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In this paper, we investigate the number of limit cycles for a class of discontinuous planar
differential systems with multiple sectors separated by many rays originating from the origin.
In each sector, it is a smooth generalized Liénard polynomial differential system z/ = —y +
g1(z) + fi(x)y and ¢y =z + go2(x) + fo(2)y, where f;(x) and g;(x) for i = 1,2 are polynomials
of variable z with any given degree. By the averaging theory of first-order for discontinuous
differential systems, we provide the criteria on the maximum number of medium amplitude
limit cycles for the discontinuous generalized Liénard polynomial differential systems. The upper
bound for the number of medium amplitude limit cycles can be attained by specific examples.
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of limit cycles.
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1. Introduction

One of main topics of the qualitative theory of pla-
nar differential systems is the number and rela-
tive position of limit cycles. This problem restricted
to continuous planar polynomial differential sys-
tems is the well known Hilbert’s 16th problem,
see for example [Li, 2003]. Up to now, there have

bifurcating from a single degenerate singular point
is called a small amplitude limit cycle, and the one

been many achievements concerning the existence,
uniqueness and the number of limit cycles, see for
example [Garcia et al., 2014; Justino & Jorge, 2012;

*Author for correspondence

bifurcating from periodic orbits of a linear center
is called a medium amplitude limit cycle. In [Lli-
bre & Valls, 2012], the authors studied the number
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of medium amplitude limit cycles for a class of poly-
nomial differential systems of the form

! = Yy — 91(33) - fl(x>y7
/ (1)
y = fx—gQ(ﬂf)*fQ(x)yv

where f;j(z) and g¢;(z), i = 1,2, are polynomials
of a given degree. For system (1), when fi(x) =
g1(z) = 0, it is the generalized Liénard polynomial
differential system. Note that the classical gener-
alized Liénard polynomial differential equation is
2’ + f(x)z’ + g(x) = 0, or equivalently

o' =y—F(z), y =-g(), (2)

where F(z) = [ f(s)ds, f(z) and g(x) are poly-
nomials in the variable z. For system (2), when
polynomials F(z) and g(x) have degrees n and
m respectively, the generalization to discontinuous
generalized Liénard polynomial differential systems
was studied in [Llibre & Mereu, 2013].

To the best of our knowledge, there are very
few results concerning the number of limit cycles
which bifurcate from a continuum of periodic orbits
of differential systems perturbed by discontinu-
ous Liénard polynomial differential systems. So we
restrict our attention to a class of discontinuous
and piecewise smooth planar polynomial differential
systems with multiple sectors separated by rays
starting from the origin.

In this paper, we investigate the maximum
number of medium amplitude limit cycles for a dis-
continuous generalized Liénard polynomial differen-
tial system with even number [ sectors separated by
[/2 straight lines passing through the origin (0,0),
where the discontinuous set is of the form

1/2—1

kL:JO {(fm/) : y=tan<a+ %Tﬂ>x}

We first consider the case where two different
smooth generalized Liénard polynomial differen-
tial systems are defined alternatively in every two
neighboring sectors on the plane. By applying the
averaging theory of first-order for discontinuous dif-
ferential systems, we obtain a lower bound for the
maximum number of limit cycles and we show that
the upper bound for the number of medium ampli-
tude limit cycles can be attained by some con-
structed examples (see Example 4.1 for an example
and Matlab numerical simulation). The obtained
limit cycles bifurcate from the periodic orbits of the
linear center 2’ = —y, 1y = x. Moreover, we give the

discussion on the result if there are different vector
fields in different sectors respectively.

The paper is organized as follows. In the next
section, we present some relevant preliminaries for
the discontinuous generalized Liénard polynomial
differential system. In Sec. 3, we first present the
averaging theory of first-order for discontinuous
differential systems, and then we prove our main
results on the maximum number of medium ampli-
tude limit cycles. In Sec. 4, we give two examples
to illustrate the proved results. Conclusion is pre-
sented in Sec. 5.

2. Preliminaries

Consider the following discontinuous generalized
Liénard polynomial differential system

{a:’ =—y+e(gu(z) + fu(x)y),

Y =z +e(gia(z) + fia(x)y), h(w,y) >0, 3
{HJ' = —y+e(ga(z) + fa(@)y),
Y =x+e(gaa(z) + foolx)y), h(zr,y) <O,

where ¢ is a sufficiently small parameter, and g;;(z)
and f;;(x) for 4,5 = 1,2 are polynomials of variable
x with degrees m and n respectively. Let a function
h : R? — R be given by

L g

e =TT (- 27)2), 0

k=0
with [ > 1 being an even integer and a € R. Then

L

hH0) = {(x,y):y:tan<a+2kTﬂ>x} (5)

k=0

is a discontinuous set consisting of 1/2 straight lines
passing through the origin O(0,0), which divides
the plane R? into [ sectors with angle 27 /1.

When € = 0, the system (3) becomes a planar
linear center as follows

/

¥ =—y, 1y =uz (6)

Note that the system (6) has a continuum of peri-
odic orbits surrounding the origin and the orbits
are counterclockwise oriented in the phase plane.
In this paper, by using the averaging theory of
first-order for discontinuous differential systems, we
investigate the maximum number of medium ampli-
tude limit cycles for the discontinuous generalized
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Liénard polynomial differential system (3) with
le| > 0 sufficiently small.

3. Main Results

First we recall the following result concerning the
existence of limit cycles from the averaging theory
of first-order for discontinuous differential systems.

Lemma 3.1 [Llibre & Mereu, 2014]. Consider the
following discontinuous differential equation

2 (t) = eH(t,z) + 2G(t, x, €), (7)

where € is a sufficiently small real number, functions
H(t,x),G(t,x,e) are given by

H(t,z) = Hi(t,z) + sgn(h(t,z))Hy(t, x),

G(t,z,e) = Gi(t,z, ) +sgn(h(t, z))Ga(t, x,€),

functions Hi, Hy : R x D — R", G1,G2 : R x D X
R — R" and h : R x D — R are continuous, T -
periodic in the variable t and D C R™ is an open
subset. Let h be a C' function having 0 as a reqular
value. Denote by M = h=1(0), N'= {0} x D ¢ M
and K = N\M # (. Moreover, define the averaging
function d: D — R™ of (7) to be

T
:/ H(t,z)dt
0
Assume that

(i) functions Hy, Hy,G1,G2 and h are locally Lip-
schitz with respect to the variable x;

(ii) for zo € K with d(zp) = 0, there exists a
neighborhood V' of zy such that d(z) # 0 for
every z € V\{20} and dp(d,V, 29) # 0, where
dp(d,V,zy) denotes the Brouwer degree of the
function d with respect to the bounded open
subset V- C D and the fixed point zy;

(iii) of %(to,Zo) =0 for some (to,20) € M, then

([th, H1]2 — [Vxh,H2]2)<t(),Z()) > 0,
where [A, B] denotes the inner product of the vec-

tors A and B, V h denotes the gradient of h(t,z)

with respect to the variable x. Then for 0 < |e|

sufficiently small, there exists a T -periodic solution
x(-ye) of (7) such that x(0,e) — 2y as e — 0.

Our main result of this paper is as follows.

m n
=¢ E aiip' cost1g + E chl+1
i=0 i=0

+0(e?),

m n
o9 sinh + Z blyipi cos'Osin 6 + Z alLipiJrl

The Number of Limit Cycles for Discontinuous Systems

Theorem 3.2. Consider the system (3) with |e| >
0 sufficiently small. Assume that the polynomials
gij(x) and f;;(z), 1,5 = 1,2 have degrees m > 1 and
n > 1 respectively, then the maximum number of
medium amplitude limit cycles bifurcating from the
periodic orbits of system (6) is A = max{m,n+ 1}.

Proof. Let x = pcosf, y = psinf with p > 0, then
the system (3) can be transformed into

d
d—'; = e{cosO]g11(pcosB) + fi11(pcosb)psinb]

+sinf[gi2(pcos @) + fia(pcosh)psinb]},

% =1+ %{cos Olg12(pcos ) + fra(pcosf)psinb]

—sinf[g11(pcos ) + fr1(pcosB)psinb]},

fo1r0€(()¢—i—4k7r —1—(4]“?2) ), k=0,1,...,5 =5 2 and

d
d—';) = e{cos 0]ga1(pcos @) + fa1(pcosb)psinb]
+sinf[gaz(pcos @) + faa(pcosh)psinb]},

de

i =1+ {cos O[ga2(pcos ) + faa(pcosf)psinb]

—sin@[go1(pcos @) + fa1(pcosB)psinb]},

for 6 € (o + (4k+2) Lo+ 4(kJ{1)”), k=0,1,..., 52
Denote by

911 Z a ZCU 912

Zbux

g21(z Z agix’,  gao(x Z by,

fu(z 201 it fro(z Zd1 it

n

= Z c2it’s  for(x

=0

ng ZCE

By taking the angle # as the new independent vari-
able and using Taylor series expansion, the sys-
tem (3) becomes

fa1(x)

cos'f sin29>
=0 =0

(8)
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f01r67€(04+4]“r +M),k‘:0,l,...,%and
m . . n . . m . . n . .
=c <Z azip' cos™10 + Z ch”'1 cos™ 1@ sin 6 + Z by ip" cos'Osin O + Z dgyip’“ cos'f sin29>
i=0 i=0 i=0 =0
+0(%), 9)

for 0 € (o + (4k+2) o+ 4(k+1) %), k=0,1,...,52 From (4) and (5) then

L_
2

o) = | {(e,p) tsinf = cosetan<a+ 2’%”) }

k=0
on E 2 \] oy 2%
%(G,p) = p% [ os 6 —i—smﬁtan(a—i— %)} H [sinﬁ — cosHtan(a—i— %)]
p=0 k#p

By some tedious but simple computations one has that ah %(9,p) # 0 for any (0,p) € h=*(0).
On the other hand, for the purpose of the averagmg funct10n we need to use the following formulas
[Gradshteyn & Ryshik, 1994]

1 2m)\ sin(2m — 25)60
2m _
/COb 0do = >am ( > 0+ —— 22m 1 E < ) w, (10)
9 Y
/cos2m+10d9 L E < m ) sin(2m 2,‘7 + 1)0. (11)
2m 2m —25+4+1

Then the averaging function d(p) of (8) and (9) is as follows
d(p) = di(p) + da(p) + d3(p) + da(p),

where
L + AT S a AT o
di(p) = Z / aiip’ cos'™10do + / asip’ cos't10de |,
k=0 i=0 \’ot+¥* ot CE2T
-2
52 +(4k:-lk2)7r ' ‘ a+4(k-0l—1)7r ' ‘
da(p) = / c1ip Tt cos' 0 sin 0d6 + / coip Tt cos' T Osin0dh |,
k=0 i=0 \Ja+i" s
=2, (4k:+2)7r At )
ds(p) = Z Z </ e by Zp cos'6 sin 0dB + / . b2,ipi cos’f sin 0d9>,
k=0 i=0 at™ at
-2
2 " a—l—w OH_M
dy(p) = Z Z < . dup’+1 cos’f sin®0do + s d27ip’+1 cos'd sin29d0> .
k=0 i=0 at= ot
Substituting (10) and (11) into the above equalities then
% m ,Oi [%} i+1 [mTil] p2i+1 21 + 2\ 21
di(p) = Z 5 < i > (a1, 4 5 + a2,iAi k) + Z (a1,2i41 + a272i+1)m <i+ . ) T
k=01i=0 = j=0 =0
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with
[ 4k + 2 1 [ 4k
sin| (i —25+1) <a+#> —sin|(i —25+1) <a+Tﬂ>}
Aijk = - - :
1 —27+1
[ 4(k 4+ 1)m\] [ 4k + 2
sin| (i —2j+1) <a+ ( —; >7r> —sin|(i —2j+1) (a—i—#ﬂ
Aije = — e :
1—25+1
-2
2 n . .
da(p) = — Z (c1,ip ™ Big, + coip™ " Big)
k=0 i=
-2
2 m . pp—
d3(p) = =Y ) (b1ip'Cik +b2,ip'Ci),
k=0 i=0
with
A 4k + 2 A 4k
cos't? (a + ( —; )7r> — cos't2 <a + TW>
B =
ok i+ 2 ’
. 4k +1 . 4k + 2
COSZ+2<04+ ( ‘;‘ >7T> _COSZJrQ(a_i_( -; )7r>
Bip=
b i+ 2 ’
4k + 2 , 4k
cost! <a + ( Jlr M) — cos't! (a + TW>
Cir=
ok it 1 ’
~ 4k +1 A 4k + 2
cosi+l (a st ? )7r> eogitl <a L 7 )7r>
G —
o it 1 ’
(3] . .
. 1 /2 1 21+ 2\ | 27
da(p) = ) _(drzi +da2i)p™ " [ﬁ <z> ) <z’+ 1 ﬂ 0l
i=0
22
S p”’l 2 ) _
+ 91 < j> (d1,iDsjge + d2,i D jp)
k=0 i=0 =0
1 —
- gm ( i ) (diiEijr + d2iBijir),
k=0 =0 7=0
with

i—2j
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92i+2

l i)l

[ 4k + 2 4k
sin| (i —2j +2) (a—i— #)} —sin[(i —2j+2) <a+ TW)}
Eijpe=— L= :
1— 25+ 2
[ 4(k +1 4k + 2
sin | (i — 2j) <a + #)] - sin[(i — 2j) (a + g)}
R i—2j !
[ 4 1 4 2
sin| (i — 2j +2) <a+ (k%)”ﬂ Sin{(i2j+2) (a+ (2 ”)]
Eijr=— 4 . )
1— 27+ 2
Therefore, we obtain that
[m_—l ) ‘ (] A .
d@%:ié(mmﬂ+amwﬂf”16”+22”+ 20hm+@mM%H<m>&[

t+1

2i+1(;
— 2= (i+1)

[V

2D % ( : ) (a1,i 44k + a2idijk) = (e13Bik + c2:Biw)p™!
ke :

]

0 =0 7=0 J =0

5 on pitl [ i B 5 om B ‘

+ 9i T < ) (d1,iDijk + daiDijir) — (b1,iCi k. + b2,iCix)p’
k=0 i=0 j=0 M k=0 i=0

J

From the above equality we observe that the func-
tion d(p) is a polynomial of variable p with degree
max{m,n + 1}, so the polynomial d(p) has at most
A = max{m,n + 1} positive roots, that is, the
maximum number of bifurcating medium ampli-
tude limit cycles is . Moreover, if there exists
some po > 0 such that d(pg) = 0 and d'(pg) # 0
then the Brouwer degree dp(d,V, pg) # 0 for some
small open neighborhood V' of pg. Therefore, by
Lemma 3.1 for 0 < |¢] sufficiently small the discon-
tinuous system (3) has at most A medium amplitude
limit cycles bifurcating from the periodic orbits of
the linear center 2z’ = —y, ¢y = z. This completes
the proof of Theorem 3.2. M

Remark 3.3. 1t should be noted that for some given
degree m > 1 and n > 1, there exist discontinuous
generalized Liénard polynomial differential systems
having exactly A = max{m,n + 1} medium ampli-
tude limit cycles, see Example 4.1 for an example
with m =n = 1.

When o = 0 and [ = 2, we have

Ainj:k = A7’7]7k = 07 D7’7.77k = D747J7k = 0

i+ 2 _
< , ) (d1,iEijx + d2,iEi j k).

and Ei,j,k = Ei,j,k =0.
In this case, the function h : R? — R is of the
form h(z,y) = y, and the discontinuous general-
ized Liénard polynomial differential system with

two zones separated by the straight line {y = 0}
is as follows

{x’ = —y+e(gn(z) + fii(z)y),

Y =z +e(gi2(z) + fra(z)y), y>0, 12)
{x’ = —y+e(go1 () + for(x)y),
Y =z +e(g(r) + folz)y), y<O0.

We have the following result:

Corollary 3.4. Consider the system (12) with 0 <
le| sufficiently small, then the mazimum number of
medium amplitude limit cycles is

A = max{m,n + 1}.

Proof. In the same way as Theorem 3.2 then the
averaging function d(p) is of the form
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d(p) = / <Z a1,ip’ cos' O + Z criphe
0 1=0 i=0
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m
sgsin g + Z blyipi cos'f sin 6

=0

n 21 m n
+ Z dlyip’“ cos'f sin29> do + / <Z asip’ cos™1g + Z 0271-,0’+1 cos't10sin 6
i=0 g i=0 i=0

+ Z b27ipi cos'f sin § + Z d27ipi+1 cos'd sin29> do

=0 i=0

-1
[t

(a1,2i41 + a2,2i+1)p

o

(%] o (
+) (brai — bo2i)p* =——— +

0 2itl i

E!
NIE]

]

i

Therefore, we obtain that for |¢| > 0 sufficiently
small the discontinuous system (12) has at most
A = max{m,n + 1} that bifurcate medium ampli-
tude limit cycles and then the conclusion holds. W

When there are different vector fields in the dif-
ferent sectors respectively, we consider the following
discontinuous generalized Liénard polynomial dif-
ferential system of the form

v’ =~y +e(gin(2) + fir()y),
Y =z +e(gi2(x) + fia(®)y), (2,y) €S,

(13)
where S; denotes the ith sector separated by [/2
straight lines passing through the origin, [ is a pos-
itive even integer, and the polynomials g;;(z) and
fij(z) for i =1,2,...,1,j = 1,2 are

m m
gn(z) = aija’, go(z) = b,
j=0 J=0
. . (14)
fa(@) = cigal,  folr) = dial,
=0 =0

satisfying m > 1,n > 1. Then we have the following
result.

Theorem 3.5. Consider the system (13) with 0 <
le| sufficiently small, then the mazximum number of
medium amplitude limit cycles bifurcating from the
periodic orbits of (6) is A = max{m,n + 1}.

Proof. Let x = pcosf, y = psin@ with p > 0, then
the system (13) is transformed into

o1 (20 + D!

(2 +2)!! * Z (c12i41 — C2.2i41)p> P

(dy2i + d2,2i)p

2
- 2 +3
(2 +2)11

dp - j j+1
5 =° Zamﬂ cos’ 0

j=0

3

+ ci,jp]'H cos’ ™10 sin 6
J=0

+ Z bi,jpj cos’f sin 6
j=0

n
+ Z dijp" T cos?0sin?0 | + O(e?),
§=0
for 0 € (o + w,aqt 27’777), 1=1,2,...,1. With
the same proof as Theorem 3.2, it follows from

Lemma 3.1 that the conclusion holds. W

Remark 3.6. For system (13) with (14), if S;,i =1,
2,...,1 is the ith sector separated by [ rays starting
from the origin then the plane R? is divided by the
[ discontinuous rays into [ sectors. In this case, we
have the same conclusion as Theorem 3.5.

Remark 3.7. Note that the maximum number of
medium amplitude limit cycles is independent of
the number of sectors, but it depends on the degree
of the polynomials g;;(x) and f;(z).

4. Examples

Example 4.1. Consider the following discontinu-
ous generalized Liénard polynomial differential sys-
tem with two zones separated by the straight line

1550131-7
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{y =0}
[, (2 3 )
r=—-y+tel|—xr—-xy|,
7 2

y=x+e(x—-1), y>0,
) 2 (15)
r=-y+e ;x+1+y ;

2
y’za:—i—@(.%—i—;y—l-xy), y < 0.

From the system (15), we observe that

2

gn(x) = =% gi2(z) = o — 1,

g21(x) = %ﬂf+ 1, gn(r) =2,
fu(z) = —gﬂfa fia(z) =0,

fu(@) =1, fos(z) = % +a,

so the functions g;;(x), fij(x) for i,j = 1,2 have
degrees m = 1 and n = 1, respectively.

By Lemma 3.1, the averaging function d(p)
of (15) is as follows

d(p) = / [0050 (zpcosﬁ - §,02 sin 6 cos 9)
0 T 2

+sinf(pcosd — 1)} de

2w 2)
+/ [cos@(—pcos9+1+psin0>
x 7r

2
—i—sinH(pcosG—i— —psind
T

+ p? sin 6 cos 0)] do

=—p’+3p-2=—(p—2)(p—1).

It is easy to see that the zeros of d(p) are p; = 2
and py = 1 satisfying d’(1) > 0 and d'(2) < 0.

Therefore, by Theorem 3.2 we obtain that for
le| > O sufficiently small, the discontinuous sys-
tem (15) has two medium amplitude limit cycles.
One is a stable limit cycle bifurcating from the peri-
odic orbit of radius p; = 2 of the linear center
' = —y, y = x, and the other is an unstable limit
cycle bifurcating from the periodic orbit of radius
p2 = 1. By Matlab we see that the discontinuous

-5+

~10}+

-5}

-20 -15 -10 -5 0 5 10 15 20
X

Fig. 1.
e =0.01.

Two medium amplitude limit cycles of (15) with

system (15) has indeed two medium amplitude
limit cycles (see Fig. 1), the bigger one is a stable
limit cycle and the smaller one is an unstable limit
cycle.

Example 4.2. Let | = 4 and a = 7, and we

consider the following discontinuous generalized
Liénard polynomial differential system

o' =~y +e(22” + xy),

8
y’:x+e(1+x+w2+—x2y>, h(z,y) >0,
s

¥=-y+e 1+3x27—4$ +y + 2y
T+ 2 ’

y' =a+e(@® +ay), h(z,y) <0.

(16)

It follows that the scalar function h : R? — R
is defined as h(z,y) = (y — x)(y + =) and the dis-
continuity set is of the form h=1(0) = {(z,y) : y =
z}U{(x,y) : y = —x}. Obviously,

gi1(z) = 222, gia(x) = 1+ + 22,
4x
—14322 - = o2
go1(x) + oz Y g22(x) = a7,
8
fii(z) =z, f12(33):;33,

f21<:(}) = :L'2 + 1, fgz(a}) =,

then the polynomials g;;(x), fij(x) for i,j = 1,2,
have degrees m = 2 and n = 2 respectively.
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By Lemma 3.1, the averaging function d(p) of (16) is as follows

3
4

/g
=
I
»H\

5m

3

[cosO(g11(pcosB) + fi1(pcosB)psin) + sinO(gi2(pcos @) + fi2(pcosb)psinb)]db

+/ ! [cos O(g21(pcosB) + fa1(pcosB)psin) + sinO(gaz(pcos @) + fao(pcosb)psinb)]dd

4

in

+/5 ! [cosO(g11(pcosB) + fi1(pcosB)psind) + sinB(gi2(pcos @) + fia(pcosb)psinb)]db

27
4

9T

T
+ /7 [cos 0(ga1(pcos @) + far(pcos@)psin) + sinb(ge2(pcosf) + fao(pcosb)psinb)|do

i
4

= —p"+3p" =2p=—p(p—2)(p—1).

Therefore, for || > 0 sufficiently small the dis-
continuous system (16) has two medium amplitude
limit cycles. One is bifurcating from the periodic
orbit of radius 2 centered at the origin and it is sta-
ble. The other is bifurcating from the periodic orbit
of radius 1 and it is unstable.

Remark 4.3. Note that for smooth generalized
Liénard polynomial differential system 2’ = —y +
elgi(z) + fil@)y), ¥ = =+ e(g2(z) + fa(2)y),
where f;(x) and g¢;(z), i = 1,2 are polynomials
with degrees n and m, respectively. Then the max-
imum number of medium amplitude limit cycles
by using the averaging theory of first-order is
max{[”-1], [2]}. So roughly speaking, Theorem 3.2
in this paper shows that the discontinuous gener-
alized Liénard polynomial differential systems can
have at least one more limit cycle than the cor-
responding smooth ones, see for instance Exam-
ples 4.1 and 4.2.

5. Conclusion

In this paper, we have investigated the maximum
number of medium amplitude limit cycles for a
class of discontinuous generalized Liénard polyno-
mial differential systems with [ sectors separated
by [/2 straight lines passing through the origin of
coordinates. The discontinuous system consists of
two different smooth generalized Liénard polyno-
mial differential systems of the form 2/ = —y +
g1(z) + filz)y, ¥ = =+ ga(x) + fa()y, located
alternatively in every two neighboring sectors,
where the polynomials f;(z) and g;(x) for i = 1,2
have degrees m and m respectively. By using the
averaging theory of first-order for discontinuous

differential systems, we have obtained that for || >
0 sufficiently small, the discontinuous generalized
Liénard polynomial differential system has at most
max{m,n + 1} medium amplitude limit cycles and
the upper bound max{m,n + 1} of the number
of medium amplitude limit cycles can be attained
for some values m and n. Moreover, we have also
obtained the same result if there are different vec-
tor fields in different sectors, respectively.
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