t)φ0 −M1‖ < σ0

2 , there exists t2 > 0 such that

u∗1(x) < σ0

2 and u2(x, t, φ0) < σ0

2 , ∀ t ≥ t2, x ∈ Ω. From the u1 equation in (1.5), it
follows that

∂u1(x, t)

∂t
≥ d∆u1 + r[1− σ0(

1

K(x)
+ β(x))]u1

≥ d∆u1 + r[1− σ0θ]u1, x ∈ Ω, t > t2,
∂u1

∂ν
= 0, x ∈ ∂Ω,

(2.26)

where θ := maxx∈Ω( 1
K(x) + β(x)). It is easy to see that (η̃0, ϕ0(x)) = (0, 1) is the

pair of principal eigenvalue-eigenfunction ofη̃φ(x) = d∆φ(x), x ∈ Ω,
∂φ(x)

∂ν
= 0, x ∈ ∂Ω.

Since u1(x, t2, φ0) > 0, ∀ x ∈ Ω, it follows that there exists b > 0 such that
u1(x, t2, φ0) ≥ bϕ0(x). By the standard comparison principle, it follows that

u1(x, t) ≥ er[1−σ0θ](t−t2)ϕ0(x), t > t2, x ∈ Ω.

Since 1 − σ0θ > 0, it follows that u1(x, t, φ0) is unbounded. This contradiction
completes the proof of the claim.

Define a continuous function ρ : X+ → [0,∞) by

ρ(φ) := min
1≤i≤2

{min
x∈Ω

φi(x)}, ∀ φ ∈ X+.

By Lemma 2.7, it follows that ρ−1(0,∞) ⊆ W0 and ρ has the property that if
ρ(φ) > 0 or φ ∈ W0 with ρ(φ) = 0, then ρ(Ψ(t)φ) > 0, ∀ t > 0. That is, ρ is
a generalized distance function for the semiflow Ψ(t) : X+ → X+ (see, e.g., [30]).
From the above claims, it follows that any forward orbit of Ψ(t) in M∂ converges to
M1∪M2 which is isolated in X+ and WS(Mi)∩W0 = ∅, ∀ i = 1, 2, where WS(Mi)
is the stable set of Mi, i = 1, 2 (see [30]). It is obvious that there is no cycle in
M∂ from M1 ∪M2 to M1 ∪M2. By [30, Theorem 3], it follows that there exists an
η > 0 such that

min
ψ∈ω(φ)

ρ(ψ) > η, ∀ φ ∈W0.

Hence, lim inft→∞ ui(·, t, φ) ≥ η, ∀ φ ∈ W0, i = 1, 2. Therefore, the uniform
persistence stated in the theorem is valid. By [20, Theorem 3.7 and Remark 3.10],
it follows that Ψ(t) : W0 → W0 has a global attractor A0. It then follows from
[20, Theorem 4.7] that Ψ(t) has an equilibrium ũ(·) := (ũ1(·), ũ2(·), ũ3(·)) ∈ W0.
Further, Lemma 2.7 implies that ũi(·) > 0, ∀ i = 1, 2. It remains to show that
ũ3(·) > 0. Indeed, from the third equation of (1.5), it follows that

ũ3(·) =
λ(x)ũ2(·)

δ + β(·)(ũ1(·) + ũ2(·))
> 0.

This implies that ũ(·) is a positive steady state of (1.5). The proof is completed.

Remark 2.2. We regret to point out that when s(Bu∗
1 ,u

∗
1 ) < 0, we are unable to

determine the dynamics of the system (1.5) at the present.
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2.4. The basic reproduction number. In this subsection, we adopt the ap-
proach of next generation operators (see, e.g., [8, 32], also see more recent work
[12, 34, 36, 37]) to define the basic reproduction number for the system (1.5). The
cooperative system (2.18) is the linearized system of (1.5) at the disease-free equi-
librium (u∗1, 0, 0). Thus, the matrices F and V defined in [37, Eq. (3.4)] become

F(x) =

(
0 β(x)u∗1(x)
0 0

)
, V(x) =

(
α+ r

K(x)u
∗
1(x) 0

−λ(x) δ + β(x)u∗1(x)

)
.

Let S(t) : C(Ω̄,R2) → C(Ω̄,R2) be the C0-semigroup generated by the following
system 

∂w2

∂t
= d∆w2 − αw2 −

r

K(x)
u∗1(x)w2, x ∈ Ω, t > 0,

∂w3

∂t
= −δw3 + λ(x)w2 − β(x)u∗1(x)w3, x ∈ Ω, t > 0,

∂w2

∂ν
= 0, x ∈ ∂Ω, t > 0,

wi(x, 0) = w0
i (x), x ∈ Ω, i = 2, 3.

(2.27)

It is easy to see S(t) is a positive C0-semigroup on C(Ω̄,R2).
In order to define the basic reproduction number for the system (1.5), we assume

that the state variables are near the disease-free steady state (u∗1(x), 0, 0). Then with
an given initial distribution of infections described by (ϕ2(·), ϕ3(·)) ∈ C(Ω̄,R2),
solving (2.27) with this given initial distribution will give a distribution of total
infections caused by (ϕ2(·), ϕ3(·)), which is∫ ∞

0

F(x)S(t)(ϕ2, ϕ3)(x)dt.

Let L : C(Ω̄,R2)→ C(Ω̄,R2) be defined by the above integral, i.e.,

L(ϕ2, ϕ3)(x) =

∫ ∞
0

F(x)S(t)(ϕ2, ϕ3)(x)dt.

Then L is nothing but the next generation operator of the model system (see, e.g.,
[8, 12, 32, 34, 36, 37]), the spectral radian of L we gives the basic reproduction
number of the model, that is,

R0 := r(L). (2.28)

By [37, Theorem 3.1 (i) and Remark 3.1], we then have the following result.

Lemma 2.9. R0 − 1 and s(Bu∗
1 ,u

∗
1 ) have the same sign, where s(Bu∗

1 ,u
∗
1 ) is the

generator associated with the linear system (2.18).

By Lemma 2.9, we may restate Theorem 2.3 as follows:

Theorem 2.4. Assume that R0 > 1. Then, the infection is uniformly persistent in
the sense that there exists an η > 0 such that such that for any φ ∈ X+ with φi ≡/ 0
for i = 1, 2, we have

lim inf
t→∞

ui(x, t) ≥ η, ∀ i = 1, 2, uniformly for all x ∈ Ω.

Moreover, System (1.5) admits at least one (componentwise) positive steady state
û(x) .

By the same arguments as in [37, Lemma 4.2 and Theorem 3.2 (ii)], we have the
following observation.
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Lemma 2.10. Let η0 be the principal eigenvalue of the following eigenvalue prob-
lem: 

−d∆ψ +

(
α+

r

K(x)
u∗1(x)

)
ψ = η

β(x)λ(x)u∗1(x)

δ + β(x)u∗1(x)
ψ, x ∈ Ω,

∂ψ(x)

∂ν
= 0, x ∈ ∂Ω.

(2.29)

Then R0 = 1
η0

.

Remark 2.3. When all parameters in (1.5) are constants, one can easily see that
u∗1(x) ≡ K, and one can actually calculate the spectral radius to obtain

R0 =
1

η0
=

βλK

δ + βK
/
(
α+

r

K
K
)

=
βλK

(δ + βK) (α+ r)
. (2.30)

At the end of this section, we briefly mention a modified version of system (1.5).
We may assume that susceptible and infected classes have different movement rates,
and pathogen also adopts movement. Then system (1.5) can be modified as follows:

∂u1

∂t
= d1∆u1 + r

(
1− u1 + u2

K(x)

)
u1 − β(x)u1u3, x ∈ Ω, t > 0,

∂u2

∂t
= d2∆u2 + β(x)u1u3 − αu2 − r

u1 + u2

K(x)
u2, x ∈ Ω, t > 0,

∂u3

∂t
= d3∆u3 − δu3 + λ(x)u2 − β(x)(u1 + u2)u3, x ∈ Ω, t > 0,

∂u1

∂ν
=
∂u2

∂ν
=
∂u3

∂ν
= 0, x ∈ ∂Ω, t > 0,

ui(x, 0) = u0
i (x), x ∈ Ω, i = 1, 2, 3.

(2.31)

We note that our arguments used in the analysis of (1.5) can be applied to system
(2.31), except those in Lemma 2.4. Due to the fact that d1 6= d2, the arguments
used in Lemma 2.4 do NOT work. Next, we sketch an approach in proving the
boundedness of ui(x, t), i = 1, 2, 3. From the first equation of (2.31), it follows that

∂u1

∂t
≤ d1∆u1 + r

(
1− u1

K(x)

)
u1,

which implies that u1(x, t) is uniformly bounded. Let V (t) :=
∫

Ω
(u1(x, t)+u2(x, t))dx.

Then it is easy to see that

dV (t)

dt
+ αV (t) ≤ (α+ r)

∫
Ω

u1(x, t)dx ≤ ρ, for some ρ > 0.

By Gronwall’s inequality we get the L1 estimates,

V (t) ≤ V (0)e−αt +
ρ

α
(1− e−αt).

With the L1 estimates, one can show that u2(x, t) is uniformly bounded (see e. g.
[1, 17]). Since u2(x, t) is uniformly bounded, it follows from the third equation of
(2.31) that u3(x, t) is uniformly bounded. Thus, the results in Lemma 2.4 can be
obtained when system (1.5) is replaced by (2.31). We also note that di > 0, i =
1, 2, 3, and hence, it follows that the solution maps generated by system (2.31)
are compact, and hence, Lemma 2.5 is automatically valid. In other words, when
we assume that susceptible and infected classes have different movement rates and
pathogen also adopts movement, the mathematical analysis is similar to those in
(1.5).
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3. Bifurcation Analysis. In Theorem 2.4 we have proved that system (1.5) is
uniformly persistent when R0 > 1, thus (1.5) admits at least one positive steady
state solution. In this section, we consider the steady state equation directly to
obtain more information on the set of positive steady state solutions. The steady
state solutions of (1.5) satisfy

d∆u1 + r

(
1− u1 + u2

K(x)

)
u1 − β(x)u1u3 = 0, x ∈ Ω,

d∆u2 + β(x)u1u3 − αu2 − r
u1 + u2

K(x)
u2 = 0, x ∈ Ω,

−δu3 + λ(x)u2 − β(x)(u1 + u2)u3 = 0, x ∈ Ω,
∂u1

∂ν
=
∂u2

∂ν
= 0, x ∈ ∂Ω.

(3.1)

From the third equation of (3.1), it follows that u3 satisfies

u3(x) =
λ(x)u2(x)

δ + β(x)(u1(x) + u2(x))
. (3.2)

Then (3.1) is equivalent to
d∆u1 + r

(
1− u1 + u2

K(x)

)
u1 −

β(x)λ(x)u1u2

δ + β(x)(u1 + u2)
= 0, x ∈ Ω,

d∆u2 +
β(x)λ(x)u1u2

δ + β(x)(u1 + u2)
− αu2 − r

u1 + u2

K(x)
u2 = 0, x ∈ Ω,

∂u1

∂ν
=
∂u2

∂ν
= 0, x ∈ ∂Ω.

(3.3)

It is easy to see that (u∗1(x), 0) is a semi-trivial steady state solution of (3.3), where
u∗1(x) is the unique positive steady state solution of the diffusive logistic equation
(2.4).

We use the rate of disease-induced mortality α as the main bifurcation parameter.
Denote α0 to be the principal eigenvalue of the following eigenvalue problem:

d∆ψ +

[
β(x)λ(x)

δ + β(x)u∗1(x)
− r

K(x)

]
u∗1(x)ψ = αψ, x ∈ Ω,

∂ψ(x)

∂ν
= 0, x ∈ ∂Ω.

(3.4)

with the corresponding positive eigenfunction ψ0(x) uniquely determined by the
normalization maxΩ ψ0(x) = 1. Notice that α = α0 is equivalent to η0 = 1 or
R0 = 1 in (2.29). Let

H(x) =

[
β(x)λ(x)

δ + β(x)u∗1(x)
− r

K(x)

]
u∗1(x). (3.5)

It is easy to see that α0 = H if H(x) ≡ H is a constant. We next consider the
case where H(x) 6≡ constant and it could change sign in Ω. Consider the eigenvalue
problem with indefinite weight:∆ϕ(x) + ΛH(x)ϕ = 0, x ∈ Ω,

∂ϕ(x)

∂ν
= 0, x ∈ ∂Ω.

(3.6)

It follows from [22, Theorem 4.2] that the problem (3.6) has a nonzero principal
eigenvalue Λ0 = Λ0(H) if and only if H(x) changes sign in Ω and

∫
Ω
H(x)dx 6= 0.

The following lemma concerns with the sign of the principal eigenvalue α0.
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Lemma 3.1. [22, Proposition 4.4] The principal eigenvalue α0 of the problem (3.4)
has the following properties:

(i) If
∫

Ω
H(x)dx ≥ 0, then α0 > 0 for all d > 0;

(ii) If
∫

Ω
H(x)dx < 0, then{

α0 > 0 for all d < 1
Λ0(H) .

α0 < 0 for all d > 1
Λ0(H) .

Remark 3.1. Assume that the coefficients of (3.1) are all constants, that is,
u∗1(x) ≡ K and

H(x) ≡ H =

[
βλ

δ + βK
− r

K

]
K =

βK(λ− r)− δr
δ + βK

. (3.7)

Then α0 = H > 0 if (a) λ is large, or (b)λ > r, δ is small, and β is large.

We use α as a bifurcation parameter and show that a local branch (and also a
global continuum) of positive solutions of (3.3) bifurcates from the branch of semi-
trivial solutions {(α, u∗1(x), 0) : α > 0}. We note that u∗1(x) is independent of the
parameter α. Let u = u1 and w = u2. Then (3.3) becomes

d∆u+
r

K(x)
(K(x)− u− w)u− β(x)λ(x)uw

δ + β(x)(u+ w)
= 0, x ∈ Ω,

d∆w +
β(x)λ(x)uw

δ + β(x)(u+ w)
− αw − r

K(x)
(u+ w)w = 0, x ∈ Ω,

∂u(x)

∂ν
=
∂w(x)

∂ν
= 0, x ∈ ∂Ω.

(3.8)

For p > n, let X = {u ∈W 2,p(Ω) : ∂u(x)
∂ν = 0, x ∈ ∂Ω}, and Y = Lp(Ω). We define

the set of positive solutions of (3.3) to be

Σ = {α, u, w) ∈ R+ ×X ×X : (α, u, w) is a positive solution of (3.3).} (3.9)

We now state the main result of this section regrading the set of steady state
solutions of (3.3).

Theorem 3.1. Assume that α0 is the principal eigenvalue of the eigenvalue problem
(3.4). Then

(i) There is a connected component Σ1 of Σ containing (α0, u∗1, 0), and the pro-
jection projαΣ1 of Σ1 into the α-axis satisfies (0, α0] ⊂ projαΣ1 ⊂ (0,M ]
for

M =

max
x∈Ω

[β(x)λ(x)u∗1(x)]

δ
. (3.10)

In particular, (3.3) admits at least one positive steady state solution for 0 <
α < α0.

(ii) Near α = α0, Σ1 is a smooth curve

C1 = {(α(s), u(s), w(s)) : s ∈ (0, ε)}, (3.11)

where u(s) = u∗1(·) + sφ0(·) + o(s), w(s) = sψ0(·) + o(s) where ψ0(x) > 0 is
the principal eigenfunction of (3.4), and φ0(x) < 0 satisfies
−d∆φ0(x)− r

K(x)
[K(x)− 2u∗1(x)]φ0(x) = −q(x)ψ0(x), x ∈ Ω,

∂φ0(x)

∂ν
= 0, x ∈ ∂Ω.

(3.12)
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Moreover

α′(0) =
I∫

Ω
ψ2

0(x)dx
, (3.13)

where

I =

∫
Ω

β(x)λ(x)δφ0(x) (ψ0(x))
2

[δ + β(x)u∗1(x)]
2 dx−

∫
Ω

r
[
φ0(x) (ψ0(x))

2
+ (ψ0(x))

3
]

K(x)
dx

−
∫

Ω

(β(x))2λ(x)u∗1(x) (ψ0(x))
3

[δ + β(x)u∗1(x)]
2 dx. (3.14)

Proof. We apply a global bifurcation theorem in [28] to consider the solutions of
(3.3). Define F : R×X ×X → Y × Y by

F (α, u, w) =

 d∆u+
r

K(x)
(K(x)− u− w)u− p(u,w)

d∆w + p(u,w)− αw − r

K(x)
(u+ w)w

 ,

where p(u,w) := β(x)λ(x)uw
δ+β(x)(u+w) . By direct calculations,

F(u,w)(α, u, w)[φ, ψ]

=

(
d∆φ
d∆ψ

)
+


r

K(x)
(K(x)− 2u− w)− pu − r

K(x)
u− pw

pu −
r

K(x)
w pw − α−

r

K(x)
(u+ 2w)

( φψ
)
,

where the partial derivatives of p are given by

pu := pu(u,w) =
β(x)λ(x)(δ + β(x)w)w

[δ + β(x)(u+ w)]
2 , pw := pw(u,w) =

β(x)λ(x)(δ + β(x)u)u

[δ + β(x)(u+ w)]
2 .

Note that

pu(u∗1, 0) = 0, pw(u∗1, 0) =
β(x)λ(x)u∗1(x)

δ + β(x)u∗1(x)
.

Furthermore,

Fα(α, u, w) =

(
0
−w

)
, Fα,(u,w)(α, u, w)[φ, ψ] =

(
0
−ψ

)
,

and

F(u,w),(u,w)(α, u, w)[φ, ψ]2

=

 −
(

2r

K(x)
+ puu

)
φ2 − 2

(
r

K(x)
+ puw

)
φψ − pwwψ2

puuφ
2 + 2

(
puw −

r

K(x)

)
φψ +

(
pww −

2r

K(x)

)
ψ2

 ,

where the second derivatives of p are given by

puu := puu(u,w) =
−2λ(x) (β(x))

2
(δ + β(x)w)w

[δ + β(x)(u+ w)]
3 ,

puw := puw(u,w) =
β(x)λ(x)

(
δ2 + β(x)δu+ β(x)δw + 2 (β(x))

2
uw
)

[δ + β(x)(u+ w)]
3 ,

pww := pww(u,w) =
−2λ(x) (β(x))

2
(δ + β(x)u)u

[δ + β(x)(u+ w)]
3 .
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Note that 
puu(u∗1, 0) = 0, puw(u∗1, 0) =

β(x)λ(x)δ

[δ + β(x)u∗1(x)]
2 ,

pww(u∗1, 0) = −2(β(x))2λ(x)u∗1(x)

[δ + β(x)u∗1(x)]
2 .

(3.15)

In particular,

F(u,w)(α
0, u∗1, 0)[φ, ψ] =

(
d∆φ+

r

K(x)
[K(x)− 2u∗1(x)]φ− q(x)ψ

d∆ψ − α0ψ +H(x)ψ

)
,

where α0 is the principal eigenvalue of the eigenvalue problem (3.4), H(x) is defined
as in (3.5) and

q(x) =
r

K(x)
u∗1(x) +

β(x)λ(x)u∗1(x)

δ + β(x)u∗1(x)
> 0. (3.16)

It is easy to verify that the kernel N(F(u,w)(α
0, u∗1, 0)) = span{(φ0, ψ0)}, where

ψ0 is the positive eigenfunction of (3.4) and φ0 satisfies (3.12). By Lemma 2.3,
it follows that u∗1(x) is globally asymptotically stable in C(Ω,R) for the diffusive
logistic equation (2.4). This implies that[

−d∆− r

K(x)
(K(x)− 2u∗1(x))

]−1

exists and it is a positive operator. Thus, φ0(x) < 0 for x ∈ Ω.
Next we show that the range

R(F(u,w)(α
0, u∗1, 0)) =

{
(h1, h2) ∈ Y 2 :

∫
Ω

h2(x)ψ0(x)dx = 0

}
. (3.17)

In fact, (h1, h2) ∈ R(F(u,w)(α
0, u∗1, 0)) if and only if there exists (φ, ψ) ∈ X × X

such that

h1 = d∆φ+
r

K(x)
[K(x)− 2u∗1(x)]φ− q(x)ψ,

h2 = d∆ψ − α0ψ +H(x)ψ,

where q(x) and H(x) are defined as in (3.16) and (3.5). It then follows that∫
Ω

h2(x)ψ0(x)dx = d

∫
Ω

∆ψ(x)ψ0(x)dx+

∫
Ω

[
−α0ψ0(x) +H(x)ψ0(x)

]
ψ(x)dx.

(3.18)
By integration by parts and the boundary conditions of ψ and ψ0, it follows that∫

Ω

∆ψ(x)ψ0(x)dx =

∫
Ω

∆ψ0(x)ψ(x)dx. (3.19)

From (3.4), (3.19) and (3.18), it follows that
∫

Ω
h2(x)ψ0(x)dx = 0 which implies

(3.17). Since

Fα,(u,w)(α
0, u∗1, 0)[φ0, ψ0] = (0,−ψ0), (3.20)

and
∫

Ω
[−ψ0(x)]ψ0(x)dx < 0. This implies that

Fα,(u,w)(α
0, u∗1, 0)[φ0, ψ0] 6∈ R(F(u,w)(α

0, u∗1, 0)).

Thus we can apply the theorem of bifurcation from a simple eigenvalue by Crandall
and Rabinowitz [6] (see also [27]) to conclude that the set of positive solutions to
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(3.8) near (α0, u∗1(x), 0) is a curve in form (3.11), with (u′(0), w′(0)) = (φ0, ψ0).
Moreover α′(0) can be calculated as follows (see [27] and Refs. [10, 11]):

α′(0) = −
〈l, F(u,w),(u,w)(α

0, u∗1, 0)[φ0, ψ0]2〉
2〈l, Fα,(u,w)(α0, u∗1, 0)[φ0, ψ0]〉

,

where l is a linear functional on Y 2 defined as 〈l, [h1, h2]〉 =
∫

Ω
h2(x)ψ0(x)dx. Note

that the second component of F(u,w),(u,w)(α
0, u∗1, 0)[φ0, ψ0]2 takes the form

G(x) := 2

(
puw(u∗1(x), 0)− r

K(x)

)
φ0(x)ψ0(x)+

(
pww(u∗1(x), 0)− 2r

K(x)

)
(ψ0(x))

2
,

where puw(u∗1, 0) and pww(u∗1, 0) are defined in (3.15). Thus,

α′(0) =

∫
Ω
G(x)ψ0(x)dx

2
∫

Ω
ψ2

0(x)dx
:=

I∫
Ω
ψ2

0(x)dx
, (3.21)

where I is defined as in (3.14).
Next we apply [28, Theorem 4.4] to F (α, u, w) = 0 with V = R+× (X+)2 where

X+ = {u ∈ X : u > −ε} for some ε > 0. From the remarks after [28, Theorem 4.4]
and discussions above, all conditions in [28, Theorem 4.4] are satisfied. Therefore
there exists a connected component Σ1 of Σ containing the curve C1, and Σ1 satisfies
either (i) it is not compact; or (ii) it contains a point (α∗, u∗1, 0) with α∗ 6= α0;
or (iii) it contains a point (α, u∗1 + U,W ), where (U,W ) 6= 0 and (U,W ) is in a
compliment of span{(φ0, ψ0)}. Note that the equations of u and w are all in a form
of d∆V + g(x)V = 0 for V = u or w thus a weak form of maximum principle holds,
and all solutions on the connected component Σ1 are necessarily positive. Since
ψ0 > 0, then W must be sign-changing and such (α, u∗1 + U,W ) cannot be on Σ1

hence (iii) is not possible. Similarly (ii) is also impossible as the eigenvalue of (3.4)
with positive eigenfunction is unique. Therefore Σ1 is not compact.

From Theorem 2.2 and Remark 2.1, (3.3) has no positive steady state solution
for α ≥ M where M is defined in (3.10), and from (2.7), all positive steady state
solutions are uniformly bounded for α ≥ 0. Thus we must have (0, α0] ⊂ projαΣ1 ⊂
(0,M ].

With the above discussions, we have the following observations:

Remark 3.2. The quantity I determines the direction of bifurcation near (α0, u∗1, 0).
Assume that the coefficients of (3.1) are all constants. This implies that u∗1(x) ≡ K.
From (3.4), it follows that

ψ0(x) ≡ 1, α0 =

[
βλ

δ + βK
− r

K

]
K =

βλK

δ + βK
− r.

From (3.12), it follows that

φ0(x) ≡ −1− βλK

r (δ + βK)
.

From (3.14), it deduces that

I =

[
βλ

δ + βK

] [
− βλδK

r (δ + βK)
2

]
|Ω| < 0,

which implies that

α′(0) < 0.
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But if λ(x), β(x) and K(x) are not all constants, then I > 0 is possible which implies
that α′(0) > 0. Thus a backward bifurcation occurs, and there exist positive steady
state solutions of system (3.3) for α > α0.

4. Discussion. In this paper, we investigate the long-term behavior of a model sys-
tem (1.5) that describes the transmission dynamics of an insect disease with spatial
structure in a bounded habitat of general spatial dimension. Assuming that the
host insects are mobile, the first two equations of (1.5) include the diffusion terms.
The absence of the pathogen mobility results in the absence of diffusion in the third
equation for the pathogen population in (1.5), and this causes some mathematical
difficulties as the solution semiflow of (1.5) is not compact. For instance, because of
the lack of compactness, the classical Theorem 3.4.8 in [13] cannot be applied, and
we need to address the existence of “global compact attractor” for system (1.5) (see
Lemma 2.5 and Theorem 2.1). The linearized stability of the trivial and semi-trivial
steady states of the model are determined by the associated linearized system at
these states. The associated linear system is cooperative, but compactness condi-
tion of the classical Krein–Rutman theory is not satisfied. We have established the
existence of the principal eigenvalue of two eigenvalue problems by the approach of
[37, Theorem 2.3](see Lemma 2.6) and a generalized Krein–Rutman Theorem [21]
(see Lemma 2.8), respectively.

Basic reproduction number, R0, is an important notion in epidemiology and
it can be used to predict persistence or extinction of a disease. This quantity is
defined as the expected number of secondary infections generated by a single infected
individual introduced into a completely susceptible population. For a model system
describing the disease dynamics, R0 is mathematically defined as the spectral radius
of the so-called next generation operator of the model system. For a next generation
theory, see [8, 33, 32]; particularly for models with spatial structure, see more recent
works [12, 34, 36, 37]. In this paper, we mainly follow the approach in the above
works to identify the basic reproduction number for (1.5), leading to (2.28).

The local stability of the disease-free equilibrium (u∗1(x), 0, 0) is determined by the
sign of s(Bu∗

1 ,u
∗
1 ), which is the principal eigenvalue of (2.20) with h1(·) ≡ u∗1(·) and

h2(·) ≡ u∗1(·). Applying the abstract results in Thieme [32], we conclude that the
local stability of the disease-free equilibrium is also determined by the sign of R0−1
(see Lemma 2.9). Then the uniform persistence of the disease can be established
by appealing to the abstract persistence theory if R0 > 1 (see Theorem 2.3 and
Theorem 2.4). However, we cannot prove the extinction of the disease if R0 < 1.
Another index s(B), spectral bound, is defined in Lemma 2.6 and it can determine
the extinction of the disease (see Theorem 2.2). From our dynamical approach, it
seems thatR0 (or s(Bu∗

1 ,u
∗
1 )) is not a threshold value for the extinction of the disease.

This observations motivate us to conduct a bifurcation analysis of the steady state
solutions for the system (1.5). We suspect that backward bifurcation may occur
when the parameters in System (1.5) are spatially dependent (see Remark 3.2).

Our dynamical approach and bifurcation analysis both suggest that the param-
eter α plays an important role in determining the extinction and persistence of the
disease. We perform some numerical simulations which confirm our analytical re-
sults, that is, the disease will die out if α is large (see (a) in Fig. 4.1) and the disease
will persist if α is small (see (b) in Fig. 4.1).

When model parameters are spatially dependent, it does not seem to be possible
to obtain an explicit form for R0 (in contrast to the constant parameter case, see
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Remark 2.3). In such a case, the impact of the model parameters on R0 can only
be explored numerically. To demonstrate this, we fix parameter values Ω = (0, 1),
α = 0.02, d = 0.137, r = 1, δ = 0.0137, K(x) ≡ 3, β(x) ≡ 1.5, but let λ(x) =
0.9[1 + c cos(2πx + x0)], where c ∈ [0, 1]. The spatial average of λ(x) on [0, 1] is
always the constant 0.9 regardless of the values of c and x0, but the dependence
of R0 on c varies for different values of x0, as shown in Fig. 4.2. This indicates
that the spatial variation can also affect the persistence/extinction of the disease.
In order to understand the spatial effect of β(x) on R0, we take Ω = (0, 1), and
parameter values are α = 0.02, d = 0.137, r = 1, δ = 0.0137, K(x) ≡ 3, λ(x) ≡ 0.9,
and β(x) = 1.5[1 + c1 cos(2πx)]. The dependence of R0 on c1 is shown in Fig. 4.3.
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Figure 4.1. Simulations of disease dynamics. Parameter values
are Ω = (0, 1), d = 0.137, r = 1, δ = 0.0137, K(x) ≡ 3, β(x) ≡ 1.5,
and λ(x) = 0.9(1 + 0.5 cos(πx)). (a) α = 1.2, leading to R0 < 1
and hence the disease dies out; (b) α = 0.02, leading to R0 > 1,
and hence disease persists.
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Figure 4.2. Impact of λ(x) on R0. Parameter values are Ω =
(0, 1), α = 0.02, d = 0.137, r = 1, δ = 0.0137, K(x) ≡ 3, β(x) ≡
1.5, and λ(x) = 0.9[1 + c cos(2πx + x0)]. The values of x0 are
x0 = 0, 0.3, 0.5 and 0.7. Horizontal axis is c value in the above
form of λ(x), and vertical axis is R0 value.
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Figure 4.3. Spatial effect of β(x) on R0. Parameter values are
Ω = (0, 1), α = 0.02, d = 0.137, r = 1, δ = 0.0137, K(x) ≡ 3,
λ(x) ≡ 0.9, and β(x) = 1.5[1 + c1 cos(2πx)]. Horizontal axis is c1
value in the above form of β(x), and vertical axis is R0 value.
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