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A generic Turing type reaction–diffusion system derived from the Taylor expansion near a con-
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1. Introduction

In 1952, Alan Turing published a seminal paper
“The chemical basis of morphogenesis” [Turing,
1952]. His intriguing ideas influenced the thinking
of theoretical biologists and scientists from many
fields, successfully developed on the theoretical
backgrounds [Murray, 1982; Ni & Tang, 2005; Sat-
noianu et al., 2000; Segel & Jackson, 1972; Szili &

Tóth, 1997]. The Turing mechanism has been suc-
cessfully adopted to explain pattern formation in
diverse biological examples, including regeneration
of hydra [Gierer & Meinhardt, 1972; Meinhardt,
1982], coat of mammals [Murray, 1981, 2002/03],
fish skin [Asai et al., 1999; Kondo & Asai, 1995;
Painter et al., 1999], sea shells [Meinhardt, 1995],
feather [Jung et al., 1998] and so on. In chemistry,
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the experimental observation of a chemical Turing
pattern was achieved on operating the chloride-
iodide-malonic acid (CIMA) reaction in an open
spatial reactor in 1990 [De Kepper et al., 1991;
Ouyang & Swinney, 1991; Rudovics et al., 1999].
The experiment on the CIMA reaction has revealed
the existence of stationary spatially periodic con-
centration patterns. For a theoretical approach,
there is a variety of Turing models with differ-
ent reaction kinetics and their own specific charac-
teristics, for instance, the well-known models like
the Brusselator, Gray–Scott model and Lengyel–
Epstein model [Gray & Scott, 1990; Nicolis & Pri-
gogine, 1977].

In this paper, we discuss a reaction–diffusion
system which is derived from the Taylor expan-
sion of a generic Turing reaction–diffusion model
around a constant equilibrium point (see [Barrio
et al., 1999]):


ut = Dδ∆u+ αu(1 − r1v
2) + v(1 − r2u),

x ∈ Ω, t > 0,

vt = δ∆v + v(β + αr1uv) + u(−α+ r2v),

x ∈ Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,
(1)

in the spatial domain Ω = (0, lπ), l ∈ R
+ with

no-flux boundary conditions. Here D is the ratio
of the two diffusion coefficients, δ is the diffusion
coefficient of the second species; and kinetic param-
eters are r1, r2, α, β, where r1, r2 are the cubic
and quadratic coefficients of the Taylor polyno-
mial, respectively. This model is dubbed as Barrio–
Varea–Aragon–Maini (BVAM) model [Leppänen
et al., 2004]. Note that this model is a phenomeno-
logical one, and it is not based on any realis-
tic experimental chemical reaction. However the
BVAM model is the simplest system containing
both quadratic and cubic nonlinear terms, and one
can adjust the relative strength of the quadratic and
cubic nonlinearities to see the effect on the pattern
formation [Leppänen et al., 2004]. Hence a better
understanding of the dynamics of the BVAM model
can lead to the advancement of the studies of spa-
tiotemporal pattern formation in general.

Two-dimensional Turing patterns of (1) in a
square domain were analyzed and simulated in

[Barrio et al., 1999], and the patterns in a two-
dimensional disk were considered in [Aragón et al.,
2002] and [Barrio et al., 2002]. Three-dimensional
patterns have been considered in [Leppänen et al.,
2002] and [Leppänen et al., 2004], and traveling
wave solution was analyzed in [Varea et al., 2007].
Note that in all these works except [Varea et al.,
2007], only steady state solutions (patterns) have
been considered, and the studies are based on lin-
earized analysis and numerical simulation.

In this paper, we consider both the time-
periodic patterns (periodic orbits) and stationary
patterns (steady state solutions) of (1). We use
bifurcation theory to rigorously prove the existence
of Hopf bifurcations and steady state bifurcations
of (1) for the whole parameter region satisfying
D > 0, δ > 0, −1 < β < 0, 0 < α < 1 and
r1, r2 > 0, which is chosen this way so the Tur-
ing instability condition is satisfied [Barrio et al.,
1999]. We show that nonconstant time-periodic pat-
terns and stationary patterns can emerge from the
unique positive constant steady state by varying a
parameter α.

Our analysis follows a general framework given
in [Yi et al., 2009] for a diffusive Rosenzeig–
MacArthur predator–prey systems, and a similar
approach has also been taken in [Han & Bao, 2009;
Jin et al., 2013; Liu et al., 2010; Liu et al., 2013;
Wang et al., 2011; Xu & Wei, 2012; Yi et al., 2010]
for various reaction–diffusion models. Because of
the simplicity of the reaction terms in the BVAM
model, a rather complete classification of patterns
generated in a one-dimensional domain is obtained
here (see Sec. 4), which is not possible for most pre-
vious works as their nonlinearities are more com-
plicated. The time-periodic patterns and stationary
spatial patterns are both among the six possible
spatiotemporal patterns of reaction–diffusion sys-
tems first given by Turing [1952] in his seminal work
60 years ago. The impact of delay on the reaction–
diffusion systems has also been considered recently
[Chen et al., 2012, 2013; Seirin Lee et al., 2010; Su
et al., 2009; Wijeratne et al., 2009; Yan & Li, 2008,
2009].

In Sec. 2, Hopf bifurcation analysis with param-
eter α is conducted, and in Sec. 3, the steady state
solution bifurcations are proved. Some numerical
simulations are given in Sec. 4 to illustrate our
results. In this paper, we denote the set of all the
positive integers by N, and N0 = N ∪ {0}.
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2. Hopf Bifurcations

In this section, we consider the Hopf bifurcations for
the generic Turing reaction–diffusion model (1). We
consider one-dimensional space domain Ω = (0, lπ),
for which the structure of the eigenvalues is clear.
So Eq. (1) is now in the following form


ut = Dδuxx + αu(1 − r1v
2) + v(1 − r2u),

x ∈ (0, lπ), t > 0,

vt = δvxx + v(β + αr1uv) + u(−α+ r2v),

x ∈ (0, lπ), t > 0,

ux(0, t) = ux(lπ, t) = vx(0, t) = vx(lπ, t) = 0,

t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, lπ).

(2)

First, we consider the corresponding kinetic equa-
tion of (1), that is

u′ = αu(1 − r1v

2) + v(1 − r2u), t > 0,

v′ = v(β + αr1uv) + u(−α+ r2v), t > 0,

u(0) = u0, v(0) = v0.

(3)

One can verify that (0, 0) is the unique equilib-
rium point of (3). In the following, we choose fixed
parameters −1 < β < 0, r1 > 0, r2 > 0, and use α
as the main bifurcation parameter. The linearized
operator of the ODE system in (3) evaluated at
(0, 0) is

L0(α) =

(
α 1

−α β

)
. (4)

The characteristic equation of L0(α) is

µ2 − µT (α) +D(α) = 0, (5)

where T (α) = α + β, D(α) = α(β + 1). The eigen-
values µ(α) of L0(α) are given by

µ(α) =
α+ β ±√(α− β)2 − 4

2
.

A Hopf bifurcation value α for (3) satisfies the
following condition:

T (α) = 0, D(α) > 0, and T ′(α) �= 0.

Clearly we always have D(α) > 0 for 0 < α < 1
and −1 < β < 0, and T (α) = 0 implies α = −β.
Finally, T ′(α) = 1. Then α = −β is the only

Hopf bifurcation point for (3). When 0 < α < −β,
the unique equilibrium point (0, 0) of (3) is always
locally asymptotically stable, and it is unstable for
−β < α < 1.

Next we consider Hopf bifurcations from the
constant equilibrium (0, 0) of the reaction–diffusion
system (2). We choose the length parameter l prop-
erly, and use α as the main bifurcation parameter.
Define

X := {(u, v) ∈ H2[(0, lπ)] ×H2[(0, lπ)] :

u′(0) = v′(0) = u′(lπ) = v′(lπ) = 0}.
The linearized operator of system (2) evaluated at
(0, 0) is

L(α) =



Dδ

∂2

∂x2
+ α 1

−α δ
∂2

∂x2
+ β


.

It is well-known that the eigenvalue problem

−ψ′′ = µψ, x ∈ (0, lπ), ψ′(0) = ψ′(lπ) = 0,

has eigenvalues µn = n2

l2 (n = 0, 1, 2, . . .), with cor-
responding eigenfunctions ψn(x) = cos n

l x. Let(
φ

ϕ

)
=

∞∑
n=0

(
an

bn

)
cos

n

l
x (6)

be an eigenfunction for L(α) with eigenvalue µ(α),
that is, L(α)(φ,ϕ)T = µ(α)(φ,ϕ)T . According
to [Yi et al., 2009], there exists n ∈ N0 such
that Ln(α)(an, bn)T = µ(α)(an, bn)T , where Ln is
defined as

Ln(α) :=



−Dδn

2

l2
+ α 1

−α −δn
2

l2
+ β


,

n = 0, 1, 2, . . . .

The characteristic equation of Ln(α) is

µ2 − µTn(α) +Dn(α) = 0, n = 0, 1, 2, . . . , (7)

where

Tn(α) = −(D + 1)δ
n2

l2
+ α+ β,

Dn(α) =
n4

l4
Dδ2 − n2

l2
δ(α +Dβ) + αβ + α

(8)
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and the eigenvalues µ(α) of Ln(α) are given by

µ(α) =
Tn(α) ±√T 2

n(α) − 4Dn(α)
2

,

n = 0, 1, 2, . . . .

We identify the Hopf bifurcation value α satisfying
the condition for Hopf bifurcation [Yi et al., 2009],
which takes the following form:

(H1) There exists n ∈ N0, such that

Tn(α) = 0, Dn(α) > 0,

Tj(α) �= 0, Dj(α) �= 0, for any j �= n.

Let the unique pair of complex eigenvalues
near the imaginary axis be γ(α)± iω(α), then
the following transversality condition holds:

γ′(α) �= 0. (9)

We define a function

αH(p) = (D + 1)δp − β (10)

and for j ∈ N0, define

αH
j = αH

(
j2

l2

)
= (D + 1)δ

j2

l2
− β, (11)

then Tj(αH
j ) = 0 and Ti(αH

j ) �= 0 for i �= j. Since
we require α < 1, then there is an n0 ∈ N such that
αH

n0
< 1 < αH

n0+1. Define

ln = n

√
(D + 1)δ

1 + β
, n ∈ N0. (12)

Then for ln < l ≤ ln+1, we have exactly n+1 poten-
tial Hopf bifurcation points α = αH

j (0 ≤ j ≤ n)
defined by (11) and these points satisfy

αH
0 (= −β) < αH

1 < · · · < αH
n < 1.

Next we only need to verify whetherDi(αH
j ) �= 0 for

all i ∈ N0, and in particular, Dj(αH
j ) > 0. We claim

that if 0 > β > 1
D − 2√

D
, then Di(αH

j ) > 0 for any

i ∈ N0 and αH
j ∈ (0, 1). Indeed from 0 < αH

j < 1,
we have

Di(αH
j ) = p2

iDδ
2 − piδ(αH

j +Dβ) + αH
j β + αH

j

= p2
iDδ

2 + αH
j (1 + β − piδ) − piδDβ.

If 0 < pi ≤ 1+β
δ , then 1 + β − piδ ≥ 0 and

Di(αH
j ) > 0. If pi >

1+β
δ , and 0 > β > 1

D − 2√
D

,
then

Di(αH
j ) > p2

iDδ
2 + (1 + β − piδ) − piδDβ

= p2
iDδ

2 − piδ(1 +Dβ) + 1 + β

≥ −(1 +Dβ)2

4D
+ 1 + β

=
1

4D
(2
√
D − 1 +Dβ)(2

√
D + 1 −Dβ)

> 0.

Finally let the eigenvalues close to the pure
imaginary ones at α = αH

j be γ(α) ± iω(α). Then

γ′(αH
j ) =

T ′
j(α

H
j )

2 = 1
2 > 0. Now by using the

Hopf bifurcation theorem in [Yi et al., 2009], we
can obtain the main result in this section.

Theorem 1. Let ln as defined in (12) and assume
that ln < l ≤ ln+1 for some n ∈ N0. Suppose that D
and β satisfy

D >
1
4
, and

1
D

− 2√
D
< β < 0. (13)

Then for (2), there exist n + 1 Hopf bifurcation
points αH

j (0 ≤ j ≤ n) defined by (11), satisfying

αH
0 (= −β) < αH

1 < αH
2 < · · · < αH

n < 1.

At each α = αH
j , the system (2) undergoes a Hopf

bifurcation, and the bifurcating periodic orbits near
(α, u, v) = (αH

j , 0, 0) can be parameterized as a C∞
curve {(α(s), u(s), v(s)) : s ∈ (0, δ)} for some small
δ > 0, so that


α(s) = αH
j + o(s),

u(s)(x, t) = s(ane
2πit/T (s) + ane

−2πit/T (s))

× cos
n

l
x+ o(s),

v(s)(x, t) = s(bne2πit/T (s) + bne
−2πit/T (s))

× cos
n

l
x+ o(s),

(14)

where (an, bn) is the corresponding eigenvector, and

T (s) = 2π/
√
Dj(αH

j ) + o(s) (Dj is defined in (8)).
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Furthermore

(1) The bifurcating periodic orbits from α = αH
0 =

−β are spatially homogeneous, which coincide
with the periodic orbits of the corresponding
ODE system.

(2) The bifurcating periodic orbits from α = αH
j

(j ≥ 1) are spatially nonhomogeneous.

Next we consider the bifurcation direction
(α′(0) > 0(< 0)) and stability of the bifurcating
periodic orbits bifurcating from α = αH

0 according
to [Yi et al., 2009].

Theorem 2. For system (2), when −1 < β < 0, the
Hopf bifurcation at αH

0 = −β is supercritical. That
is, for a small ε > 0 and α ∈ (αH

0 , α
H
0 + ε), there

is a small amplitude spatially homogenous periodic
orbit, and this periodic orbit is locally asymptotically
stable if (13) is satisfied.

Proof. Here we follow the notations and calcula-
tions in [Yi et al., 2009]. When α = αH

0 = −β,
Eq. (7) has a pair of purely imaginary eigenvalues
µ = ±i

√
−β − β2 satisfying

L0q = i
√

−β − β2q

and we can choose q = (a0, b0)T = (−1,−β −
i
√

−β − β2)T . Define the inner product in XC by

〈U1, U2〉 =
∫ lπ

0
(u1u2 + v1v2)dx, (15)

with Ui = (ui, vi)T ∈ X2
C (i = 1, 2). We choose

an associated eigenvector q∗ for the eigenvalue
µ = −i

√
−β − β2 satisfying

L∗
0q

∗ = −i
√

−β − β2q∗,

〈q∗, q〉 = 1, 〈q∗, q〉 = 0,

then

q∗ = (a∗0, b
∗
0)

T

=

(
− 1

2lπ
+

βi

2lπ
√

−β − β2
,

−i
2lπ
√

−β − β2

)T

.

Let f(u, v) = αu(1 − r1v
2) + v(1 − r2u), g(u,

v) = v(β + αr1uv) + u(−α + r2v), then the partial
derivatives for f , g are evaluated as follows:




guv = −fuv, guvv = −fuvv,

fvv = fuu = fvvv = fuuv = fuuu = guuu

= gvv = guu = guuv = gvvv = 0,

fuv = −r2, fuvv = −2αr1.

(16)

By direct calculation, it follows that


c0 = −2r2(β + i
√

−β − β2),

d0 = −c0,
e0 = −2βr2,

f0 = −e0,
g0 = 2βr1(2β2 + β − 2βi

√
−β − β2),

h0 = −g0.

(17)

Denote

Qq,q =

(
cn

dn

)
, Qq,q =

(
e0

f0

)
, Cq,q,q =

(
g0

h0

)
.

(18)

Then

〈q∗, Qqq〉 = c0

(
−1

2
− (β + 1)i

2
√

−β − β2

)
,

〈q∗, Qqq〉 = c0

(
−1

2
+

(β + 1)i

2
√

−β − β2

)
,

〈q∗, Qqq〉 = e0

(
−1

2
− (β + 1)i

2
√

−β − β2

)
,

〈q∗, Qqq〉 = e0

(
−1

2
+

(β + 1)i

2
√

−β − β2

)
,

〈q∗, Cqqq〉 = g0

(
−1

2
− (β + 1)i

2
√

−β − β2

)
.

Hence

H20 = (c0, d0)T − 〈q∗, Qqq〉(a0, b0)T

−〈q∗, Qqq〉(a0, b0)T ,

= c0(0,−1 − β)T + c0(0, 1 + β)T = 0,

H11 = (e0, f0)T − 〈q∗, Qqq〉(a0, b0)T

−〈q∗, Qqq〉(a0, b0)T ,

= e0(0,−1 − β)T + e0(0, 1 + β)T = 0,
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Fig. 1. Phase portraits for the ODE system corresponding to (2) when β = −0.1, r1 = 0.1, r2 = 0.1, The horizontal axis is u,
and the vertical axis is v. (a) α = 0.12, one small amplitude limit cycle and (b) α = 0.9, a large amplitude limit cycle. Here
the Hopf bifurcation point αH

0 = 0.1.

which implies that ω20 = ω11 = 0, then

〈q∗, Qω11q〉 = 〈q∗, Qω20q〉 = 0. (19)

Therefore

Re(c1(αH
0 ))

= Re
{

i

2ω0
〈q∗, Qqq〉 · 〈q∗, Qqq〉 +

1
2
〈q∗, Cqqq〉

}

=
β2r22 + βr22
2(−β − β2)

− 6β2r1
√
−β − β2

4
√

−β − β2

= −r
2
2 + 3β2r1

2
< 0.

Moreover T ′(αH
j ) = 1 > 0, therefore when α >

αH
0 = −β, the equilibrium point of (2) is unstable,

and the system must have a periodic orbit by the
Poincaré–Bendixson theorem. From the calculation
above, the Hopf bifurcation at α = αH

0 is supercrit-
ical; and when α ∈ (αH

0 , α
H
0 + ε), the bifurcating

periodic orbit is locally asymptotically stable if (13)
is satisfied. �

Note that the bifurcating periodic orbit may
not be stable if a Turing bifurcation occurs at some
α < −β (see Sec. 3). The periodic orbits of sys-
tem (2) for some parameters are shown in Fig. 1,
and a bifurcation diagram of the periodic orbits is
shown in Fig. 2.
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Fig. 2. Bifurcation of periodic orbits for the ODE system
corresponding to (2) β = −0.1, r1 = 0.1, r2 = 0.1. The hori-
zontal axis is α, and the vertical axis is max u(t) for the limit
cycle (u(t), v(t)). Here the Hopf bifurcation point αH

0 = 0.1.

3. Steady State Bifurcation Analysis

In this section, we consider the steady state solu-
tions of system (2). We consider the equations:


Dδu′′ + αu(1 − r1v
2) + v(1 − r2u) = 0,

x ∈ (0, lπ),

δv′′ + v(β + αr1uv) + u(−α+ r2v) = 0,

x ∈ (0, lπ),

u′(0) = v′(0) = u′(lπ) = v′(lπ) = 0.

(20)

Recall Dn(α) and Tn(α) defined in (8). Now
we identify steady state bifurcation value α of

1450042-6
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steady state system (20), which satisfies the follow-
ing steady state bifurcation condition:

(H2) There exists n ∈ N0 such that

Dn(α) = 0, Tn(α) �= 0,

Dj(α) �= 0, Tj(α) �= 0, for any j �= n;

(21)

and
d

dα
Dn(α) �= 0. (22)

Clearly D0(α) = αβ + α > 0 for −1 < β < 0
and α > 0, hence we only consider the bifurcation
mode n ∈ N. We fix −1 < β < 0 to determine a
bifurcation value α satisfying condition (H2). We
notice that Dn(α) = 0 is equivalent to

D(α, p) := (α−Dδp)(β − δp) + α = 0, (23)

where p = n2

l2
. Solving α from (23), we have

αS(p) =
Dδp(β − δp)
β + 1 − δp

= pDδ

(
1 +

1
δp − (β + 1)

)
. (24)

We also solve p from (23), and we obtain

p = p±(α)

:=
(α+Dβ) ±√(α+Dβ)2 − 4Dα(1 + β)

2Dδ
.

(25)

Define

l̃n = n

√
δ

β + 1
, n = 1, 2, . . . , (26)

then for any 0 < l < l̃n, there exist a unique
αS

n := αS(n2

l2 ) such that Dn(αS
n) = 0, where αS(·)

is defined in (24). These points αS
n are potential

steady state bifurcation points.
The function αS(p) and the functions p±(α)

satisfy the following properties.

Lemma 1. Define

p∗ =
1
δ
(
√
β + 1 + β + 1),

α∗ = α(p∗) = D(
√
β + 1 + 1)2.

(27)

Then the function αS : (β+1
δ ,∞)→R

+ defined in
(24) has a unique critical point p∗ ∈ (β+1

δ ,∞),

which is the global minimum of αS(p) on (β+1
δ ,∞),

and lim
p→(β+1

δ
)+
αS(p) = limp→∞ αS(p) = ∞.

Consequently for α ≥ α∗ := αS(p∗), p±(α) are well
defined as in (25); p+(α) is monotone increas-
ing and p−(α) is monotone decreasing; supα>α∗ ×
p+(α) = limα→∞ p+(α) = ∞, infα>α∗ p−(α) =
limα→∞ p−(α) = β+1

δ , and p+(α∗) = p−(α∗) = p∗.

Proof. Let D(α, p) be defined as in (23). Then the
set Λ := {(α, p) : α > 0, p > 0} is given by the
curve {(αS(p), p) : β+1

δ < p < ∞}. Next we prove
that αS(p) has a unique critical point. Differentiat-
ing D(αS(p), p) = 0 twice and letting (αS)′(p) = 0,
we have

d2

dp2
D(αS(p), p) = (β + 1 − δp)(αS)′′(p) + 2Dδ2

= 0.

Thus

(αS)′′(p) =
2Dδ2

δp− (β + 1)
> 0.

Therefore for any critical point p of αS(p), we must
have (αS)′′(p) > 0, and thus the critical point of
αS(p) must be unique and be a local minimum
point.

Since we have lim
p→(β+1

δ
)+
αS(p) = limp→∞×

αS(p) = ∞, then the unique critical point p∗ of
αS(p) is the global minimum point. Since (25) is
also obtained by solving (23), then Λ = {(αS(p), p) :
β+1

δ < p < ∞} and the curves (α, p±(α)) are iden-
tical. Then the properties of αS(p) determine the
monotonicity and limiting behavior of p±(α). �

From Lemma 1, it is possible that α(pi) = α(pj)
and p−(αS

i ) = p+(αS
j ), for some i, j (i < j). In this

case, for α = αS
i = αS

j , 0 is not a simple eigenvalue
of L(α), so we shall not consider bifurcations at such
points. From the properties of p±(α) in Lemma 1,
we know the multiplicity of 0 as eigenvalue of L(α)
is at most 2. On the other hand, it is also possible
that some αS

i = αH
j , so the dimension of center

manifold of the equilibrium (uα, vα) can be between
1 to 4.

We claim that there are only countably many
l > 0, in fact only finitely many l ∈ (0,M) for any
given M > 0, such that α = αS

i = αS
j or αS

i = αH
j ,

for i, j ∈ N. Let En(α, l) = l4Dn(α), Fn(α, l) =
l2Tn(α). Then for any n ∈ N, En(α, l) and Fn(α, l)
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are polynomials of α, l with real coefficients. Hence
on (α, l)-plane, the set qn = {(α, l) : En(α, l) = 0},
or pn = {(α, l) : Fn(α, l) = 0} is the union of
countable analytic curves. Moreover, we require α ∈
[α∗,∞), then for any M > 0, there are only finitely
many i, j ∈ N, such that qi ∩ ([α∗,∞)× [0,M ]) �= ∅
and pj ∩ ([α∗,∞) × [0,M ]) �= ∅. These finitely
many qi, pj only have finitely many intersection
points in [α∗,∞) × [0,M ] due to the analyticity,
and thus the intersection points of different qi, pj in
[α∗,∞) × [0,∞] are countable. Define

LE = {l > 0 : Ei(α, l) = Ej(α, l) or

Ei(α, l) = Fj(α, l), α ∈ [α∗,∞), i, j ∈ N}.
(28)

Then the points LE can be arranged as a sequence
whose only limit point is ∞.

Hence if l ∈ R
+\LE , and αS

j is well defined,
then (H2) is satisfied at α = αS

j . Now we show that
d
dαDj(αS

j ) �= 0. By direct calculation, we have

d

dα
Dj(αS

j ) = β + 1 − δpj < 0, where pj =
j2

l2
.

(29)

Summarizing the above discussions, and using
a general bifurcation theorem [Shi & Wang, 2009;
Yi et al., 2009], we obtain the main result of this
section on the global bifurcations of steady state
solutions:

Theorem 3. Assume that

− 1 < β <
1
D

− 2√
D
, (30)

and let n ∈ N. Suppose that l ∈ (0,∞)\LE , and
l̃n−1 < l < l̃n for some n ∈ N, where l̃n is
defined in (26) and LE is a countable subset of
R

+ defined in (28). Then αS
n = αS(n2

l2
) satisfies

α∗ < αS
n < 1, and α = αS

n is a bifurcation point
for (20). Moreover,

(1) There exists a C∞ smooth curve Γj of solutions
of (20) bifurcating from (α, u, v) = (αS

j , 0, 0),
with Γj contained in a global branch Cj of
solutions of (20).

(2) Near (α, u, v) = (αS
j , 0, 0), Γj = {(αj(s), uj(s),

vj(s)) : s ∈ (−ε, ε)}, where uj(s) = saj cos(jx/
l) + sψ1,j(s), vj(s) = sbj cos(jx/l) + sψ2,j(s),
s ∈ (−ε, ε), for some C∞ smooth functions αj ,

ψ1,j , ψ2,j such that αj(0) = αS
j and ψ1,j(0) =

ψ2,j(0) = 0; Here aj and bj satisfy

L(αS
j )
[
(aj , bj)T cos

(nx
l

)]
= (0, 0)T .

(3) Either Cj contains another (αS
m, 0, 0) for m �= j,

or Cj is unbounded.

Proof. To apply Theorem 3.2 in [Yi et al., 2009],
we only need to show the local conditions (H2)
and d

dαDj(αS
j ) �= 0, which have been proved in

the previous paragraphs. Note that we exclude
LE, so α = αS

j is always a bifurcation from a
simple eigenvalue point. Thus the results follow
from Theorem 3.2 in [Yi et al., 2009]. �

Note that l /∈ LE is only technical, and for
l ∈ LE , as long as the bifurcation value is sim-
ple, then the bifurcation result still holds. We also
remark that at each bifurcation point α = αS

j , the
steady state bifurcation is a pitchfork one so that
α′

j(0) = 0. This is natural since (u(lπ−x), v(lπ−x))
is also a solution if (u(x), v(x)) is one. Thus α′′

j (0)
determines the direction of the bifurcation. The
value α′′

j (0) can be calculated as in [Jin et al., 2013],
so one can determine whether it is a supercritical
or subcritical pitchfork bifurcation.

4. Numerical Simulations and
Discussion

In Secs. 2 and 3, we consider the instability of the
unique positive constant steady state (0, 0) of (2)
and related bifurcation phenomena. In the analysis,
we fix parameters D, δ, β, r1, r2, and the length
parameter l, and use α as the bifurcation parameter.

For (2) we have identified two critical param-
eter values for the system (2): α = −β, which is
the smallest Hopf bifurcation point, and α = α∗
(defined as in (27)). The constant equilibrium
(0, 0) is locally asymptotically stable when α <
min{−β, α∗}. When −β < α∗, then (0, 0) loses the
stability at α = −β through a Hopf bifurcation;
when α∗ < −β, a steady state bifurcation is likely
to happen for some α ∈ (α∗, 1). Figure 3(a) shows
the graph of T (α, p) = 0 and D(α, p) = 0 with a
set of parameters so that −β < α∗, while Fig. 3(b)
shows the one for the case α∗ < −β.

In the second case, one can choose l so that
there are steady state bifurcation points in the
interval (α∗, 1). For example, for the parameters
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Fig. 3. Graph of T (α, p) = 0 and D(α, p) = 0. (a) β = −0.8, D = 2, δ = 0.2 and l = 2; (b) β = −0.9, D = 0.2, δ = 0.2 and
l = 3. The horizontal lines are p = n2/l2.

given in Fig. 3(b), if we choose l = 3, then we have

αS
4 = 0.349 < αS

5 = 0.355 < αS
6 = 0.389 < αS

7

= 0.438 < αS
3 = 0.44 < αS

8 = 0.5 < αH
0 = 0.9.

(31)

We use several numerical simulations to illus-
trate and complement our analytical results. For
the parameters given in Fig. 3(a) with l = 2, a
simulation with α = 0.9 > αH

0 = 0.8 is shown in
Fig. 4, and a spatially homogeneous limit cycle is
the asymptotical limit here.

On the other hand, for the parameters given
in Fig. 3(b) with l = 3, several steady state

bifurcations occur at α-values smaller than αH
0

[see (31)]. Figures 5 and 6 show two solutions with
different initial conditions. While each shows a sta-
tionary spatial pattern, the one in Fig. 5 corre-
sponds to constant steady state; while the one in
Fig. 6 appears to have spatial period 3π/2, which
corresponds to n = 4 (mode cos(4x/3)). From (31),
the parameter α = 0.35 in Figs. 5 and 6 is between
αS

5 = 0.355 and αS
4 = 0.349. Figures 5 and 6

show that there is a bistability between the con-
stant steady state solution and a nonconstant one
with mode n = 4.

Our analytical results in earlier sections and
the numerical simulations guided by the analytical

(a) (b)

Fig. 4. Numerical simulation of the system (2). (a) u(x, t) and (b) v(x, t). Here D = 2, α = 0.9, β = −0.8, δ = 0.2, r1 = 1,
r2 = 1, l = 2, 0 ≤ t ≤ 400, and the initial values u0(x) = 0.01 cos(x/2); v0(x) = 0.01 cos(x/2). The solution converges to a
spatially homogenous periodic orbit.
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(a) (b)

Fig. 5. Numerical simulation of system (2). (a) u(x, t) and (b) v(x, t). Here D = 0.2, α = 0.35, β = −0.8, δ = 0.2, r1 = 1,
r2 = 1, l = 2, 0 ≤ t ≤ 400, and the initial values u0(x) = 0.001 cos(x/3); v0(x) = 0.001 cos(x/3). The solution converges to
the constant steady state.

results show a rough picture of the dynamics in
terms of system parameters α, β and D. There
are several parameter regimes where the dynami-
cal behavior of (2) are drastically different.

(1) When 0 < −β < 1 < α∗ is satisfied, that is

D >
1
4

and
1
D

− 2√
D
< β < 0, (32)

then there are a sequence of Hopf bifurcation
points −β = αH

0 < αH
1 < · · · < αH

n < 1 where
periodic orbits of (2) bifurcate out from the
constant steady state (0, 0) (see Theorem 1).

In particular, (0, 0) loses the local stability to a
spatially homogenous periodic orbit at α = −β.
On the other hand, since 1 < α∗, there is no
steady state bifurcation for any α ∈ (0, 1).
Hence the parameter regime given by (32) is
dominated by time-periodic patterns but prob-
ably not stationary spatially nonhomogeneous
patterns. The number n of spatially nonhomo-
geneous Hopf bifurcation points depends on l.

(2) If

−1 < β < min
{

1
D

− 2√
D
, 0
}

(33)

(a) (b)

Fig. 6. Numerical simulation of system (2). (a) u(x, t) and (b) v(x, t). Here D = 0.2, α = 0.35, β = −0.8, δ = 0.2, r1 = 1,
r2 = 1, l = 2, 0 ≤ t ≤ 200, and the initial values u0(x) = 0.01 cos(5x/3); v0(x) = 0.01 cos(5x/3). The solution converges to
the constant steady state.
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then 0 < max{α∗,−β} < 1. In this case
both the results in Theorem 1 and the ones in
Theorem 3 are applicable. Hence possibly both
Hopf bifurcations and steady state bifurcations
occur for α ∈ (min{α∗,−β}, 1), and these bifur-
cation points form an intertwining sequence of
bifurcation points.
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