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MULTIPLE POSITIVE SOLUTIONS FOR P-LAPLACIAN

EQUATION WITH WEAK ALLEE EFFECT GROWTH

RATE
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(Submitted by: Klaus Schmitt)

Abstract. A p-Laplacian equation with weak Allee effect growth rate
and Dirichlet boundary condition is considered. The existence, multi-
plicity and bifurcation of positive solutions are proved with comparison
and variational techniques. The existence of multiple positive solutions
implies that the related ecological system may exhibit bistable dynamics.

1. Introduction

Consider a boundary-value problem{
div(|∇u|p−2∇u) + λup−1g(x, u) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(Pλ)

where p > 1 and λ is a nonnegative parameter, and Ω ⊂ RN is a smooth
bounded domain for N ≥ 1.

The existence and multiplicity (or uniqueness) of positive solutions to
(Pλ) have been considered by many people (see, e.g., [1, 5, 6, 7, 9, 10, 14,
15, 17, 20, 21, 22] and the references therein). In many previous studies, the
nonlinear function g(x, u) was assumed to be nonincreasing in u, and under
this condition, it can be shown that (Pλ) has at most one positive solution
(see, e.g., [1, 7, 9, 10]). On the other hand, the uniqueness of a positive
solution no longer holds if g(x, u) is not nonincreasing in u. In [21, 22], it
was shown that (Pλ) has at least two positive solutions if g(x, u) = g(u) =
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uq−p(1 − ur), where 2 < p < q, r > 0. In this case, g(u) increases for
small u and decreases for large u, g(u) > 0 for u ∈ (0, 1). In [18], the
existence of a maximum positive solution was shown when up−1g(x, u) =
aup−1 − uγ−1 − c · h(x) with γ > p > 1. In this case g(x, u) is also not
monotone.

The monotonicity of the function g also arises from the studies of ecological
population models. In this context, g(x, u) is the growth rate per capita of
the population at x ∈ Ω. When g is nonincreasing in u, then it is logistic-type
growth; and when g is increasing for small u and decreases for larger u, then
it is of an Allee effect growth. Here we follow the definitions and conditions
on g in [20], which were motivated by ecological applications. Throughout
this paper we assume that g(x, u) satisfies the following conditions:

(g1) g ∈ C(Ω× [0,∞),R);
(g2) For any x ∈ Ω, there exists u1(x) ≥ 0 such that g(x, ·) is increasing in

[0, u1(x)], g(x, ·) is decreasing in [u1(x),∞), and there exists N1 > 0
such that g(x, u1(x)) ≤ N1 for all x ∈ Ω;

(g3) For any x ∈ Ω, there exists u2(x) > u1(x) such that g(x, u2(x)) = 0,
and there exists M > 0 such that u2(x) ≤M for all x ∈ Ω.

In addition g(x, u) can take one of the following three forms (following
[20]):

(g4a) Logistic. g(x, 0) > 0, u1(x) = 0, and g(x, ·) is decreasing in [0,∞);
(g4b) Weak Allee effect. g(x, 0) ≥ 0, g(x, 0) 6≡ 0, u1(x) > δ1 for some

δ1 > 0, g(x, ·) is increasing in [0, u1(x)], and g(x, ·) is decreasing in
[u1(x),∞);

(g4c) Strong Allee effect. g(x, 0) < 0, u1(x) > 0, g(x, u1(x)) > 0, g(x, ·)
is increasing in [0, u1(x)], and g(x, ·) is decreasing in [u1(x),∞).

In this paper, we consider the positive solutions of (Pλ) with g satisfying
(g1)–(g3) and (g4b), that is, the weak Allee effect case. For the case of p = 2,
Shi and Shivaji [20] considered the existence, multiplicity, and bifurcation of
positive solutions of (Pλ) with Allee effect. The more general p-Laplacian
case is considerably more difficult, as bifurcation theory based on lineariza-
tion cannot be easily applied here due to the degeneracy of the p-Laplacian
operator when u = 0. Here we combine the techniques from comparison
methods, variational methods, and properties of p-Laplacian equations to
prove the existence, multiplicity, and bifurcation of positive solutions of (Pλ)
with Allee effect for p > 1.

In Section 2 we recall some basic setups and preliminary results, and in
Section 3 we state and prove the main results. In the paper, we denote
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by C1(Ω) the space of all continuously differentiable functions u : Ω → R
such that it and all its partial derivatives possess a continuous extension
up to the boundary. The closed linear subspace of C1(Ω) consisting of all
functions u ∈ C1(Ω) with u|∂Ω ≡ 0 is denoted by C1

0 (Ω). Given 0 < γ ≤ 1,
we denote by C1,γ(Ω) the Hölder space of all functions u ∈ C1(Ω) such that
it and all its partial derivatives are γ-Hölder continuous on Ω. The closed
linear subspace of C1,γ(Ω) consisting of all functions u ∈ C1,γ(Ω) satisfying

u|∂Ω ≡ 0 is denoted by C1,γ
0 (Ω). Given 1 ≤ r ≤ ∞, we denote by Lr(Ω)

the Lebesgue space of all Lebesgue-measurable functions u : Ω → R. We
denote by W 1,r(Ω) the Sobolev space of all functions u ∈ Lr(Ω) for which all
weak partial derivatives also belong to Lr(Ω). The norms ‖ · ‖C1 in C1(Ω),
‖ · ‖C1,γ in C1,γ(Ω), ‖ · ‖r in Lr(Ω), and ‖ · ‖W 1,r in W 1,r(Ω) are defined in
natural ways, respectively. Finally, for 1 ≤ r < ∞, the closure in W 1,r(Ω)
of the set of all C1 functions u : Ω→ R with compact support is denoted by
W 1,r

0 (Ω), whose norm is ‖u‖
W 1,r

0
= ‖∇u‖r, and we denote by W−1,r′(Ω) the

dual space of W 1,r
0 (Ω). Here 1/r + 1/r′ = 1.

2. Preliminaries

Consider a boundary-value problem{
div(|∇u|p−2∇u) + f(x, u) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(Q)

where p > 1, and suppose f : Ω× R→ R is a Carathéodory function which
satisfies the growth condition

|f(x, s)| ≤ C|s|q−1 + b(x) for (x, s) ∈ Ω× R, (2.1)

where C ≥ 0 is constant, q > 1, b ∈ Lq′(Ω), and 1/q + 1/q′ = 1.
Now we recall some well-known facts regarding the p-Laplacian operator

(see, e.g., [8]). Define −∆p : W 1,p
0 (Ω)→W−1,p′(Ω) by

〈−∆pu, v〉 =

∫
Ω
|∇u|p−2∇u∇v dx for all u, v ∈W 1,p

0 (Ω),

and define Nf : W 1,p
0 (Ω)→W−1,p′(Ω) by

〈Nfu, v〉 =

∫
Ω
f(x, u)v dx for all u, v ∈W 1,p

0 (Ω).

Then the operator −∆p is a one-to-one correspondence between W 1,p
0 (Ω)

and W−1,p′(Ω), with inverse (−∆p)
−1 monotone, bounded, and continuous,
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and the operator Nf : W 1,p
0 (Ω) → W−1,p′(Ω) is completely continuous if f

satisfies (2.1) with q ∈ (1, p∗). Here

p∗ =


Np

N − p
, p < N,

∞, p ≥ N.

A function u ∈W 1,p
0 (Ω) is said to be a solution of problem (Q) if

−∆pu = Nfu (2.2)

in the sense of W−1,p′(Ω); i.e.,

〈−∆pu, v〉 = 〈Nfu, v〉 for all v ∈W 1,p
0 (Ω)

or ∫
Ω
|∇u|p−2∇u∇v dx =

∫
Ω
f(x, u)v dx for all v ∈W 1,p

0 (Ω).

Consequently, problem (2.2) can be equivalently written as

u = (−∆p)
−1Nfu.

Note that the operator (−∆p)
−1Nf is completely continuous on W 1,p

0 (Ω) if
q ∈ (1, p∗).

Define Φ : W 1,p
0 (Ω)→ R by

Φ(u) =

∫
Ω
F (x, u(x)) dx for u ∈W 1,p

0 (Ω),

where F : Ω× R→ R is defined by

F (x, s) =

∫ s

0
f(x, τ) dτ for (x, s) ∈ Ω× R.

Then Φ is continuously Fréchet differentiable on W 1,p
0 (Ω) if q ∈ (1, p∗), and

Φ′(u)φ =

∫
Ω
f(x, u)φdx for u, φ ∈W 1,p

0 (Ω).

Consequently, the functional I : W 1,p
0 (Ω)→ R defined by

I(u) =
1

p

∫
Ω
|∇u|p dx− Φ(u) for u ∈W 1,p

0 (Ω)

is continuously Fréchet differentiable on W 1,p
0 (Ω) if q ∈ (1, p∗), and

I ′(u)φ =

∫
Ω
|∇u|p−2∇u∇φdx−

∫
Ω
f(x, u)φdx for all φ ∈W 1,p

0 (Ω).

Thus critical points of I are solutions of (Q).
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We define u ∈ W 1,p(Ω) to be a sub-solution to problem (Q) if u ≤ 0 on
∂Ω and∫

Ω
|∇u|p−2∇u∇φdx−

∫
Ω
f(x, u)φdx ≤ 0 for all φ ∈W 1,p

0 (Ω), φ ≥ 0.

Similarly, u ∈W 1,p(Ω) is a super-solution to problem (Q) if in the above the
reverse inequalities hold.

We recall the following existence result based on the super-/sub-solution
method ([11, Theorem 4.11]):

Theorem 2.1. Assume that f(x, s) satisfies (2.1) with q = p, and assume
that ρ ∈ W 1,p(Ω) ∩ L∞(Ω) is a sub-solution and ψ ∈ W 1,p(Ω) ∩ L∞(Ω) is a
super-solution to (Q) such that ρ ≤ ψ. Then (Q) has a minimal solution u∗
and a maximal solution u∗ in the order interval [ρ, ψ] such that any solution
u of (Q) in [ρ, ψ] satisfies u∗ ≤ u ≤ u∗.

Now consider the nonlinear eigenvalue problem{
div(|∇u|p−2∇u) + λm(x)|u|p−2u = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2.3)

where m ∈ L∞(Ω) with m(x) ≥ 0 in Ω, and there exists Ω0 ⊆ Ω such that
|Ω0| > 0 and m(x) > 0 for x ∈ Ω0. Then it is well known that the principal
eigenvalue λ1(m) for problem (2.3) exists, and λ1(m) ∈ (0,∞) is a simple
isolated eigenvalue for problem (2.3) with associated eigenfunction φ1(m) >
0 in Ω (see, e.g., [4]). If m(x) ≡ 1, then we denote the principal eigenvalue
and the associated positive eigenfunction by λ1 and φ1, respectively. Recall
g(x, u) is the function in the equation (Pλ), and in the following we denote
λ1(g(x, 0)) and φ1(g(x, 0)) by λ∗1 and φ∗1, respectively.

3. Main result

From now on, we assume that g(x, s) satisfies the conditions (g1)–(g3)
and (g4b). Let u be a nonnegative solution of (Pλ). Then, by the same
argument as in the proof of [22, Proposition 2.1], we have 0 ≤ u(x) ≤ M

for any x ∈ Ω, and thus u ∈ C1,β
0 (Ω) for some β ∈ (0, 1) by Lieberman’s

regularity result [16, Theorem 1]. It follows from the maximum principle
due to Vázquez [23, Theorem 5] that u > 0 in Ω and ∂u/∂ν < 0 on ∂Ω if
u 6≡ 0 in Ω.

First we prove a nonexistence result.
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Lemma 3.1. Assume that (g1)–(g3) are satisfied, and uλ is a positive so-
lution of (Pλ); then λ > λ1/N1. Here, N1 is the constant in the condition
(g2).

Proof. Assume on the contrary that there exists a positive solution uλ of
(Pλ) such that λ ≤ λ1/N1. Let u = uλ, v = φ1, A = B = 1, a(x) =
λg(x, uλ(x)), and b(x) = λ1 in [2, Theorem 1]. Then a(x) ≤ b(x) in Ω, and∫

Ω
L(uλ, φ1) dx ≤ 0

since φ1 > 0 in Ω. Here

L(uλ, φ1) = |∇uλ|p − p
(
uλ
φ1

)p−1

|∇φ1|p−2∇φ1∇uλ + (p− 1)

(
uλ
φ1

)p
|∇φ1|p.

(3.1)
On the other hand, L(uλ, φ1) ≥ 0 by Picone’s identity (see, e.g., [3, Theorem
1.1]). Thus L(uλ, φ1) = 0, almost everywhere in Ω, which implies uλ = kφ1

for some constant k, and one can easily proceed to a contradiction. �

To study the bifurcation problem of (Pλ), we define a modified equation
in which the nonlinearity is truncated for large u. For any δ > 0, let us
consider the following problem:{

div(|∇u|p−2∇u) + λg(x, 0)|u|p−2u+ hδ(x, u;λ) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(3.2)

where p > 1, λ ∈ R,

hδ(x, u;λ) =


0, λ ∈ (−∞, 0],

λ(ḡ(x, u)− g(x, 0))|u|p−2u, λ ∈ (0, λ∗1 + δ],

(λ∗1 + δ)(ḡ(x, u)− g(x, 0))|u|p−2u, λ ∈ (λ∗1 + δ,∞),

and

ḡ(x, u) =


g(x, 0), (x, u) ∈ Ω× (−∞, 0],

g(x, u), (x, u) ∈ Ω× (0,M ],

g(x,M), (x, u) ∈ Ω× (M,∞).

Fix a small δ > 0; hδ : Ω×R×R is a Carathéodory function. Furthermore,
there exists a constant C = C(δ) > 0 such that

|hδ(x, u;λ)| ≤ C|u|p−1

for almost every x ∈ Ω and all (u, λ) ∈ R× R, and

hδ(x, u;λ)/|u|p−1 → 0 as u→ 0
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uniformly for almost every x ∈ Ω and uniformly in λ from bounded intervals
in R. From [13, Proposition 3.5 and Lemma 3.6], for δ > 0 the pair (λ∗1, 0) is
a bifurcation point for problem (3.2) in the sense that there exists a sequence

{(µn, vn)}∞n=1 ⊂ R×W 1,p
0 (Ω) such that (µn, vn)→ (λ∗1, 0) and vn is a positive

solution of (3.2) with λ = µn. One can easily see that for 0 ≤ λ ≤ λ∗1 + δ, all
positive solutions u of (3.2) or (Pλ) satisfy 0 ≤ u ≤ M, and u is a positive
solution of (Pλ) if and only if u is a positive solution of (3.2). Thus we get
the following proposition.

Proposition 3.2. Assume that (g1)–(g3) and (g4b) are satisfied. Then the
pair (λ∗1, 0) is a bifurcation point for problem (Pλ) in the sense that there

exists a sequence {(µn, vn)}∞n=1 ⊂ R×W 1,p
0 (Ω) such that (µn, vn) → (λ∗1, 0)

and vn is a positive solution of (Pµn).

Put A := {λ : (Pλ) has a positive solution}. Then by Proposition 3.2,
A is non-empty, and by Lemma 3.1, λ∗ := inf A ∈ [λ1/N1,∞). To show
that λ∗ < λ∗1, we prove the following result on the “bifurcation direction” of
solutions of (Pλ) at λ = λ∗1.

Lemma 3.3. Assume that (g1)–(g3) and (g4b) are satisfied, and uλ is a
positive solution of (Pλ) with ‖uλ‖∞ < δ1; then λ < λ∗1. Here, δ1 is the
constant in the condition (g4b).

Proof. Assume on the contrary that there exists a positive solution uλ of
(Pλ) such that λ ≥ λ∗1 and ‖uλ‖∞ < δ1. Note that uλ > 0 in Ω by the
maximum principle. Let u = φ∗1, v = uλ, A = B = 1, a(x) = λ∗1g(x, 0), and
b(x) = λg(x, uλ(x)) in [2, Theorem 1]. Then a(x) ≤ b(x) in Ω, and∫

Ω
L(φ∗1, uλ) dx ≤ 0,

where L is defined in (3.1), since uλ > 0 in Ω. By the same argument as in
the proof of Lemma 3.1, the proof is complete. �

Let {(µn, vn)}∞n=1 be a sequence such that vn is a positive solution of
(Pµn) (or (3.2) with λ = µn) and µn ∈ (0, λ∗1 + δ). Here, δ ∈ (0, λ∗2 − λ∗1)
is a constant and λ∗2 is the second eigenvalue of (2.3) with m(x) ≡ g(x, 0).
Then, by [13, Lemma B.2], the following three statements are equivalent:

(i) ‖vn‖W 1,p
0
→ 0 as n→∞;

(ii) ‖vn‖∞ → 0 as n→∞;
(iii) ‖vn‖C1,β → 0 as n→∞, for some β ∈ (0, 1);
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λ

u

λλλ/N

Figure 1. The bifurcation diagram of the positive solutions
of (Pλ).

and in all three cases we have µn → λ∗1 as n→∞. From Proposition 3.2 and
Lemma 3.3, one can conclude that the bifurcation at (λ∗1, 0) is subcritical,
and thus λ∗ ∈ [λ1/N1, λ

∗
1) (see Figure 1).

Theorem 3.4. Assume that (g1)–(g3) and (g4b) are satisfied. Then λ∗ ∈
(λ1/N1, λ

∗
1) and there exists λ∗ ∈ [λ∗, λ

∗
1) such that (Pλ) has at least one

positive solution for λ ≥ λ∗.

Proof. Let B := {λ : (Pµ) has a positive solution for all µ ∈ [λ,∞)}. Then
B is non-empty, and λ∗ := inf B is well defined. Indeed, for sufficiently small
δ > 0, there exists λ̄ ∈ (λ∗1 − δ, λ∗1) such that (Pλ̄) has a positive solution ū
satisfying ‖ū‖∞ < δ1, and g(x, ū(x)) ≥ 0 for all x ∈ Ω. Then the solution
ū is a sub-solution of (Pλ) for all λ ≥ λ̄. Clearly, M is a super-solution of
(Pλ) for all λ > 0, and (Pλ) has at least one positive solution for all λ ≥ λ̄
in view of Theorem 2.1. Consequently, λ∗ ∈ [λ∗, λ

∗
1) and (Pλ) has at least

one positive solution for all λ > λ∗.
Now we prove that (Pλ∗) has a positive solution. By the definition of λ∗,

there exists a sequence {(µn, vn)}∞n=1 such that µn → λ∗ as n→∞ and vn is
a positive solution of (Pµn). Clearly the sequence {(µn, vn)}∞n=1 is bounded

in R ×W 1,p
0 (Ω). Note that the operator (−∆p)

−1T : [0,∞) ×W 1,p
0 (Ω) →
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W 1,p
0 (Ω) is completely continuous. Here T : [0,∞)×W 1,p

0 (Ω) → W−1,p′(Ω)
is defined by T (λ, u) = λNf̄ (u), f̄(x, s) = ḡ(x, s)|s|p−2s, and ḡ(x, u) is the

function defined in the equation (3.2). By a standard argument, (Pλ∗) has
a nonnegative solution v∗. Then v∗ is a positive solution of (Pλ∗). Indeed,

if v∗ ≡ 0, vn → 0 in W 1,p
0 (Ω) as n → ∞. By [13, Lemma B.2], µn → λ∗1 as

n→∞; this contradicts the fact that λ∗ < λ∗1. Similarly, we can prove that
λ∗ > λ1/N1, and thus the proof is complete. �

The result in Theorem 3.4 shows that, in contrast with the logistic case,
the bifurcation point λ = λ∗1 is not the threshold value of the existence/non-
existence of a positive solution of (Pλ). This is a basic difference between
the equation with weak Allee effect growth rate and the one with logistic
growth.

In the following we shall show that when λ ∈ (λ∗, λ
∗
1), equation (Pλ)

indeed has two positive solutions, if an additional condition is satisfied. We
employ the variational method in this part. From now on we assume that g
satisfies

(g3′) There exists M > u1(x) for any x ∈ Ω, such that g(x,M) = 0

instead of the condition (g3). Note that this is equivalent to letting u2(x) ≡
M in (g3). Then all nonnegative solutions u of (Pλ) satisfy that 0 ≤ u(x) ≤
M for all x ∈ Ω, and thus g(x, u(x)) ≥ 0 for all x ∈ Ω. In this case,
λ∗ = λ∗, and (Pλ) has a maximal positive solution um(λ) for all λ ≥ λ∗ in
view of Theorem 2.1. Moreover, um(λ) is nondecreasing with respect to λ;
i.e., um(λ1)(x) ≤ um(λ2)(x) for all x ∈ Ω if λ∗ ≤ λ1 < λ2.

Define a modified functional Φ̂λ : W 1,p
0 (Ω)→ R by

Φ̂λ(u) :=
1

p

∫
Ω
|∇u|p dx− λ

∫
Ω
F̂ (x, u) dx, u ∈W 1,p

0 (Ω),

where F̂ (x, u) :=
∫ u

0 f̂(x, s)ds, f̂(x, s) = ĝ(x, s)|s|p−2s and

ĝ(x, s) :=


0, (x, s) ∈ Ω× (−∞, 0],

g(x, s), (x, u) ∈ Ω× (0,M ],

0, (x, s) ∈ Ω× (M,∞).

Note that if u is any critical point of Φ̂λ, then 0 ≤ u(x) ≤ M for all x ∈ Ω,
and thus u is a nonnegative solution of (Pλ).

Since g(x, s) satisfies the conditions (g1)–(g3) and (g4b), for any δ > 0,
there exists Cδ > 0 such that

|ĝ(x, s)| ≤ g(x, 0) + δ + Cδ|s|q
∗−p, (x, s) ∈ Ω× R,
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and

|f̂(x, s)| ≤ (g(x, 0) + δ)|s|p−1 + Cδ|s|q
∗−1, (x, s) ∈ Ω× R, (3.3)

where q∗ ∈ (p, p∗). Thus the functional Φ̂λ is C1 in W 1,p
0 (Ω). Moreover, the

functional Φ̂λ satisfies the Palais–Smale condition. Indeed, let {vn}∞n=1 be

any sequence in W 1,p
0 (Ω) such that {Φ̂λ(vn)} is bounded and Φ̂′λ(vn) → 0

as n → ∞. Then it follows from the boundedness of F̂ that {vn}∞n=1 is

bounded in W 1,p
0 (Ω). By [8, Lemma 2 on page 363], the sequence {vn}∞n=1

has a convergent subsequence, and thus the functional Φ̂λ satisfies the Palais–
Smale condition.

Lemma 3.5. Assume that (g1)–(g3) and (g4b) are satisfied, and let λ ∈
(0, λ∗1). Then the trivial solution 0 is a local minimizer of Φ̂λ in W 1,p

0 (Ω).

Proof. By (3.3), for any δ > 0, there exists Cδ > 0 such that

|F̂ (x, s)| ≤ 1

p
(g(x, 0) + δ)|s|p +

Cδ
q∗
|s|q∗ , (x, s) ∈ Ω× R.

By the Sobolev inequality, for u ∈W 1,p
0 (Ω),

Φ̂λ(u) ≥ 1

p

[
‖u‖p

W 1,p
0

− λ
∫

Ω
(g(x, 0) + δ)|u|p

]
− Cδλ

q∗

∫
Ω
|u|q∗ dx

≥ 1

p

[
1− λ

λ∗1
− δC1 − CδC1‖u‖q

∗−p
W 1,p

0

]
‖u‖p

W 1,p
0

,

for some constant C1 > 0. Thus for each λ ∈ (0, λ∗1), there exist positive

constants δ and ρ such that Φ̂λ(u) > 0 = Φ̂λ(0) if 0 < ‖u‖
W 1,p

0
≤ ρ. �

Fix λ ∈ (λ∗, λ
∗
1) and let µi (i = 1, 2) be the constants satisfying λ∗ < µ1 <

λ < µ2. If we assume g satisfies the condition

(g5) kg(x, u) ≤ g(x, ku) for 0 < k < 1 and 0 ≤ u ≤M,

then ϕ1 := ε1um(µ1) is a sub-solution and ϕ2 := ε2um(µ2) is a super-solution
of (Pλ), respectively. Here ε1 and ε2 are the constants satisfying

µ1

λ
< ε1 < 1 < ε2 <

µ2

λ
,

and we note that the condition (g5) implies that

(g5′) kg(x, u) ≥ g(x, ku) for k > 1 and 0 ≤ u ≤M .
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Let

C := {u ∈ C1
0 (Ω) : ϕ1(x) ≤ u(x) ≤ ϕ2(x), x ∈ Ω}. (3.4)

Then um(λ) is an interior point of C with respect to the C1-topology by the
maximum principle due to Vázquez [23, Theorem 5].

Lemma 3.6. Let λ ∈ (λ∗, λ
∗
1) be fixed, and assume that (g1), (g2), (g3′),

(g4b), and (g5) are satisfied. If (Pλ) has no solution in C except for um(λ),

then um(λ) is a local minimizer of Φ̂λ in W 1,p
0 (Ω).

Proof. Assume that (Pλ) has no solution in C except for um(λ). If we show

that um(λ) is a local minimizer of Φ̂λ in C1
0 (Ω), then it is a local minimizer

of Φ̂λ in W 1,p
0 (Ω) in view of [12, Theorem 1.2] (or [5, Lemma 2.2]), since

0 ≤ ĝ(x, s)|s|p−2s ≤ N1M
p−1 for all (x, s) ∈ Ω×R. To prove that um(λ) is a

local minimizer of Φ̂λ in C1
0 (Ω), let us define the functional Φ̃λ : W 1,p

0 (Ω)→ R
by

Φ̃λ(u) :=
1

p

∫
Ω
|∇u|p dx− λ

∫
Ω
F̃ (x, u) dx, u ∈W 1,p

0 (Ω),

where F̃ (x, u) :=
∫ u

0 f̃(x, s)ds, and

f̃(x, s) :=


ĝ(x, ϕ1(x))ϕp−1

1 , if x ∈ Ω, s < ϕ1(x),

ĝ(x, s)sp−1, if x ∈ Ω, ϕ1(x) ≤ s ≤ ϕ2(x),

ĝ(x, ϕ2(x))ϕp−1
2 , if x ∈ Ω, s > ϕ2(x).

Since Φ̃λ is weakly lower-semicontinuous and coercive on W 1,p
0 (Ω), Φ̃λ has a

global minimizer u0 ∈W 1,p
0 (Ω). Then u0 is a solution of{

div(|∇u0|p−2∇u0) + λf̃(x, u0) = 0, x ∈ Ω,

u0 = 0, x ∈ ∂Ω,
(3.5)

and u0 ∈ C1
0 (Ω) by Lieberman’s regularity result [16, Theorem 1]. Moreover,

u0 satisfies that ϕ1(x) ≤ u0(x) ≤ ϕ2(x) for all x ∈ Ω. We only prove the
left-hand inequality that ϕ1(x) ≤ u0(x) for all x ∈ Ω, since the right-hand
inequality that u0(x) ≤ ϕ2(x) for all x ∈ Ω can be proved in a similar
manner. If it is not true, Ω1 := {x ∈ Ω : u0(x) < ϕ1(x)} is a nonempty open
set in RN as u0, ϕ1 ∈ C1

0 (Ω). Since ϕ1 is a sub-solution of (Pλ) and u0 is a
solution of (3.5), we have∫

Ω1

|∇ϕ1|p−2∇ϕ1∇ψ dx ≤ λ
∫

Ω1

ĝ(x, ϕ1)ϕp−1
1 ψ dx
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and ∫
Ω1

|∇u0|p−2∇u0∇ψ dx = λ

∫
Ω1

f̃(x, u0)ψ dx,

= λ

∫
Ω1

ĝ(x, ϕ1)ϕp−1
1 ψ dx,

where ψ := max{ϕ1 − u0, 0} ∈W 1,p
0 (Ω). Then∫

Ω1

(|∇ϕ1|p−2∇ϕ1 − |∇u0|p−2∇u0)(∇ϕ1 −∇u0) dx ≤ 0. (3.6)

It is well known that the following inequality holds:

(|x|p−2x− |y|p−2y)(x− y) ≥ 0 for all x, y ∈ RN ,
where the equality holds if and only if x = y. It follows from (3.6) that
∇u0(x) = ∇ϕ1(x) for all x ∈ Ω1, which contradicts the facts that Ω1 is a
nonempty open set in RN and u0 ≡ ϕ1 on ∂Ω1. Thus we have ϕ1(x) ≤
u0(x) ≤ ϕ2(x) for all x ∈ Ω, which implies that u0 is a solution of (Pλ), and
it must be the same as um(λ) by the assumption that (Pλ) has no solution

in C except for um(λ). Consequently, um(λ) is a global minimizer of Φ̃ in

W 1,p
0 (Ω).
Since um(λ) is an interior point of C, for sufficiently small ε > 0, any

u ∈ C1
0 (Ω) with ‖u − um(λ)‖C1 < ε satisfies u ∈ C. On the other hand, for

any u ∈ C,

Φ̂λ(u)− Φ̃λ(u) = λ

∫
Ω

[F̃ (x, u)− F̂ (x, u)] dx

= λ

∫
Ω

∫ u(x)

0
[f̃(x, s)− ĝ(x, s)sp−1] ds dx

= λ

∫
Ω

∫ ϕ1(x)

0
[ĝ(x, ϕ1(x))ϕp−1

1 − ĝ(x, s)sp−1] ds dx,

which is a constant independent of u. Thus, since um(λ) is a global minimizer

of Φ̃λ in W 1,p
0 (Ω), um(λ) is a local minimizer of Φ̂λ in C1

0 (Ω), which completes
the proof in view of [12, Theorem1.2] (or [5, Lemma 2.2]). �

Now we can prove our main result of multiple positive solutions of (Pλ):

Theorem 3.7. Assume that (g1), (g2), (g3′), (g4b), and (g5) are satisfied.
Then there exists λ∗ ∈ (λ1/N1, λ

∗
1) such that (Pλ) has no positive solutions

for λ < λ∗, (Pλ) has at least two positive solutions of (Pλ) for λ∗ < λ < λ∗1,
and (Pλ) has at least one positive solution for λ ≥ λ∗1 and λ = λ∗.
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Proof. By Theorem 3.4, it suffices to show that (Pλ) has at least two positive
solutions for λ∗ < λ < λ∗1. Let λ ∈ (λ∗, λ

∗
1) be fixed and let C be the

set defined by (3.4). We will show that (Pλ) has another positive solution
distinct from um(λ). If it is not true, we may assume that there exists no
solution in C except for um(λ). From Lemmas 3.5 and 3.6, we have two local

minimizers 0 and um(λ) of Φ̂λ in W 1,p
0 (Ω). Then there exists a third critical

point of Φ̂λ in W 1,p
0 (Ω) in view of the extended mountain-pass theorem by

Pucci and Serrin [19, Theorem 4]. Thus we get the second positive solution
of (Pλ) distinct from um(λ), which completes the proof. �
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