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1. Introduction

Fisher–KPP equation is a classical reaction-diffusion equation describing the dispersal and evolution of
organisms in space, which was introduced by Fisher [13] and Kolmogoroff et al. [26] in 1937. It assumes
passive diffusion and a logistic growth, thus takes the form:

∂u(x, t)
∂t

= DΔu(x, t) + au(x, t) − bu2(x, t), (1.1)

where u(x, t) is the concentration of the organism at location x and t > 0,D is the coefficient of the
diffusion process, a is the rate of population growth, and b reflects the crowding effect, which is associ-
ated with intraspecific competition for resources. It describes the temporal and spatial evolution of the
density of individuals such as bacteria or rodents. The processes addressed are birth and death, nonlinear
competition controlled by the environment leading to saturation of the population, and diffusion leading
to spatial homogenization. These three respective processes are associated with parameters a, b, and D.
The Fisher–KPP equation (1.1) describes the interaction between several important processes such as
reproduction, competition for resources and diffusion, thus it is close to represent some universal natural
principles and it has many applications in biology, physics, and chemistry [25,27,29].

The classical Fisher–KPP equation (1.1) only considers local effects in the competition term since typ-
ically the competition interaction occurs locally in space, that is, the individuals are assumed to compete
for resource in their immediate neighborhood. However, in the reality, individuals sometimes compete for
resource not only in their immediate neighborhood but also in a more board domain. For that reason,
many people begin to generalize the equation by incorporating nonlocal effects in the competition term.
Here, we consider a generalized Fisher–KPP equation on a spatial domain in the following form, which
was introduced in [17,18,24]:

∂u(x, t)
∂t

= DΔu(x, t) + au(x, t) − bu(x, t)
∫

Ω

f(x, y)u(y, t) dy, (1.2)
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where f(x, y) is a nonnegative distribution function which we call the influence function, and Ω is the
domain for the nonlocal interaction. According to the expression of this equation, we find that it features
competitive interactions linking the density u(x, t) at point x with the density u(y, t) at another point y
through an influence function f(x, y).

Here, we restrict our attention only to the one-dimensional problem where Ω = (−L,L) for L > 0,
and the exterior of the domain is hostile thus a zero boundary condition is imposed:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ut = Duxx + au − bu

∫ L

−L

f(x, y)u(y, t)dy, x ∈ (−L,L), t > 0,

u(−L, t) = u(L, t) = 0, t > 0,

u(x, 0) = g1(x), x ∈ (−L,L).

(1.3)

By using the dimensionless new variables

s =
Dt

L2
, z =

x

L
, v =

bLu

a
, (1.4)

we obtain the dimensionless equation (while still using the variables t, x, u):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = uxx + λu − λu

∫ 1

−1

f(x, y)u(y, t)dy, x ∈ (−1, 1), t > 0,

u(−1, t) = u(1, t) = 0, t > 0,

u(x, 0) = g(x), x ∈ (−1, 1),

(1.5)

where

λ =
aL2

D
, g(x) = g1(xL) · bL

a
.

In the following, we shall only consider (1.5) where λ > 0, and we assume that the influence function
f : Ω × Ω → R satisfies [here Ω = (−1, 1)]:
(f1) f ∈ L2(Ω × Ω), and f(x, y) ≥ 0 for almost all (x, y) ∈ Ω × Ω.
We notice that in applications, f often only depends on the distance |x−y|, hence an additional stronger
condition on f is
(f2) f(x, y) = f1(|x − y|), where f1 : [0, 2] → (0,∞) is nondecreasing and piecewise continuous, and∫ 2

0
f1(y)dy > 0.

Our main result is that under the mild condition (f1), the set of steady state solutions of (1.5) pos-
sesses a similar global bifurcation structure as that of classical Fisher–KPP equation in one-dimensional
case. Moreover, we show that the positive steady state solution must be stable and unique, again similar
to the classical case. On the other hand, through an explicit example, we show that steady state solutions
of (1.5) are not uniformly bounded as the classical case, and even for the positive solution case, the a
priori bound may depend on the kernel function. It is not clear to us whether the mild condition (f1) is
adequate to guarantee the existence of a positive steady state solution. But under the stronger condition
(f2), the existence can be proved (see details in Sect. 3). Moreover, under (f2), we can show that the
unique positive solution is symmetric and strictly decreasing on (0, 1).

Nonlocal integral–differential equations as models of biological dispersal and interaction have been a
focus of recent research, see excellent reviews in [3,16,22]. Nonlocal models arising from phase transi-
tions in material sciences were considered in [4–7], and the existence of stationary and traveling wave
patterns were proved under various assumptions. Spectral properties of the nonlocal integral–differential
operators were studied in [9,10,12,14,15], as well as some bifurcation problems of nonlocal equations,
see also [1,19]. In [2,21,34], the traveling wave solutions of nonlocal integral–differential equations were
constructed.
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In Sect. 2, we prove bifurcation results for the steady state solutions, and we also give explicit steady
state solutions for some special kernels. And, we prove the stability thus uniqueness of the positive steady
state solution in Sect. 3, and we also prove the existence and profile of the positive steady state solution
under the stronger condition (f2).

2. Bifurcation of steady state solutions

To illustrate the global picture of the set of steady state solutions of (1.5), we first consider a simple case
that f(x, y) ≡ 1, then the equation takes the form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = uxx + λu − λu

∫ 1

−1

u(y)dy, x ∈ (−1, 1), t > 0,

u(−1, t) = u(1, t) = 0, t > 0,

u(x, 0) = g1(x), x ∈ (−1, 1),

(2.1)

The steady state solution equation of (2.1) is
⎧⎪⎨
⎪⎩

u′′(x) + λu(x)
(

1 −
∫ 1

−1

u(y)dy

)
= 0, x ∈ (−1, 1),

u(−1) = u(1) = 0.

(2.2)

Indeed, we notice that the problem u′′ + λ(1 − k)u = 0 with u(−1) = u(1) = 0 has a positive solution

only when λ(1 − k) = λ1 =
π2

4
from the linear eigenvalue problem, and the positive solution u(x) must

be k1 cos
πx

2
. Thus from calculation, we find that for fixed λ > 0, the unique positive solution of (2.2) is

u(x) = k1 cos
πx

2
, where k1 =

(4λ − π2)π
16λ

. (2.3)

Apparently, u(x) > 0 only when λ >
π2

4
, and moreover, k1 → π

4
when λ → ∞. So u(x) <

π

4
for any

positive solution of (2.2). In fact, for each odd number n, we can obtain all solutions of (2.2) when

λ(1 − k) = λn =
n2π2

4
, which are

un(x) = kn cos
nπx

2
, where kn =

(4λ − n2π2)nπ

16λ
, n = 1, 3, 5, . . . , (2.4)

and the corresponding transcritical bifurcation point where {(λ, un(x))} crosses the line of trivial solu-

tions is λ(1 − k) = λn =
n2π2

4
. On the other hand, if n is even, since

∫ 1

−1
cos(nπx/2)dx = 0, then we

have a line of solutions (λ = λn =
n2π2

4
, u = k cos

nπx

2
), for any k ∈ R. Hence, the steady state solutions

of (2.1) are all explicitly solved. In the next section, we study the stability of the steady state solutions
(Fig. 1).

In fact, the explicit form of solutions to (2.2) can be extended to all f(x, y) ≡ f2(y) = f2(|y|). Let the
Fourier series of f2 on (−1, 1) be

f2(y) =
∞∑

n=1

cn cos
nπy

2
, where cn =

∫ 1

−1

cos
nπy

2
f2(y)dy.
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Fig. 1. Bifurcation diagram of solutions to (2.2): the horizontal axis is λ, the vertical axis is k, and the five curves are
(λ, ui(x)) bifurcating from λi with i = 1, 2, 3, 4, 5

Then for each n ∈ N, the equation⎧⎪⎨
⎪⎩

u′′(x) + λu(x)
(

1 −
∫ 1

−1

f2(y)u(y)dy

)
= 0, x ∈ (−1, 1),

u(−1) = u(1) = 0,

(2.5)

has a curve of solutions (λ, un(x)) where

un(x) = kn cos
nπx

2
, and kn =

4λ − n2π2

4λ

∫ 1

−1

cos
nπy

2
f2(y)dy

, (2.6)

if
∫ 1

−1

cos
nπy

2
f2(y)dy �= 0; and if

∫ 1

−1

cos
nπy

2
f2(y)dy = 0, then (2.5) has a vertical line of solutions

(λn, k cos
nπx

2
) for k ∈ R. From this rather special (2.5), we can see that the set of steady state solutions

of the nonlocal equation is curves in the space (λ, u) ∈ R
+ × C2[−1, 1], and these curves (continua) in

general are not bounded.
Motivated by the explicit solvable example above, we consider the general steady state equation of

(1.5): ⎧⎪⎨
⎪⎩

u′′(x) + λu(x)
(

1 −
∫ 1

−1

f(x, y)u(y)dy

)
= 0, x ∈ (−1, 1),

u(−1) = u(1) = 0.

(2.7)

Obviously, u = 0 is a trivial steady state solution of (1.5) for any λ > 0. First, we show the nonexistence
of the positive solutions of (2.7) for λ small

Theorem 2.1. Suppose that f satisfies (f1). Then the problem (2.7) has no positive solutions when λ ≤
π2/4.
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Proof. We prove the theorem by contradiction. We assume that there exists a positive solution u1 of (2.7)
for λ ≤ π2/4. Then, we have⎧⎪⎨

⎪⎩
u′′

1(x) + λu1(x)
(

1 −
∫ 1

−1

f(x, y)u1(y)dy

)
= 0, x ∈ (−1, 1),

u1(−1) = u1(1) = 0.

(2.8)

Let (μ1, φ1) be the principle eigenpair of{
φ′′ + μφ = 0, x ∈ (−1, 1),
φ(−1) = φ(1) = 0,

(2.9)

such that φ1 > 0, then {
φ′′

1 + μ1φ1 = 0, x ∈ (−1, 1),
φ1(−1) = φ1(1) = 0.

(2.10)

We can easily see that μ1 = π2/4. Multiplying the equation in (2.8) by φ1 and (2.10) by u1, and sub-
tracting and integrating from −1 to 1, then we obtain

1∫

−1

(μ1 − λ)φ1(x)u1(x)dx =

1∫

−1

λu1(x)φ1(x)

1∫

−1

f(x, y)u1(y)dydx. (2.11)

Since φ1 > 0, u1 > 0, λ < μ1 = π2/4, then we find that the left hand side of (2.11) is < 0, and the
right hand side is > 0, which is a contradiction. So (2.7) has no positive solution for λ ≤ π2/4. �

For the existence of positive solutions and other solutions of (2.7), we use the local and global bifur-
cation theory. We recall the following abstract bifurcation theorem (see [8,28,31–33]):

Theorem 2.2. Let X,Y be Banach spaces, and let F : R ×X → Y be continuously differentiable. Suppose
that F (λ, u0) = 0 for λ ∈ R, the partial derivative Fλu exists and is continuous. At (λ0, u0), F satisfies
(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and N(Fu(λ0, u0)) = span{w0}.
(F3) Fλu(λ0, u0)[w0] �∈ R(Fu(λ0, u0)), where w0 ∈ N(Fu(λ0, u0)).
Then
1. The solutions of F (λ, u) = 0 near (λ0, u0) consists precisely of the curves u = u0 and (λ(s), u(s)), s ∈

I = (−δ, δ), where (λ(s), u(s)) are continuously differentiable functions such that λ(0) = λ0, u(0) =
u0, u

′(0) = w0. Moreover, if F is C2 in u, then λ(s) is differentiable, and

λ′(0) = −〈l, Fuu(λ0, u0)[w0, w0]〉
2〈l, Fλu(λ0, u0)[w0]〉 , (2.12)

where l ∈ Y ∗ such that R(Fu(λ0, u0)) = {v ∈ Y : 〈l, v〉 = 0}.
2. If in addition, Fu(λ, u) is a Fredholm operator for all (λ, u) ∈ R × X, then the curve {(λ(s), u(s)) :

s ∈ I} is contained in C, which is a connect component of S̄ where S = {(λ, u) ∈ R × X : F (λ, u) =
0, u �= u0}; and either C is not compact or C contains a point (λ∗, u0) with λ∗ �= λ0.

In Theorem 2.2, if λ′(0) �= 0, then a transcritical bifurcation occurs; while λ′(0) = 0 and λ′′(0) �= 0, a
pitchfork bifurcation occurs.

To put (2.7) into the framework of Theorem 2.3, we define X = {u ∈ C2[−1, 1] : u(±1) = 0}, Y =
C[−1, 1], and F : R × X → Y by

F (λ, u) = u′′ + λu

⎛
⎝1 −

1∫

−1

f(x, y)u(y)dy

⎞
⎠ . (2.13)
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Our main existence result is as follows:

Theorem 2.3. Suppose that f satisfies (f1). Let S be the set of solutions to (2.7) with u �= 0. Then for
each n ∈ N, there exists a connected component Cn of S satisfying
1. (λn, 0) ≡ (n2π2/4, 0) ∈ Cn;
2. Near (λ, u) = (λn, 0), the solution set of (2.7) consists of two parts: a line of constant solutions (λ, 0)

and a curve of nonconstant solutions {(λn(s), un(s)) : |s| < δn}, such that un(s) = s cos(nπx/2) +
szn(s), where λ : In → R, zn : In → Zn are C1 functions, In = (−δn, δn), Zn is a subspace of Y
orthogonal to span{cos(nπx/2)}, λn(0) = λn and z(0) = 0;

3. For each (λ, u) ∈ Cn and (λ, u) �= (λn, 0), u(x) has exactly n − 1 simple zeroes in (−1, 1), all zeroes of
u(x) in [−1, 1] are simple, and Cn is unbounded in R

+ × X.

Proof. For any λ ∈ R, F (λ, 0) = 0. It is easy to verify that F is C2 in λ and u. For any φ ∈ X, we have
Fu(λ, 0)[φ] = φ′′ + λφ. Thus, the singular points of Fu are given by the equation (2.9). Hence, potential
bifurcation points are given by λn = n2π2/4.

It is well known that dimN(Fu(λn, 0)) = codimR(Fu(λn, 0)) = 1. In fact

N(Fu(λn, 0)) = span
{

cos
nπx

2

}
, and R(Fu(λn, 0)) =

⎧⎨
⎩v ∈ Y :

1∫

−1

cos
nπx

2
v(x)dx = 0

⎫⎬
⎭ .

Hence, Fu(λn, 0) is a Fredholm operator with index zero and (F1) holds.
We also have

Fλu(λn, 0)
[
cos

nπx

2

]
= cos

nπx

2
, (2.14)

and
1∫

−1

cos
nπx

2
cos

nπx

2
dx �= 0, (2.15)

then we have Fλu(λn, 0)[cos(nπx/2)] �∈ R(Fu(λn, 0)), thus (F3) holds. Hence, a local bifurcation of
F (λ, u) = 0 occurs at (λ, u) = (λn, 0) (part 1 of Theorem 2.2), and the solution set of (2.7) near (λn, 0)
consists of the trivial solutions {(λ, 0)} and a smooth curve Σn = {(λn(s), un(s) : |s| < δn}. Moreover,
the direction and type of the bifurcation can be determined by

λ′
n(0) = −λn

∫ 1

−1

∫ 1

−1
f(x, y)w2

n(x)wn(y)dxdy∫ 1

−1
w2

n(x)dx
, (2.16)

where wn(x) = cos(nπx/2).
Now, we turn to the global bifurcation. In general, we have

Fu(λ, u)[φ] = φ′′(x) + λφ(x)

⎛
⎝1 −

1∫

−1

f(x, y)u(y)dy

⎞
⎠ − λu(x)

1∫

−1

f(x, y)φ(y)dy. (2.17)

Since F1[φ] = φ′′ + λφ
(
1 − ∫ 1

−1
u(y)f(x, y)dy

)
is a Fredholm operator with index zero, and Fu(λ, u) is a

rank-one (thus compact) perturbation of F1, then Fu(λ, u) is also a Fredholm operator with index zero.
Therefore, the global bifurcation result in part 2 of Theorem 2.2 also holds: each local curve Σn bifurcating
from (λ, 0) is contained in a connected component Cn of S where S = {(λ, u) ∈ R×X : F (λ, u) = 0, u �= 0}.

To obtain a more precise structure of the solution set, we follow the classical approach in Rabinowitz
[30]. For n ∈ N, let S+

n denote the set of functions u ∈ X such that u(x) has exactly n − 1 simple
zeroes in (−1, 1), all zeroes of u(x) in [−1, 1] are simple, and u(x) is positive in a deleted neighborhood
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of x = −1. Set S−
n = −S+

n and Sn = S+
n

⋃
S−

n . We claim that for n ∈ N, the connected component
Cn of S is contained in (R+ × Sn)

⋃{(λn, 0)}, and Cn is unbounded in (R+ × Sn)
⋃{(λn, 0)}. From part

1 of Theorem 2.3, near (λn, 0), the solutions on Σn ⊂ Cn are in form of un(s) = s cos(nπx/2) + o(s),
hence Σn ⊂ (R+ × Sn)

⋃{(λn, 0)}. If Cn ⊂ (R+ × Sn)
⋃{(λn, 0)}, then it must be unbounded since it

cannot contain another (λj , 0) with j �= n. If Cn �⊂ (R+ × Sn)
⋃{(λn, 0)}, then there exists (λ, u) ∈

Cn

⋂
(R+ × ∂Sn), (λ, u) �= (λn, 0), and (λ, u) = limm→∞(λm, um) with (λm, um) ∈ Cn

⋂
(R+ × Sn). Then

u must have a double zero, which implies that u ≡ 0 from the uniqueness of solution to the ordinary
differential equation u′′ + λ(1 − k(x))u = 0 where k(x) =

∫ 1

−1
f(x, y)u(y)dy (see Lemma 12 in [30]). This

implies that (λ, u) �= (λj , 0) for some j �= n, but that is impossible since (λm, um) ∈ Cn

⋂
(R+ ×Sn). This

reaches a contradiction, hence Cn ⊂ (R+ × Sn)
⋃{(λn, 0)} and Cn is unbounded. �

Remark 2.4. 1. Following the unilateral global bifurcation theorem in [11] (see also [33]), it can be
shown that sufficiently close to the bifurcation point, the connected component Cn can be locally
decomposed into two sub-continua C±

n ; moreover, in the sufficiently small neighborhood of bifurca-
tion point, the two sub-continua must coincide with the branch of solutions given in above theorem.
Furthermore, the solutions on these sub-continua have the required sign. Again, following the argu-
ment in [11,33], the alternatives stated above for the component Cn can in fact be applied to each
of the sub-continua C±

n .
2. We notice that the bifurcation at the first eigenvalue λ = λ1 is always a transcritical bifurcation with

λ′
1(0) > 0 from (2.16) since w1(x) > 0 for x ∈ (−1, 1) and f �≡ 0. But other bifurcation branches

can even be vertical as we have shown for (2.5).

3. Stability, uniqueness, and existence of positive solution

The linear stability of an equilibrium solution u of (1.5) can be determined by the following linearized
eigenvalue problem ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ′′(x) + λφ(x) − λφ(x)
∫ 1

−1

f(x, y)u(y)dy

−λu(x)
∫ 1

−1

f(x, y)φ(y)dy = μφ(x), x ∈ (−1, 1),

φ(−1) = φ(1) = 0.

(3.1)

A solution u of (2.7) is stable if all eigenvalues of (3.1) are negative, otherwise it is unstable. In general,
(3.1) is a nonlocal eigenvalue problem, but when u = 0, it becomes a standard eigenvalue problem, and
we can easily deduce that u = 0 is linearly stable when λ < π2/4, and u = 0 is unstable if λ ≥ π2/4.

We define for φ ∈ X,

L[φ] = φ′′(x) + λφ(x) − λφ(x)

1∫

−1

f(x, y)u(y)dy − λu(x)

1∫

−1

f(x, y)φ(y)dy. (3.2)

We summarize some known results regarding the spectral properties of L:

1. With D(L) = H1
0 (Ω) ∩ H2(Ω) ⊂ L2(Ω), L is a densely defined, closed, self-adjoint operator with com-

pact resolvent, L is a Fredholm operator of index 0, the spectrum σ(L) consists of isolated eigenvalues
{μi} (i = 1, 2, · · ·) each with finite multiplicity, so that Re(μ1) > Re(μ2) ≥ Re(μ3) ≥ · · · → −∞, and
L has only finitely many complex eigenvalues;
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2. The adjoint operator L∗ is defined by

L∗[ξ] = ξ′′(x) + λξ(x) − λξ(x)

1∫

−1

f(x, y)u(y)dy − λ

1∫

−1

f(x, y)u(y)ξ(y)dy, (3.3)

σ(L∗) = σ(L), and an eigenvalue of L is also an eigenvalue of L∗ with same multiplicity.
3. The principal eigenvalue μ1 is real valued, μ1 is a simple eigenvalue with a positive eigenfunction

φ1(x), and eigenfunctions corresponding to other eigenvalues are sign changing.
Parts 1 and 2 can be found in Freitas [14,15], and part 3 follows from a Krein–Rutman type result in
Huang [23] (Propositions 2.3 and 2.4), or Davidson and Dodds [9] (Theorems 4.1 and 5.1). For the latter
result, we use the space Z = L2(Ω) and D(L) = H1

0 (Ω) ∩ H2(Ω), then the standard positive cone Z+

is generating and normal. One can easily check that L is a closed and resolvent positive operator (see
definition in [23]), then Propositions 2.3 and 2.4 in [23] imply the results stated in part 3 above. The
eigenfunctions in Z clearly also belong to X from the regularity theory of elliptic equations.

Our main stability result is for the positive steady state solutions:

Theorem 3.1. Suppose that f satisfies (f1). Then any positive solution u(x) of (2.7) for λ > π2/4 is
stable.

Proof. Let u(x) be a positive solution of (2.7), and let (μ1, φ1) and (μ1, ξ1) be the corresponding principal
eigenpairs of L and L∗, respectively. We notice that u and ξ1 satisfy the equations

u′′ + λu − λu

1∫

−1

f(x, y)u(y)dy = 0, u(±1) = 0, (3.4)

and

ξ′′
1 + λξ1 − λξ1

1∫

−1

f(x, y)u(y)dy − λ

1∫

−1

f(x, y)u(y)ξ1(y)dy = μ1ξ1, ξ1(±1) = 0. (3.5)

Multiplying (3.5) by u and (3.4) by ξ1, subtracting and integrating, we obtain

μ1

1∫

−1

u(x)ξ1(x)dx = −λ

1∫

−1

1∫

−1

f(x, y)u(x)u(y)ξ1(y)dxdy. (3.6)

Since u(x) > 0 and ξ1(x) > 0 in (−1, 1), then μ1 < 0 and the positive steady state solution u must be
stable. �

The stability result implies the uniqueness of positive solution of (2.7).

Corollary 3.2. Suppose that f satisfies (f1). Then for any λ > π2/4, (2.7) has at most one positive
solution.

Proof. Suppose that u∗(λ, x) is a positive solution of (2.7) for λ > π2/4, then from Theorem 3.1, u(λ, x)
is stable thus nondegenerate. The implicit function theorem can be applied to (λ, u∗) to obtain a curve Σ
of positive solutions in R+ × X containing (λ, u∗). We extend Σ to the maximum connected component
of positive solutions in R+ × X, then every solution on Σ is stable, and hence Σ is a curve parameterized
by λ. But from Theorem 2.1, Σ cannot be extended to the left beyond λ = π2/4. Therefore, Σ must
connect to the trivial solution u = 0 at some λ = λn. Since all solutions on Σ are positive, then Σ can
only connect to u = 0 at λ = λ1 = π2/4, and Σ = S+

1 which is defined in the proof of Theorem 2.3. Since
this argument works for any positive solution u∗(λ, x), then any positive solution of (2.7) is on S+

1 . This
also implies that S+

1 is a curve parameterized by λ. �
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Notice that we do not claim that for all λ > π2/4, the equation (2.7) always has a positive solution.
It is well known that if one can show that all positive solutions are a priori bounded, then S+

1 can be
extended to λ = ∞. But it is not clear whether such an a priori estimate holds for the positive solutions
of (2.7) under condition (f1). We notice that from the explicit example in Sect. 2, the sign-changing
solutions are in fact not uniformly bounded, unlike the corresponding reaction-diffusion equations. In the
following, we prove that under a stronger condition (f2), more properties of positive solutions of (2.7) can
be shown, and in particular, we can show the existence of a positive solution of (2.7) for all λ > π2/4.

Theorem 3.3. Suppose that f satisfies (f1) and (f2). Then
1. Any positive solution u(λ, x) of (2.7) is an even function for x ∈ (−1, 1), and u(λ, x) is strictly

decreasing in x for x ∈ (0, 1].
2. For every λ > π2/4, (2.7) has a unique positive solution u(λ, x), and it satisfies

f1(0)

1∫

−1

u(x)dx ≤ 1 − π2

4λ
. (3.7)

Proof. For a positive solution u of (2.7), define k(x) =
∫ 1

−1

f1(|x− y|)u(y)dy. If (f2) is satisfied, then it is

easy to verify that whether u(x) is a solution of (2.7), so is u(−x). But from Corollary 3.2, the positive
solution of (2.7) is unique, then u(−x) = u(x) and hence any positive solution must be an even function.

Next, we prove u′(x) < 0 for x ∈ (0, 1]. From Hopf boundary lemma and the equation of u, u′(1) < 0,
thus there exists δ > 0 such that u′(x) < 0 in (1 − δ, 1]. We use the well-known moving plane method.
For θ ∈ (0, 1), define xθ = 2θ − x and uθ(x) = u(xθ). Let wθ = uθ(x) − u(x). Then wθ(x) > 0 for
x ∈ (1 − θ, 1], wθ(θ) = 0 and w′

θ(θ) < 0 if θ > 0 is small. Let

θ0 = sup{θ > 0 : wμ(x) > 0, x ∈ (1 − μ, 1], and w′
μ(μ) < 0 for μ ∈ (0, θ)}.

If θ0 < 1, then at θ = θ0, either wθ(x) = 0 for some x ∈ (1 − θ, 1) or w′
θ(θ) = 0. But wθ satisfies the

equation:

w′′ + λ[1 − k(xθ)]w + λu

1∫

−1

[f1(|x − y|) − f1(|xθ − y|)]u(y)dy = 0.

From the condition (f2), one can show that
1∫

−1

[f1(|x − y|) − f1(|xθ − y|)]u(y)dy > 0.

Therefore, from the maximum principle, neither wθ(x) = 0 for some x ∈ (1 − θ, 1) nor w′
θ(θ) = 0 can

occur. Hence, we must have θ0 = 1, and u′(x) < 0 for x ∈ (0, 1].
We claim that 0 < k(x) < f1(2)/f1(0) for x ∈ [−1, 1]. From (f2), it is clear that k(x) > 0. From the

last paragraph, we know that u achieves its maximum at x = 0 and from the maximal principle, k(0) < 1.
From (f2), we obtain that

k(x) =

1∫

−1

f1(|x − y|)u(y)dy ≤ f1(2)

1∫

−1

u(y)dy

≤ f1(2)
f1(0)

1∫

−1

f1(|y|)u(y)dy =
f1(2)
f1(0)

k(0) <
f1(2)
f1(0)

.
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Note that k(x) ≥ k(0) from (f2), and k(0) < 1 implies that

f1(0)

1∫

−1

u(x)dx ≤ k(0) < 1.

Multiplying (2.7) by u and integrating on [−1, 1], we obtain that

λ

1∫

−1

u2(x)dx =

1∫

−1

[u′(x)]2dx + λ

1∫

−1

k(x)u2(x)dx. (3.8)

From k(x) ≥ k(0) and the Poincaré inequality, the equation (3.8) becomes

λ

1∫

−1

u2(x)dx ≥ π2

4

1∫

−1

u2(x)dx + λf1(0)

1∫

−1

u(x)dx

1∫

−1

u2(x)dx,

and this is equivalent to (3.7).
At last we prove the existence of a positive solution u(λ, x) for all λ > π2/4 by showing that S+

1 can
be extended to λ = ∞. Suppose this is not true, then S+

1 can be at most extended to some λ∗ > π2/4.
We claim that if that is the case, then ||u(λ, ·)||L2 → ∞ as λ → (λ∗)+. Indeed, if ||u(λ, ·)||L2 is bounded,
and we also know that k(x) is bounded, then ||u(λ, ·)||H1 is bounded from (3.8), and a weak solution
would exist at λ = λ∗, so we can extend S+

1 beyond λ∗, which is a contradiction.
We choose an increasing sequence λn → λ∗ so that ||u(λn, ·)||L2 → ∞, and we define vn(x) =

u(λn, x)/||u(λn, ·)||L2 . Also, we define kn(x) =
∫ 1

−1

f1(|x − y|)u(λn, y)dy. So vn satisfies

v′′
n + λn(1 − kn(x))vn = 0, x ∈ (−1, 1), vn(±1) = 0.

Since ||vn||L2 = 1, {1 − kn(x)} is bounded, and λn → λ∗, then {vn} is bounded in H1
0 (−1, 1), and hence,

{vn} has a subsequence converging strongly in L2(−1, 1) and weakly in H1
0 (−1, 1) to a limit v ∈ H1

0 (−1, 1),
and ||v||L2 = 1. Moreover, from Sobolev embedding theorem, v ∈ Cα[−1, 1] for some α ∈ (0, 1), v(x) is
nonnegative, v(x) is even, and v is decreasing for x ∈ (0, 1). Hence, there exist ε and δ > 0 such that

v(x) > ε when |x| < δ. This implies that for n large, kn(0) ≥ ||u(λn, ·)||L2

2

∫ δ

−δ

f1(|y|)v(y)dy → ∞, which

contradicts with the boundedness of kn. Therefore, the assumption that ||u(λ, ·)||L2 → ∞ as λ → (λ∗)+

does not hold, and S+
1 can be extended to λ = ∞. �

Remark 3.4. The symmetry of the solution in Theorem 3.3 follows from the uniqueness of solution, and
it does not rely on the condition (f2). But (f2) is needed for the monotonicity of the solution. Note that
in the classical paper [20], a similar monotonicity condition on x is required for the function f(x, u). But
we conjecture that the monotonicity still holds without (f2).
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