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In this paper, we investigate the number of limit cycles for a class of discontinuous planar
differential systems with multiple sectors separated by many rays originating from the origin.
In each sector, it is a smooth generalized Liénard polynomial differential system x′ = −y +
g1(x) + f1(x)y and y′ = x + g2(x) + f2(x)y, where fi(x) and gi(x) for i = 1, 2 are polynomials
of variable x with any given degree. By the averaging theory of first-order for discontinuous
differential systems, we provide the criteria on the maximum number of medium amplitude
limit cycles for the discontinuous generalized Liénard polynomial differential systems. The upper
bound for the number of medium amplitude limit cycles can be attained by specific examples.

Keywords : Discontinuous planar system; Liénard polynomial system; averaging theory; number
of limit cycles.

1. Introduction

One of main topics of the qualitative theory of pla-
nar differential systems is the number and rela-
tive position of limit cycles. This problem restricted
to continuous planar polynomial differential sys-
tems is the well known Hilbert’s 16th problem,
see for example [Li, 2003]. Up to now, there have
been many achievements concerning the existence,
uniqueness and the number of limit cycles, see for
example [Garćıa et al., 2014; Justino & Jorge, 2012;

Li & Llibre, 2012; Llibre, 2010; Llibre & Mereu,
2013, 2014; Llibre et al., 2015; Llibre & Valls, 2012,
2013a, 2013b; Lloyd & Lynch, 1988; Martins &
Mereu, 2014; Shen & Han, 2013; Sun, 1992; Xiong &
Zhong, 2013] and references therein. A limit cycle
bifurcating from a single degenerate singular point
is called a small amplitude limit cycle, and the one
bifurcating from periodic orbits of a linear center
is called a medium amplitude limit cycle. In [Lli-
bre & Valls, 2012], the authors studied the number
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of medium amplitude limit cycles for a class of poly-
nomial differential systems of the form

x′ = y − g1(x) − f1(x)y,

y′ = −x − g2(x) − f2(x)y,
(1)

where fi(x) and gi(x), i = 1, 2, are polynomials
of a given degree. For system (1), when f1(x) =
g1(x) = 0, it is the generalized Liénard polynomial
differential system. Note that the classical gener-
alized Liénard polynomial differential equation is
x′′ + f(x)x′ + g(x) = 0, or equivalently

x′ = y − F (x), y′ = −g(x), (2)

where F (x) =
∫ x
0 f(s)ds, f(x) and g(x) are poly-

nomials in the variable x. For system (2), when
polynomials F (x) and g(x) have degrees n and
m respectively, the generalization to discontinuous
generalized Liénard polynomial differential systems
was studied in [Llibre & Mereu, 2013].

To the best of our knowledge, there are very
few results concerning the number of limit cycles
which bifurcate from a continuum of periodic orbits
of differential systems perturbed by discontinu-
ous Liénard polynomial differential systems. So we
restrict our attention to a class of discontinuous
and piecewise smooth planar polynomial differential
systems with multiple sectors separated by rays
starting from the origin.

In this paper, we investigate the maximum
number of medium amplitude limit cycles for a dis-
continuous generalized Liénard polynomial differen-
tial system with even number l sectors separated by
l/2 straight lines passing through the origin (0, 0),
where the discontinuous set is of the form

l/2−1⋃
k=0

{
(x, y) : y = tan

(
α +

2kπ

l

)
x

}
.

We first consider the case where two different
smooth generalized Liénard polynomial differen-
tial systems are defined alternatively in every two
neighboring sectors on the plane. By applying the
averaging theory of first-order for discontinuous dif-
ferential systems, we obtain a lower bound for the
maximum number of limit cycles and we show that
the upper bound for the number of medium ampli-
tude limit cycles can be attained by some con-
structed examples (see Example 4.1 for an example
and Matlab numerical simulation). The obtained
limit cycles bifurcate from the periodic orbits of the
linear center x′ = −y, y′ = x. Moreover, we give the

discussion on the result if there are different vector
fields in different sectors respectively.

The paper is organized as follows. In the next
section, we present some relevant preliminaries for
the discontinuous generalized Liénard polynomial
differential system. In Sec. 3, we first present the
averaging theory of first-order for discontinuous
differential systems, and then we prove our main
results on the maximum number of medium ampli-
tude limit cycles. In Sec. 4, we give two examples
to illustrate the proved results. Conclusion is pre-
sented in Sec. 5.

2. Preliminaries

Consider the following discontinuous generalized
Liénard polynomial differential system{

x′ = −y + ε(g11(x) + f11(x)y),

y′ = x + ε(g12(x) + f12(x)y), h(x, y) > 0,{
x′ = −y + ε(g21(x) + f21(x)y),

y′ = x + ε(g22(x) + f22(x)y), h(x, y) < 0,

(3)

where ε is a sufficiently small parameter, and gij(x)
and fij(x) for i, j = 1, 2 are polynomials of variable
x with degrees m and n respectively. Let a function
h : R2 → R be given by

h(x, y) =

l
2
−1∏

k=0

(
y − tan

(
α +

2kπ

l

)
x

)
, (4)

with l > 1 being an even integer and α ∈ R. Then

h−1(0) =

l
2
−1⋃

k=0

{
(x, y) : y = tan

(
α +

2kπ

l

)
x

}
(5)

is a discontinuous set consisting of l/2 straight lines
passing through the origin O(0, 0), which divides
the plane R2 into l sectors with angle 2π/l.

When ε = 0, the system (3) becomes a planar
linear center as follows

x′ = −y, y′ = x. (6)

Note that the system (6) has a continuum of peri-
odic orbits surrounding the origin and the orbits
are counterclockwise oriented in the phase plane.
In this paper, by using the averaging theory of
first-order for discontinuous differential systems, we
investigate the maximum number of medium ampli-
tude limit cycles for the discontinuous generalized
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Liénard polynomial differential system (3) with
|ε| > 0 sufficiently small.

3. Main Results

First we recall the following result concerning the
existence of limit cycles from the averaging theory
of first-order for discontinuous differential systems.

Lemma 3.1 [Llibre & Mereu, 2014]. Consider the
following discontinuous differential equation

x′(t) = εH(t, x) + ε2G(t, x, ε), (7)

where ε is a sufficiently small real number, functions
H(t, x), G(t, x, ε) are given by

H(t, x) = H1(t, x) + sgn(h(t, x))H2(t, x),

G(t, x, ε) = G1(t, x, ε) + sgn(h(t, x))G2(t, x, ε),

functions H1,H2 : R × D → Rn, G1, G2 : R × D ×
R → Rn and h : R × D → R are continuous, T -
periodic in the variable t and D ⊂ Rn is an open
subset. Let h be a C1 function having 0 as a regular
value. Denote by M = h−1(0), N = {0} × D � M
and K = N\M �= ∅. Moreover, define the averaging
function d : D → Rn of (7) to be

d(x) =
∫ T

0
H(t, x)dt.

Assume that

(i) functions H1,H2, G1, G2 and h are locally Lip-
schitz with respect to the variable x;

(ii) for z0 ∈ K with d(z0) = 0, there exists a
neighborhood V of z0 such that d(z) �= 0 for
every z ∈ V \{z0} and dB(d, V, z0) �= 0, where
dB(d, V, z0) denotes the Brouwer degree of the
function d with respect to the bounded open
subset V ⊂ D and the fixed point z0;

(iii) if ∂h
∂t (t0, z0) = 0 for some (t0, z0) ∈ M, then

([∇xh,H1]2 − [∇xh,H2]2)(t0, z0) > 0,

where [A,B] denotes the inner product of the vec-
tors A and B, ∇xh denotes the gradient of h(t, x)
with respect to the variable x. Then for 0 < |ε|
sufficiently small, there exists a T -periodic solution
x(·, ε) of (7) such that x(0, ε) → z0 as ε → 0.

Our main result of this paper is as follows.

Theorem 3.2. Consider the system (3) with |ε| >
0 sufficiently small. Assume that the polynomials
gij(x) and fij(x), i, j = 1, 2 have degrees m ≥ 1 and
n ≥ 1 respectively, then the maximum number of
medium amplitude limit cycles bifurcating from the
periodic orbits of system (6) is λ = max{m,n + 1}.
Proof. Let x = ρ cos θ, y = ρ sin θ with ρ > 0, then
the system (3) can be transformed into

dρ

dt
= ε{cos θ[g11(ρ cos θ) + f11(ρ cos θ)ρ sin θ]

+ sin θ[g12(ρ cos θ) + f12(ρ cos θ)ρ sin θ]},
dθ

dt
= 1 +

ε

ρ
{cos θ[g12(ρ cos θ) + f12(ρ cos θ)ρ sin θ]

− sin θ[g11(ρ cos θ) + f11(ρ cos θ)ρ sin θ]},

for θ ∈ (α + 4kπ
l , α + (4k+2)π

l ), k = 0, 1, . . . , l−2
2 and

dρ

dt
= ε{cos θ[g21(ρ cos θ) + f21(ρ cos θ)ρ sin θ]

+ sin θ[g22(ρ cos θ) + f22(ρ cos θ)ρ sin θ]},
dθ

dt
= 1 +

ε

ρ
{cos θ[g22(ρ cos θ) + f22(ρ cos θ)ρ sin θ]

− sin θ[g21(ρ cos θ) + f21(ρ cos θ)ρ sin θ]},

for θ ∈ (α + (4k+2)π
l , α + 4(k+1)π

l ), k = 0, 1, . . . , l−2
2 .

Denote by

g11(x) =
m∑

i=0

a1,ix
i, g12(x) =

m∑
i=0

b1,ix
i,

g21(x) =
m∑

i=0

a2,ix
i, g22(x) =

m∑
i=0

b2,ix
i,

f11(x) =
n∑

i=0

c1,ix
i, f12(x) =

n∑
i=0

d1,ix
i,

f21(x) =
n∑

i=0

c2,ix
i, f22(x) =

n∑
i=0

d2,ix
i.

By taking the angle θ as the new independent vari-
able and using Taylor series expansion, the sys-
tem (3) becomes

dρ

dθ
= ε

(
m∑

i=0

a1,iρ
i cosi+1θ +

n∑
i=0

c1,iρ
i+1 cosi+1θ sin θ +

m∑
i=0

b1,iρ
i cosiθ sin θ +

n∑
i=0

d1,iρ
i+1 cosiθ sin2θ

)

+O(ε2), (8)
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for θ ∈ (α + 4kπ
l , α + (4k+2)π

l ), k = 0, 1, . . . , l−2
2 and

dρ

dθ
= ε

(
m∑

i=0

a2,iρ
i cosi+1θ +

n∑
i=0

c2,iρ
i+1 cosi+1θ sin θ +

m∑
i=0

b2,iρ
i cosiθ sin θ +

n∑
i=0

d2,iρ
i+1 cosiθ sin2θ

)

+O(ε2), (9)

for θ ∈ (α + (4k+2)π
l , α + 4(k+1)π

l ), k = 0, 1, . . . , l−2
2 . From (4) and (5) then

h−1(0) =

l
2
−1⋃

k=0

{
(θ, ρ) : sin θ = cos θ tan

(
α +

2kπ

l

)}
,

∂h

∂θ
(θ, ρ) =

l
2
−1∑

p=0

ρ
l
2

[
cos θ + sin θ tan

(
α +

2pπ

l

)] l
2
−1∏

k �=p

[
sin θ − cos θ tan

(
α +

2kπ

l

)]
.

By some tedious but simple computations one has that ∂h
∂θ (θ, ρ) �= 0 for any (θ, ρ) ∈ h−1(0).

On the other hand, for the purpose of the averaging function we need to use the following formulas
[Gradshteyn & Ryshik, 1994]

∫
cos2mθdθ =

1
22m

(
2m
m

)
θ +

1
22m−1

m−1∑
j=0

(
2m
j

)
sin(2m − 2j)θ

2m − 2j
, (10)

∫
cos2m+1θdθ =

1
22m

m∑
j=0

(
2m + 1

j

)
sin(2m − 2j + 1)θ

2m − 2j + 1
. (11)

Then the averaging function d(ρ) of (8) and (9) is as follows

d(ρ) = d1(ρ) + d2(ρ) + d3(ρ) + d4(ρ),

where

d1(ρ) =

l−2
2∑

k=0

m∑
i=0

(∫ α+
(4k+2)π

l

α+ 4kπ
l

a1,iρ
i cosi+1θdθ +

∫ α+
4(k+1)π

l

α+
(4k+2)π

l

a2,iρ
i cosi+1θdθ

)
,

d2(ρ) =

l−2
2∑

k=0

n∑
i=0

(∫ α+ (4k+2)π
l

α+ 4kπ
l

c1,iρ
i+1 cosi+1θ sin θdθ +

∫ α+ 4(k+1)π
l

α+ (4k+2)π
l

c2,iρ
i+1 cosi+1θ sin θdθ

)
,

d3(ρ) =

l−2
2∑

k=0

m∑
i=0

(∫ α+
(4k+2)π

l

α+ 4kπ
l

b1,iρ
i cosiθ sin θdθ +

∫ α+
4(k+1)π

l

α+
(4k+2)π

l

b2,iρ
i cosiθ sin θdθ

)
,

d4(ρ) =

l−2
2∑

k=0

n∑
i=0

(∫ α+ (4k+2)π
l

α+ 4kπ
l

d1,iρ
i+1 cosiθ sin2θdθ +

∫ α+ 4(k+1)π
l

α+ (4k+2)π
l

d2,iρ
i+1 cosiθ sin2θdθ

)
.

Substituting (10) and (11) into the above equalities then

d1(ρ) =

l−2
2∑

k=0

m∑
i=0

ρi

2i

[ i
2
]∑

j=0

(
i + 1

j

)
(a1,iAi,j,k + a2,iAi,j,k) +

[ m−1
2

]∑
i=0

(a1,2i+1 + a2,2i+1)
ρ2i+1

22i+2

(
2i + 2
i + 1

)
2π
l

,

1550131-4

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

5.
25

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
09

/2
9/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 21, 2015 10:16 WSPC/S0218-1274 1550131

The Number of Limit Cycles for Discontinuous Systems

with

Ai,j,k =
sin
[
(i − 2j + 1)

(
α +

(4k + 2)π
l

)]
− sin

[
(i − 2j + 1)

(
α +

4kπ

l

)]
i − 2j + 1

,

Ai,j,k =
sin
[
(i − 2j + 1)

(
α +

4(k + 1)π
l

)]
− sin

[
(i − 2j + 1)

(
α +

(4k + 2)π
l

)]
i − 2j + 1

,

d2(ρ) = −
l−2
2∑

k=0

n∑
i=0

(c1,iρ
i+1Bi,k + c2,iρ

i+1Bi,k),

d3(ρ) = −
l−2
2∑

k=0

m∑
i=0

(b1,iρ
iCi,k + b2,iρ

iCi,k),

with

Bi,k =
cosi+2

(
α +

(4k + 2)π
l

)
− cosi+2

(
α +

4kπ

l

)
i + 2

,

Bi,k =
cosi+2

(
α +

4(k + 1)π
l

)
− cosi+2

(
α +

(4k + 2)π
l

)
i + 2

,

Ci,k =
cosi+1

(
α +

(4k + 2)π
l

)
− cosi+1

(
α +

4kπ

l

)
i + 1

,

Ci,k =
cosi+1

(
α +

4(k + 1)π
l

)
− cosi+1

(
α +

(4k + 2)π
l

)
i + 1

,

d4(ρ) =
[ n
2
]∑

i=0

(d1,2i + d2,2i)ρ2i+1

[
1

22i

(
2i
i

)
− 1

22i+2

(
2i + 2
i + 1

)]
2π
l

+

l−2
2∑

k=0

n∑
i=0

ρi+1

2i−1

[ i−1
2

]∑
j=0

(
i

j

)
(d1,iDi,j,k + d2,iDi,j,k)

−
l−2
2∑

k=0

n∑
i=0

ρi+1

2i+1

[ i+1
2

]∑
j=0

(
i + 2

j

)
(d1,iEi,j,k + d2,iEi,j,k),

with

Di,j,k =
sin
[
(i − 2j)

(
α +

(4k + 2)π
l

)]
− sin

[
(i − 2j)

(
α +

4kπ

l

)]
i − 2j

,
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Ei,j,k =
sin
[
(i − 2j + 2)

(
α +

(4k + 2)π
l

)]
− sin

[
(i − 2j + 2)

(
α +

4kπ

l

)]
i − 2j + 2

,

Di,j,k =
sin
[
(i − 2j)

(
α +

4(k + 1)π
l

)]
− sin

[
(i − 2j)

(
α +

(4k + 2)π
l

)]
i − 2j

,

Ei,j,k =
sin
[
(i − 2j + 2)

(
α +

4(k + 1)π
l

)]
− sin

[
(i − 2j + 2)

(
α +

(4k + 2)π
l

)]
i − 2j + 2

.

Therefore, we obtain that

d(ρ) =
[ m−1

2
]∑

i=0

(a1,2i+1 + a2,2i+1)ρ2i+1

22i+2

(
2i + 2
i + 1

)
2π
l

+
[ n
2
]∑

i=0

(d1,2i + d2,2i)ρ2i+1

22i+1(i + 1)

(
2i
i

)
2π
l

+

l−2
2∑

k=0

m∑
i=0

ρi

2i

[ i
2
]∑

j=0

(
i + 1

j

)
(a1,iAi,j,k + a2,iAi,j,k) −

l−2
2∑

k=0

n∑
i=0

(c1,iBi,k + c2,iBi,k)ρi+1

+

l−2
2∑

k=0

n∑
i=0

ρi+1

2i−1

[ i−1
2

]∑
j=0

(
i

j

)
(d1,iDi,j,k + d2,iDi,j,k) −

l−2
2∑

k=0

m∑
i=0

(b1,iCi,k + b2,iCi,k)ρi

−
l−2
2∑

k=0

n∑
i=0

ρi+1

2i+1

[ i+1
2

]∑
j=0

(
i + 2

j

)
(d1,iEi,j,k + d2,iEi,j,k).

From the above equality we observe that the func-
tion d(ρ) is a polynomial of variable ρ with degree
max{m,n + 1}, so the polynomial d(ρ) has at most
λ = max{m,n + 1} positive roots, that is, the
maximum number of bifurcating medium ampli-
tude limit cycles is λ. Moreover, if there exists
some ρ0 > 0 such that d(ρ0) = 0 and d′(ρ0) �= 0
then the Brouwer degree dB(d, V, ρ0) �= 0 for some
small open neighborhood V of ρ0. Therefore, by
Lemma 3.1 for 0 < |ε| sufficiently small the discon-
tinuous system (3) has at most λ medium amplitude
limit cycles bifurcating from the periodic orbits of
the linear center x′ = −y, y′ = x. This completes
the proof of Theorem 3.2. �

Remark 3.3. It should be noted that for some given
degree m ≥ 1 and n ≥ 1, there exist discontinuous
generalized Liénard polynomial differential systems
having exactly λ = max{m,n + 1} medium ampli-
tude limit cycles, see Example 4.1 for an example
with m = n = 1.

When α = 0 and l = 2, we have

Ai,j,k = Ai,j,k = 0, Di,j,k = Di,j,k = 0

and Ei,j,k = Ei,j,k = 0.

In this case, the function h : R2 → R is of the
form h(x, y) = y, and the discontinuous general-
ized Liénard polynomial differential system with
two zones separated by the straight line {y = 0}
is as follows{

x′ = −y + ε(g11(x) + f11(x)y),

y′ = x + ε(g12(x) + f12(x)y), y > 0,{
x′ = −y + ε(g21(x) + f21(x)y),

y′ = x + ε(g22(x) + f22(x)y), y < 0.

(12)

We have the following result:

Corollary 3.4. Consider the system (12) with 0 <
|ε| sufficiently small, then the maximum number of
medium amplitude limit cycles is

λ = max{m,n + 1}.
Proof. In the same way as Theorem 3.2 then the
averaging function d(ρ) is of the form
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d(ρ) =
∫ π

0

(
m∑

i=0

a1,iρ
i cosi+1θ +

n∑
i=0

c1,iρ
i+1 cosi+1θ sin θ +

m∑
i=0

b1,iρ
i cosiθ sin θ

+
n∑

i=0

d1,iρ
i+1 cosiθ sin2θ

)
dθ +

∫ 2π

π

(
m∑

i=0

a2,iρ
i cosi+1θ +

n∑
i=0

c2,iρ
i+1 cosi+1θ sin θ

+
m∑

i=0

b2,iρ
i cosiθ sin θ +

n∑
i=0

d2,iρ
i+1 cosiθ sin2θ

)
dθ

=
[ m−1

2
]∑

i=0

(a1,2i+1 + a2,2i+1)ρ2i+1 π(2i + 1)!!
(2i + 2)!!

+
[ n−1

2
]∑

i=0

(c1,2i+1 − c2,2i+1)ρ2i+2 2
2i + 3

+
[ m

2
]∑

i=0

(b1,2i − b2,2i)ρ2i 2
2i + 1

+
[ n
2
]∑

i=0

(d1,2i + d2,2i)ρ2i+1 π(2i − 1)!!
(2i + 2)!!

.

Therefore, we obtain that for |ε| > 0 sufficiently
small the discontinuous system (12) has at most
λ = max{m,n + 1} that bifurcate medium ampli-
tude limit cycles and then the conclusion holds. �

When there are different vector fields in the dif-
ferent sectors respectively, we consider the following
discontinuous generalized Liénard polynomial dif-
ferential system of the form{

x′ = −y + ε(gi1(x) + fi1(x)y),

y′ = x + ε(gi2(x) + fi2(x)y), (x, y) ∈ Si,

(13)

where Si denotes the ith sector separated by l/2
straight lines passing through the origin, l is a pos-
itive even integer, and the polynomials gij(x) and
fij(x) for i = 1, 2, . . . , l, j = 1, 2 are

gi1(x) =
m∑

j=0

ai,jx
j , gi2(x) =

m∑
j=0

bi,jx
j ,

fi1(x) =
n∑

j=0

ci,jx
j , fi2(x) =

n∑
j=0

di,jx
j,

(14)

satisfying m ≥ 1, n ≥ 1. Then we have the following
result.

Theorem 3.5. Consider the system (13) with 0 <
|ε| sufficiently small, then the maximum number of
medium amplitude limit cycles bifurcating from the
periodic orbits of (6) is λ = max{m,n + 1}.

Proof. Let x = ρ cos θ, y = ρ sin θ with ρ > 0, then
the system (13) is transformed into

dρ

dθ
= ε


 m∑

j=0

ai,jρ
j cosj+1θ

+
n∑

j=0

ci,jρ
j+1 cosj+1θ sin θ

+
m∑

j=0

bi,jρ
j cosjθ sin θ

+
n∑

j=0

di,jρ
j+1 cosjθ sin2θ


+ O(ε2),

for θ ∈ (α + (2i−2)π
l , α + 2iπ

l ), i = 1, 2, . . . , l. With
the same proof as Theorem 3.2, it follows from
Lemma 3.1 that the conclusion holds. �

Remark 3.6. For system (13) with (14), if Si, i = 1,
2, . . . , l is the ith sector separated by l rays starting
from the origin then the plane R2 is divided by the
l discontinuous rays into l sectors. In this case, we
have the same conclusion as Theorem 3.5.

Remark 3.7. Note that the maximum number of
medium amplitude limit cycles is independent of
the number of sectors, but it depends on the degree
of the polynomials gij(x) and fij(x).

4. Examples

Example 4.1. Consider the following discontinu-
ous generalized Liénard polynomial differential sys-
tem with two zones separated by the straight line
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{y = 0}:


x′ = −y + ε

(
2
π

x − 3
2
xy

)
,

y′ = x + ε(x − 1), y > 0,


x′ = −y + ε

(
2
π

x + 1 + y

)
,

y′ = x + ε

(
x +

2
π

y + xy

)
, y < 0.

(15)

From the system (15), we observe that

g11(x) =
2
π

x, g12(x) = x − 1,

g21(x) =
2
π

x + 1, g22(x) = x,

f11(x) = −3
2
x, f12(x) = 0,

f21(x) = 1, f22(x) =
2
π

+ x,

so the functions gij(x), fij(x) for i, j = 1, 2 have
degrees m = 1 and n = 1, respectively.

By Lemma 3.1, the averaging function d(ρ)
of (15) is as follows

d(ρ) =
∫ π

0

[
cos θ

(
2
π

ρ cos θ − 3
2
ρ2 sin θ cos θ

)

+ sin θ(ρ cos θ − 1)
]

dθ

+
∫ 2π

π

[
cos θ

(
2
π

ρ cos θ + 1 + ρ sin θ

)

+ sin θ

(
ρ cos θ +

2
π

ρ sin θ

+ ρ2 sin θ cos θ

)]
dθ

= −ρ2 + 3ρ − 2 = −(ρ − 2)(ρ − 1).

It is easy to see that the zeros of d(ρ) are ρ1 = 2
and ρ2 = 1 satisfying d′(1) > 0 and d′(2) < 0.

Therefore, by Theorem 3.2 we obtain that for
|ε| > 0 sufficiently small, the discontinuous sys-
tem (15) has two medium amplitude limit cycles.
One is a stable limit cycle bifurcating from the peri-
odic orbit of radius ρ1 = 2 of the linear center
x′ = −y, y′ = x, and the other is an unstable limit
cycle bifurcating from the periodic orbit of radius
ρ2 = 1. By Matlab we see that the discontinuous

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

x

y

Fig. 1. Two medium amplitude limit cycles of (15) with
ε = 0.01.

system (15) has indeed two medium amplitude
limit cycles (see Fig. 1), the bigger one is a stable
limit cycle and the smaller one is an unstable limit
cycle.

Example 4.2. Let l = 4 and α = π
4 , and we

consider the following discontinuous generalized
Liénard polynomial differential system


x′ = −y + ε(2x2 + xy),

y′ = x + ε

(
1 + x + x2 +

8
π

x2y

)
, h(x, y) > 0,




x′ = −y + ε

(
1 + 3x2 − 4x

π + 2
+ y + x2y

)
,

y′ = x + ε(x2 + xy), h(x, y) < 0.
(16)

It follows that the scalar function h : R2 → R
is defined as h(x, y) = (y − x)(y + x) and the dis-
continuity set is of the form h−1(0) = {(x, y) : y =
x} ∪ {(x, y) : y = −x}. Obviously,

g11(x) = 2x2, g12(x) = 1 + x + x2,

g21(x) = 1 + 3x2 − 4x
π + 2

, g22(x) = x2,

f11(x) = x, f12(x) =
8
π

x2,

f21(x) = x2 + 1, f22(x) = x,

then the polynomials gij(x), fij(x) for i, j = 1, 2,
have degrees m = 2 and n = 2 respectively.
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By Lemma 3.1, the averaging function d(ρ) of (16) is as follows

d(ρ) =
∫ 3π

4

π
4

[cos θ(g11(ρ cos θ) + f11(ρ cos θ)ρ sin θ) + sin θ(g12(ρ cos θ) + f12(ρ cos θ)ρ sin θ)]dθ

+
∫ 5π

4

3π
4

[cos θ(g21(ρ cos θ) + f21(ρ cos θ)ρ sin θ) + sin θ(g22(ρ cos θ) + f22(ρ cos θ)ρ sin θ)]dθ

+
∫ 7π

4

5π
4

[cos θ(g11(ρ cos θ) + f11(ρ cos θ)ρ sin θ) + sin θ(g12(ρ cos θ) + f12(ρ cos θ)ρ sin θ)]dθ

+
∫ 9π

4

7π
4

[cos θ(g21(ρ cos θ) + f21(ρ cos θ)ρ sin θ) + sin θ(g22(ρ cos θ) + f22(ρ cos θ)ρ sin θ)]dθ

= −ρ3 + 3ρ2 − 2ρ = −ρ(ρ − 2)(ρ − 1).

Therefore, for |ε| > 0 sufficiently small the dis-
continuous system (16) has two medium amplitude
limit cycles. One is bifurcating from the periodic
orbit of radius 2 centered at the origin and it is sta-
ble. The other is bifurcating from the periodic orbit
of radius 1 and it is unstable.

Remark 4.3. Note that for smooth generalized
Liénard polynomial differential system x′ = −y +
ε(g1(x) + f1(x)y), y′ = x + ε(g2(x) + f2(x)y),
where fi(x) and gi(x), i = 1, 2 are polynomials
with degrees n and m, respectively. Then the max-
imum number of medium amplitude limit cycles
by using the averaging theory of first-order is
max{[m−1

2 ], [n2 ]}. So roughly speaking, Theorem 3.2
in this paper shows that the discontinuous gener-
alized Liénard polynomial differential systems can
have at least one more limit cycle than the cor-
responding smooth ones, see for instance Exam-
ples 4.1 and 4.2.

5. Conclusion

In this paper, we have investigated the maximum
number of medium amplitude limit cycles for a
class of discontinuous generalized Liénard polyno-
mial differential systems with l sectors separated
by l/2 straight lines passing through the origin of
coordinates. The discontinuous system consists of
two different smooth generalized Liénard polyno-
mial differential systems of the form x′ = −y +
g1(x) + f1(x)y, y′ = x + g2(x) + f2(x)y, located
alternatively in every two neighboring sectors,
where the polynomials fi(x) and gi(x) for i = 1, 2
have degrees n and m respectively. By using the
averaging theory of first-order for discontinuous

differential systems, we have obtained that for |ε| >
0 sufficiently small, the discontinuous generalized
Liénard polynomial differential system has at most
max{m,n + 1} medium amplitude limit cycles and
the upper bound max{m,n + 1} of the number
of medium amplitude limit cycles can be attained
for some values m and n. Moreover, we have also
obtained the same result if there are different vec-
tor fields in different sectors, respectively.
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