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Existence and Multiplicity of Positive
Solutions to a Quasilinear Elliptic Equation
with Strong Allee Effect Growth Rate

Chan-Gyun Kim and Junping Shi

Abstract. In this paper we consider a p-Laplacian equation with strong
Allee effect growth rate and Dirichlet boundary condition{

div(|∇u|p−2∇u) + λf(x, u) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(Pλ)

where Ω is a bounded smooth domain in R
N for N ≥ 1, p > 1, and λ is

a positive parameter. By using variational methods and a suitable trun-
cation technique, we prove that problem (Pλ) has at least two positive
solutions for large parameter and it has no positive solutions for small
parameter. In addition, a nonexistence result is investigated.
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1. Introduction

Consider a boundary value problem{
div(|∇u|p−2∇u) + λf(x, u) = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(Pλ)

where Ω is a bounded smooth domain in R
N for N ≥ 1, p > 1, and λ is a

positive parameter.
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The existence, nonexistence and/or multiplicity of positive solutions to
problem (Pλ) have been studied extensively in the literature; see, for exam-
ple, [1,2,5,6,8,9,11–15,17–25] and the references therein. In many previous
studies, the nonlinear function f(x, s)/sp−1 was assumed to be nonincreas-
ing in s, and under this condition, it can be shown that problem (Pλ) has
at most one positive solution (see, e.g., [1,6,8,9,22]). On the other hand, the
uniqueness of positive solution no longer holds if f(x, s)/sp−1 is not nonin-
creasing in s. In [12,24,25], it was shown that problem (Pλ) has at least two
positive solutions for sufficiently large λ if the nonlinearity f(x, s) is homo-
geneous, i.e., f(x, s) = f(s), and it satisfies that f(0) = f(α) = 0 for some
α > 0, lims→0+ f(s)/sp−1 = 0, f > 0 in (0, α) and f < 0 in (α,∞). In [14], it
was shown that problem (Pλ) has at least two positive solutions for sufficiently
large λ if p > 2 and homogeneous nonlinearity f(x, u) = f(u) satisfies that
f(0) = 0, lims→0+ f(s)/sp−1 = −m < 0, and there are precisely two numbers
0 < ρ1 < ρ2 such that f(ρ1) = f(ρ2) = 0, f < 0 in (0, ρ1), f > 0 in (ρ1, ρ2)
and

∫ ρ2

0
f(s)ds > 0.

Throughout this paper, we assume that f(x, u) satisfies

(f1) f ∈ C(Ω × [0,∞),R);
(f2) There exist b(x), c(x) ∈ C(Ω) such that 0 < b(x) < c(x) ≤ M for some

constant M > 0, and f(x, 0) = f(x, b(x)) = f(x, c(x)) = 0 for all x ∈ Ω;
(f3) For all x ∈ Ω, f(x, s) < 0 for any s ∈ (0, b(x))∪(c(x),∞), and f(x, s) > 0

for any s ∈ (b(x), c(x));
(f4) There exists N1 > 0 such that f(x, s) ≥ −N1s

p−1 for all x ∈ Ω and
0 ≤ s ≤ M ;

(f5) There exists an open ball B1 of Ω such that c(x) ∈ C1(B1) and

F (x, c(x)) > 0, x ∈ B1,

where

F (x, s) =
∫ s

0

f(x, τ)dτ for (x, s) ∈ Ω × [0,∞).

Using variational methods and a suitable truncation technique, we show
that problem (Pλ) has at least two positive solutions for sufficiently large λ
and problem (Pλ) has no positive solutions for small λ when inhomogeneous
nonlinearity f(x, u) satisfies (f1)-(f5). Our result extends the result of [17] for
p = 2 to p > 1, and it also extends the result of [14] for p > 2 and homogeneous
nonlinearity to p > 1 and inhomogeneous nonlinearity.

2. Preliminaries

In this section we will establish some basic setups and preliminary results con-
cerning the p-Laplacian problems (see, e.g., [7]). Consider a boundary value
problem
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{
div(|∇u|p−2∇u) + g(x, u) = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(Q)

where p > 1 and suppose g : Ω × R → R is a Carathéodory function and it
satisfies the growth condition:

|g(x, s)| ≤ C|s|q−1 + b(x) for (x, s) ∈ Ω × R, (2.1)

where C ≥ 0 is constant, q > 1, b ∈ Lq′
(Ω), 1/q + 1/q′ = 1.

A function u ∈ W 1,p
0 (Ω) is said to be a solution of problem (Q) if∫

Ω

|∇u|p−2∇u∇vdx =
∫

Ω

g(x, u)vdx for all v ∈ W 1,p
0 (Ω).

Define Φ : W 1,p
0 (Ω) → R by

Φ(u) =
∫

Ω

G(x, u(x))dx for u ∈ W 1,p
0 (Ω),

where G : Ω × R → R is defined by

G(x, s) =
∫ s

0

g(x, τ)dτ for (x, s) ∈ Ω × R.

Then Φ is continuously Fréchet differentiable on W 1,p
0 (Ω) if g(x, s) satisfies

(2.1) with q ∈ (1, p∗), where

p∗ =

{
Np

N−p , p < N

∞, p ≥ N,

and

Φ′(u)φ =
∫

Ω

g(x, u)φdx for u, φ ∈ W 1,p
0 (Ω).

Consequently, the functional I : W 1,p
0 (Ω) → R defined by

I(u) =
1
p

∫
Ω

|∇u|pdx− Φ(u) for u ∈ W 1,p
0 (Ω)

is continuously Fréchet differentiable on W 1,p
0 (Ω) if g(x, s) satisfies (2.1) with

q ∈ (1, p∗), and

I ′(u)φ =
∫

Ω

|∇u|p−2∇u∇φdx−
∫

Ω

g(x, u)φdx for all φ ∈ W 1,p
0 (Ω).

Thus critical points of I are solutions of (Q).
We define u ∈ W 1,p(Ω) to be a sub-solution to problem (Q) if u ≤ 0 on

∂Ω and∫
Ω

|∇u|p−2∇u∇φdx−
∫

Ω

g(x, u)φdx ≤ 0 for all φ ∈ W 1,p
0 (Ω), φ ≥ 0.

Similarly, u ∈ W 1,p(Ω) is a super-solution to problem (Q) if in the above the
reverse inequalities hold.
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Finally we recall the following existence result based on super-subsolution
method: ([10, Theorem 4.11]).

Theorem 2.1. Assume that g(x, s) satisfies (2.1) with q = p, and assume that
ρ ∈ W 1,p(Ω) ∩L∞(Ω) is a sub-solution and ψ ∈ W 1,p(Ω) ∩L∞(Ω) is a super-
solution to (Q) such that ρ ≤ ψ. Then (Q) has a minimal solution u∗ and a
maximal solution u∗ in the order interval [ρ, ψ] such that any solution u of (Q)
in [ρ, ψ] satisfies u∗ ≤ u ≤ u∗.

3. Main Results

Consider the following truncation of the nonlinearity of f(x, s) :

f̂(x, s) :=

⎧⎪⎨
⎪⎩

0, (x, s) ∈ Ω × (−∞, 0],
f(x, s), (x, u) ∈ Ω × (0,M ],
f(x,M), (x, s) ∈ Ω × (M,∞).

Then for each q ∈ (1, p∗), there exists a constant C(q) > 0 such that

f̂(x, s) ≤ C(q)|s|q−1, (x, s) ∈ Ω × R. (3.1)

Define the functional Îλ : W 1,p
0 (Ω) → R by

Îλ(u) :=
1
p

∫
Ω

|∇u(x)|pdx− λ

∫
Ω

F̂ (x, u(x))dx, u ∈ W 1,p
0 (Ω),

where F̂ (x, s) =
∫ s

0
f̂(x, τ)dτ, (x, s) ∈ Ω × R. Since f̂(x, s) is bounded, the

functional Îλ is continuously Fréchet differentiable on W 1,p
0 (Ω), and it is also

weakly lower-semicontinuous and coercive on W 1,p
0 (Ω). Moreover, the func-

tional Îλ satisfies the Palais-Smale condition. Indeed, let {un} be any sequence
in W 1,p

0 (Ω) such that {Îλ(un)} is bounded and Î ′
λ(un) → 0 as n → ∞. Then

it follows from the boundedness of F̂ that {un} is bounded in W 1,p
0 (Ω). By

Lemma 2 on page 363 of [7], the sequence {un} has a convergent subsequence,
and thus the functional Îλ satisfies the Palais-Smale condition.

Let u be any critical point of Îλ. Then 0 ≤ u(x) ≤ M by the same argu-
ment as in the proof of [25, Propsition 2.1]. Here we use the facts that f̂(x, s) =
0 for all (x, s) ∈ Ω×(−∞, 0] and f̂(x, s) ≤ 0 for all (x, s) ∈ Ω× [M,∞), and M
is the constant in the condition (f2). Thus u is a nonnegative bounded solu-
tion of (Pλ), and u ∈ C1,β

0 (Ω) for some β ∈ (0, 1) by Lieberman’s regularity
result [16, Theorem 1]. It follows from the maximum principle due to Vázquez
[26, Theorem 5] that u > 0 in Ω and ∂u/∂ν < 0 on ∂Ω if u 
≡ 0 in Ω.

Theorem 3.1. Let p > 1 and suppose that f(x, s) satisfies (f1) − f(5). Then
problem (Pλ) has at least two positive solutions for sufficiently large λ, and it
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has no positive solutions for λ ≤ λ1/C(p). Here C(p) is the constant in (3.1)
with q = p, and λ1 > 0 is the principal eigenvalue of the problem{

div(|∇u|p−2∇u) + λ|u|p−2u = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω

with the associated eigenfunction φ1 > 0 in Ω.

Proof. Since Îλ is weakly lower-semicontinuous and coercive on W 1,p
0 (Ω), Îλ

has a global minimizer u1 ∈ W 1,p
0 (Ω). We will show that for large λ, there

exists v ∈ W 1,p
0 (Ω) such that Îλ(v) < 0 = Îλ(0). Then u1 
≡ 0, and thus u1 is

a positive solution of problem (Pλ) for large λ.
For small ε > 0, we define

vε(x) :=

⎧⎪⎨
⎪⎩

0, x ∈ Ω \Bε
1

cε(x), x ∈ Bε
1 \B1

c(x), x ∈ B1,

where Bε
1 := {x ∈ Ω : dist(x,B1) ≤ ε}, B1 is the open set in (f4), c(x) is the

function in (f2) and cε(x) is an appropriate function such that 0 ≤ vε(x) ≤
c(x), x ∈ Ω and vε ∈ C1

0 (Ω). Then F̂ (x, vε(x)) = F (x, vε(x)), x ∈ Ω and

Îλ(vε) =
1
p

∫
Ω

|∇vε(x)|pdx− λ

∫
Ω

F (x, vε(x))dx

=
1
p

∫
Ω

|∇vε(x)|pdx− λ

∫
B1

F (x, c(x))dx− λ

∫
Bε

1\B1

F (x, cε(x))dx

≤ 1
p

∫
Ω

|∇vε(x)|pdx− λ

∫
B1

F (x, c(x))dx+ λA|Bε
1 \B1|,

where A = max0≤u≤M |F (x, u)|. Since F (x, c(x)) > 0 is continuous in B1,

there exist an open subset B0 with B0 ⊆ B1 and a constant δ0 > 0 such that
|B0| > 0 and F (x, c(x)) ≥ δ0 for x ∈ B0. Choose a sufficiently small ε0 > 0 so
that

δ0|B0| −A|Bε0
1 \B1| > δ0|B0|

2
.

Then

Îλ(vε0) ≤ 1
p

∫
Ω

|∇vε0(x)|pdx− λ

∫
B0

F (x, c(x))dx+ λA|Bε0
1 \B1|

≤ 1
p

∫
Ω

|∇vε0(x)|pdx− λ(δ|B0| −A|Bε0
1 \B1|)

≤ 1
p

∫
Ω

|∇vε0(x)|pdx− λ
δ0|B0|

2
,

which implies that Îλ(vε0) < 0 for sufficiently large λ. Consequently (Pλ) has
a positive solution u1 satisfying Îλ(u1) = inf Îλ(u) < 0 for all large λ.
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Fix q∗ ∈ (p, p∗). Then it follows from (3.1) that

F̂ (x, s) ≤ C(q∗)
q∗ |s|q∗

, (x, s) ∈ Ω × R,

and for u ∈ W 1,p
0 (Ω), by the Sobolev inequality,

Îλ(u) ≥ 1
p
‖u‖p

W 1,p
0

− λC(q∗)
q∗

∫
Ω

|u(x)|q∗
dx

≥ 1
p

[
1 − λC1‖u‖q∗−p

W 1,p
0

]
‖u‖p

W 1,p
0

for some constant C1 > 0. Thus for each λ > 0, there exists ρ > 0 such that
Îλ(u) > 0 = Îλ(0) if 0 < ‖u‖W 1,p

0
≤ ρ. Fix λ > 0 such that Îλ(u1) < 0. It

follows from Mountain pass lemma that Îλ has another critical point u2 such
that

Îλ(u2) > 0 > Îλ(u1),

and thus problem (Pλ) has another positive solution u2 for all large λ.
Finally we show that problem (Pλ) has no positive solution for all λ ≤

λ1/C(p). Assume on the contrary that there exists a positive solution uλ of
problem (Pλ) such that λ ≤ λ1/C(p). Let u = uλ, v = φ1, A = B = 1, a(x) =
λf(x, uλ(x))/uλ(x)p−1, b(x) = λ1 in [3, Theorem 1]. Then a(x) ≤ b(x) in Ω,
and ∫

Ω

L(uλ, φ1)dx ≤ 0

since φ1 > 0 in Ω. Here

L(uλ, φ1) := |∇uλ|p − p

(
uλ

φ1

)p−1

|φ1|p−2∇φ1∇uλ + (p − 1)

(
uλ

φ1

)p

|∇φ1|p.

On the other hand, L(uλ, φ1) ≥ 0 by Picone’s identity (see, e.g., [4, Theorem
1.1]). Thus L(uλ, φ1) = 0, for a.e. in Ω, which implies uλ = kφ1 for some
constant k, and one can easily proceed a contradiction. �

As an example of Theorem 3.1, we consider the following inhomogeneous
cubic nonlinearity case:{

div(|∇u|p−2∇u) + λup−1(u− b(x))(c(x) − u) = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(3.2)

where b(x), c(x) ∈ C(Ω) such that 0 < b(x) < c(x) for any x ∈ Ω.
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It is easy to verify that f(x, s) = sp−1(s− b(x))(c(x) − s) satisfies (f1) −
(f4). Moreover f satisfies (f5) if there exists an open ball B1 ⊆ Ω such that
c(x) ∈ C1(B1) and

0 <
(

1 +
2
p

)
b(x) < c(x) in B1.

Then by Theorem 3.1, problem (3.2) has at least two positive solutions for
large λ, and no positive solutions for small λ.

Finally we give the nonexistence of the positive solutions of problem (Pλ)
when (f5) does not hold. We define f(s) := maxx∈Ω f(x, s), b∗ := minx∈Ω b(x)
and c∗ := maxx∈Ω c(x). Then f is a continuous function on [0,∞), and it sat-
isfies that f(0) = f(b∗) = f(c∗) = 0, f(s) < 0 for any s ∈ (0, b∗)∪ (c∗,∞), and
f(s) > 0 for any s ∈ (b∗, c∗) when f satisfies (f1) − (f3).

Theorem 3.2. Let p > 1 and suppose that f(x, s) satisfies (f1) − f(3). If∫ c∗

0
f(s)ds < 0, then problem (Pλ) has no positive solutions for any λ > 0.

Proof. Assume on the contrary that there exists a positive solution (λ, uλ) of
problem (Pλ). Then uλ is a sub-solution of{

div(|∇u|p−2∇u) + λf(u) = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(3.3)

and c∗ is a super-solution of problem (3.3). Since ‖uλ‖∞ ∈ (b∗, c∗], problem
(3.3) has a positive solution u∗ such that uλ ≤ u∗ ≤ c∗ in view of Theorem
2.1. On the other hand, it follows from Loc and Schmitt [18, Remark 2] that∫ c∗

0
f(s)ds ≥ 0, which contradicts the hypothesis

∫ c∗

0
f(s)ds < 0. �
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