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EXISTENCE, UNIQUENESS AND STABILITY
OF POSITIVE SOLUTIONS

FOR A CLASS OF SEMILINEAR ELLIPTIC SYSTEMS

Renhao Cui — Ping Li — Junping Shi — Yunwen Wang

Abstract. We consider the stability of positive solutions to semilinear

elliptic systems under a new general sublinear condition and its variants.
Using the stability result and bifurcation theory, we prove the existence and

uniqueness of positive solution and obtain the precise global bifurcation

diagram of the system being a single monotone solution curve.

1. Introduction

We consider the positive solutions of a semilinear elliptic system:

(1.1)


∆u+ λf(u, v) = 0, x ∈ Ω,

∆v + λg(u, v) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

where λ > 0 is a positive parameter, Ω is a bounded smooth domain in Rn for
n ≥ 1, and f and g are smooth real-valued functions defined on R+ × R+ =
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[0,∞) × [0,∞) satisfying fv(u, v) ≥ 0 and gu(u, v) ≥ 0 for (u, v) ∈ R+ × R+,
which implies that the system is cooperative.

The existence, uniqueness and stability of positive solutions of sublinear semi-
linear elliptic systems have been recently studied in [2], [3], [26]. In [2], the
stability of a positive solution was established under the condition

(1.2) f(u, v) > fv(u, v)v + gv(u, v)u, g(u, v) > gu(u, v)u+ fu(u, v)v.

The sublinear condition (1.2) involves both f and g in the two inequalities, which
is sometimes hard to achieve. In this article, we continue the effort in [2] to prove
the stability of positive solution to (1.1) under some more reasonable sublinear
conditions, and once again the stability implies the uniqueness of the positive
solution. We also prove corresponding existence results using bifurcation and
continuation theory.

For the scalar semilinear elliptic equation:

(1.3)

{
∆u+ λf(u) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

the exact multiplicity of positive solutions has been previously considered by
many people, see for example, [14], [15], [18], [19]. In recent years, there have
been some results on the existence and uniqueness of solution to the semilinear
cyclic elliptic system:

(1.4)


∆u+ λf(v) = 0, x ∈ Ω,

∆v + λg(u) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

Dalmasso [7], [8] obtained the existence and uniqueness result for a more special
sublinear system, and it was extended by Shi and Shivaji [26]. The uniqueness of
positive solution for large λ was proved in Hai [9], [10], Hai and Shivaji [11]. If Ω is
a finite ball or the whole space, then the positive solutions of systems are radially
symmetric and decreasing in radial direction by the result of Troy [28], see also
[1], [17]. Hence the system can be converted into a system of ODEs. Several
authors have taken that approach for the existence of the solutions, see Serrin
and Zou [21], [22]. Much success has been achieved for Lane–Emden systems.
Using the scaling invariant, the uniqueness of the radial positive solution for the
Lane–Emden system has been shown in Dalmasso [7], [8], Korman and Shi [16].
Cui, Wang and Shi [5], [6] considered cyclic systems with three equations, and
the uniqueness and existence of positive solutions were obtained.

The approach in this article includes several ingredients. We recall the max-
imum principle and prove the main stability result in Section 2. In Sections 3
and 4, we use the stability result and bifurcation theory to prove the existence
and uniqueness of positive solution for two types of semilinear system. We also
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obtain the precise global bifurcation diagrams of the system and the bifurcation
diagram is a single monotone solution curve in all cases. We use W 2,p(Ω) and
W 2,p

loc (Ω) for the standard Sobolev space, C(Ω) for the space of continuous func-
tions defined on Ω, and C0(Ω) = {u ∈ C(Ω) : u(x) = 0, x ∈ ∂Ω}. We use N(L)
and R(L) to denote the null space and the range space of linear operator L.

2. Stability and linearized equations

Let (u, v) be a positive solution of (1.1). The stability of (u, v) is determined
by the eigenvalue equation:

(2.1)


∆ξ + λfu(u, v)ξ + λfv(u, v)η = −µξ, x ∈ Ω,

∆η + λgu(u, v)ξ + λgv(u, v)η = −µη, x ∈ Ω,

ξ(x) = η(x) = 0, x ∈ ∂Ω,

which can be written as

(2.2) Lu = Hu + µu,

where

(2.3) u =
(
ξ

η

)
, Lu =

(
−∆ξ
−∆η

)
and H =

(
fu(u, v) fv(u, v)
gu(u, v) gv(u, v)

)
.

For linear elliptic systems of cooperative type, the maximum principle holds and
here we recall some known results:

Lemma 2.1. Let X = [W 2,p
loc (Ω) ∩ C0(Ω)]2, and let Y = [Lp(Ω)]2 for p > n.

Suppose that L and H are given as in (2.3), the partial derivatives of f and g

are continuous on R+×R+, and fv(u, v) ≥ 0, gu(u, v) ≥ 0 for (u, v) ∈ R+×R+.
Then:

(a) µ1 = inf{µ ∈ spt(L−H)} is a real eigenvalue of L−H, where spt(L−H)
is the spectrum of L−H.

(b) For µ = µ1, there exists a unique eigenfunction u1 ∈ [W 2,n
loc (Ω)∩C0(Ω)]2

of L−H (up a constant multiple), and u1 > 0 in Ω.
(c) For µ < µ1, the equation Lu = Hu + µu + f has a unique solution

u ∈ X for any f ∈ Y , and u > 0 as long as f ≥ (6≡)0.
(d) (Maximum principle) For µ ≤ µ1, suppose that there exists u∈ [W 2,p

loc (Ω)
∩C(Ω)]2, satisfies Lu ≥ Hu+µu in Ω, u ≥ 0 on ∂Ω, then u ≥ 0 in Ω.

(e) If there exists u ∈ [W 2,p(Ω) ∩ C(Ω)]2, satisfies Lu ≥ Hu and u ≥ 0
in Ω, and either u 6≡ 0 on ∂Ω or Lu 6≡ Hu in Ω, then µ1 > 0.

For the result and proof of Lemma 2.1, see Sweers [26], Proposition 3.1 and
Theorem 1.1. Moreover, from a standard compactness argument, the eigenvalues
{µi} of L−H are countably many, and Re(µi − µ1) →∞ as i→∞. We notice
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that µi is not necessarily real-valued for i ≥ 2. We call a solution (u, v) is stable
if µ1 > 0, and otherwise it is unstable (µ1 ≤ 0).

For our purpose in this section, we also need to consider the adjoint operator
of L−H. Let the transpose matrix of the Jacobian be

(2.4) HT =
(
fu(u, v) gu(u, v)
fv(u, v) gv(u, v)

)
.

Then evidently the results in Lemma 2.1 also hold for the eigenvalue problem

(2.5) Lu∗ = HTu∗ + µu∗,

which is

(2.6)


∆ξ∗ + λfu(u, v)ξ∗ + λgu(u, v)η∗ = −µξ∗, x ∈ Ω,

∆η∗ + λfv(u, v)ξ∗ + λgv(u, v)η∗ = −µη∗, x ∈ Ω,

ξ∗(x) = η∗(x) = 0, x ∈ ∂Ω.

It is easy to verify that L − HT is the adjoint operator of L − H, while both
are considered as operators defined on subspaces of [L2(Ω)]2. By using the well-
known functional analytic techniques (see [12], [26]), one can show that:

Lemma 2.2. Let X, Y , L, H and f , g be same as in Lemma 2.1. Then
the principal eigenvalue µ1 of L−H is also a real eigenvalue of L−HT , µ1 =
inf{µ ∈ spt(L − HT )}, and for µ = µ1, there exists a unique eigenfunction
u∗1 ∈ [W 2,p

loc (Ω) ∩ C0(Ω)]2 of L−HT (up a constant multiple), and u∗1 > 0 in Ω.

Now we are ready to establish the main stability result:

Theorem 2.3. Suppose that (u, v) is a positive solution of (1.1), and f and
g are smooth real-valued functions defined on R+ × R+ satisfying fv(u, v) ≥ 0
and gu(u, v) ≥ 0 for (u, v) ∈ R+×R+. Then (u, v) is stable if (f, g) satisfies one
of the following conditions: for any (u, v) ∈ R+ × R+,

(A1) f(u, v) > fu(u, v)u+ fv(u, v)v, g(u, v) > gu(u, v)u+ gv(u, v)v; or
(A2) f(u, v) > fu(u, v)u+ gu(u, v)v, g(u, v) > gv(u, v)v + fv(u, v)u; or
(A3) f(u, v) > fv(u, v)v + gv(u, v)u, g(u, v) > gu(u, v)u+ fu(u, v)v; or
(A4) f(u, v) > gv(u, v)u+ gu(u, v)v, g(u, v) > fv(u, v)u+ fu(u, v)v.

Proof. The result under (A3) has been proved in [3], hence here we prove
the stability result when (f, g) satisfies one of (A1), (A2) and (A4). Let (u, v) be
a positive solution of (1.1), and let (µ1, ξ, η) and (µ1, ξ

∗, η∗) be the corresponding
principal eigen-pair of (2.1) and (2.6) respectively, such that ξ, η, ξ∗, η∗ > 0 in Ω.

First we assume that (f, g) satisfies (A1). Multiplying the equation of u
in (1.1) by ξ∗, the equation of ξ∗ in (2.6) by u, integrating over Ω and subtracting,
we obtain that

(2.7) λ

∫
Ω

fξ∗ dx = λ

∫
Ω

(fuξ
∗ + guη

∗)u dx+ µ1

∫
Ω

uξ∗ dx.
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Similarly from the equation of v and η∗, we find

(2.8) λ

∫
Ω

gη∗ dx = λ

∫
Ω

(fvξ
∗ + gvη

∗)v dx+ µ1

∫
Ω

vη∗ dx.

Adding (2.7) and (2.8), we get

(2.9) µ1

∫
Ω

(uξ∗+vη∗) dx = λ

∫
Ω

[f−fuu−fvv]η∗ dx+λ
∫

Ω

[g−guu−gvv]ξ∗ dx.

Hence µ1 > 0 if (A1) is satisfied.
Secondly we assume that (f, g) satisfies (A2). Similar to the proof above,

multiplying the equation of u in (1.1) by ξ, multiplying the equation of ξ in (2.1)
by u, integrating over Ω and subtracting, and also doing the same operations for
the equations of v and η, we can get

(2.10) µ1

∫
Ω

(uξ + vη) dx = λ

∫
Ω

[f − fuu− guv]ξ dx+ λ

∫
Ω

[g − fvu− gvv]η dx,

which implies µ1 > 0 if (A2) is satisfied.
Finally we assume that (f, g) satisfies (A4). We repeat the above calculation

for the equations of u and η∗, and the equations of v and ξ∗, then we obtain

(2.11) µ1

∫
Ω

(uη + vξ) dx = λ

∫
Ω

[f − guv − gvu]η dx+ λ

∫
Ω

[g − fuv − gvu]ξ dx.

Therefore µ1 > 0 if (A4) is satisfied. �

On the other hand, the same proof also implies the following instability result
under the opposite condition of (Ai) for i = 1, 2, 3 and 4:

Theorem 2.4. Suppose that (u, v) is a positive solution of (1.1), and f and
g are smooth real-valued functions defined on R+ × R+ satisfying fv(u, v) ≥ 0
and gu(u, v) ≥ 0 for (u, v) ∈ R+ × R+. Then (u, v) is unstable if (f, g) satisfies
one of the following conditions:

(A′1) f(u, v) < fu(u, v)u+ fv(u, v)v, g(u, v) < gu(u, v)u+ gv(u, v)v; or
(A′2) f(u, v) < fu(u, v)u+ gu(u, v)v, g(u, v) < gv(u, v)v + fv(u, v)u; or
(A′3) f(u, v) < fv(u, v)v + gv(u, v)u, g(u, v) < gu(u, v)u+ fu(u, v)v; or
(A′4) f(u, v) < gv(u, v)u+ gu(u, v)v, g(u, v) < fv(u, v)u+ fu(u, v)v,

for any (u, v) ∈ R+ × R+,

Remark 2.5. (a) Theorems 2.3 and 2.4 are generalizations of corresponding
results for the positive solutions of scalar equation:

∆u+ λh(u) = 0, x ∈ Ω, u(x) = 0, x ∈ ∂Ω.

In [19], the function h(u) is called a sublinear function if h(u) > uh′(u), and it
is superlinear if h(u) < uh′(u). It was proved in Proposition 3.14 of [19] that a
positive solution u is stable if h is sublinear, and u is unstable if h is superlinear.
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The conditions (Ai) (or (A′i)) for 1 ≤ i ≤ 4 are the generalization of sublinearity
(or superlinearity) to two-variable vector fields.

(b) The conditions (Ai) for 1 ≤ i ≤ 4 can be written in a vector form
F (u) > Ji(u)u, where u = (u, v)T , and

J1 =
(
fu fv

gu gv

)
, J2 =

(
fu gu

fv gv

)
, J3 =

(
gv fv

gu fu

)
, J4 =

(
gv gu

fv fu

)
.

Notice that J1 is the original Jacobian matrix of the vector field (f(u), g(u)),
and Ji (2 ≤ i ≤ 4) are reflections of J1 with respect to the two diagonal lines.
The condition with original Jacobian is clearly more natural as the conditions
for f and g are separate. Hence the sublinearity can be defined for a single two-
variable function f(u, v) or g(u, v). Other conditions are defined for the whole
vector field (f, g).

(c) We can weaken the strict inequalities in (Ai) or (A′i) to ≥ or ≤ respec-
tively, but assume that the strict inequalities hold at least for (u, v) in a set of
positive measure. On the other hand, if we have f ≡ fuu+fvv and g ≡ guu+gvv,
then f and g are necessarily linear functions of u and v, and the correspond-
ing positive solution (u, v) is neutrally stable with µ1 = 0. Indeed (u, v) is the
principal eigenfunction for linear f and g.

(d) If a solution (u, v) is stable, then it is necessarily a non-degenerate so-
lution. That is, any eigenvalue µi of (2.1) has positive real part. But when
a solution is proved to be unstable, it can be a degenerate one with zero or pure
imaginary eigenvalues.

3. Application: positive nonlinearities

In this section, we consider the uniqueness and existence of positive solutions
for the following problem:

(3.1)


∆u+ λ(f1(v) + f2(u)) = 0, x ∈ Ω,

∆v + λ(g1(u) + g2(v)) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

Suppose that each of the functions f1, f2, g1 and g2 is a smooth real-valued
function defined on R+ and satisfies (denote f1, f2, g1 or g2 by h):

(B1) h(0) ≥ 0;
(B2) h′(x) ≥ 0, (h(x)/x)′ ≤ 0, for all x ≥ 0, and (h(x)/x)′ 6≡ 0 for any open

interval (a, b) ⊂ R+.

Here let (λ1, ϕ1) be the principal eigen-pair of

(3.2) −∆ϕ = λϕ, x ∈ Ω, ϕ(x) = 0, x ∈ ∂Ω,

such that ϕ1(x) > 0 in Ω and ‖ϕ1‖∞ = 1. Then we have the following result
about this sublinear problem:
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Theorem 3.1. Assume that each of f1, f2, g1 and g2 satisfies (B1), (B2)
and

(B3) lim
x→∞

h(x)
x

= 0.

(a) If at least one of fi(0) and gi(0) (i = 1, 2) is positive, then (3.1) has
a unique positive solution (uλ, vλ) for all λ > 0;

(b) If h(0) = 0, and h′(0) ≥ 0, then for some λ∗ > 0, (3.1) has no pos-
itive solution when λ ≤ λ∗, and (3.1) has a unique positive solution
(u(λ), v(λ)) for λ > λ∗.

Moreover, {(λ, u(λ), v(λ)) : λ > λ∗} (in the first case, we assume λ∗ = 0) is
a smooth curve so that u(λ), v(λ) are strictly increasing in λ, and (u(λ), v(λ)) →
(0, 0) as λ→ λ+

∗ .

Proof. Our proof follows that of Theorem 6.1 in [26]. First we extend fi,
gi to be defined on R for u, v < 0 properly so they are continuous differentiable
on R. From the assumptions, f(u, v) = f1(v) + f2(u), g(u, v) = g1(u) + g2(v)
satisfy (A1). Hence from Theorem 2.3, any positive solution of (3.1) is stable.

We define

(3.3) F (λ, u, v) =
(

∆u+ λ[f1(v) + f2(u)]
∆v + λ[g1(u) + g2(v)]

)
,

where λ ∈ R and u, v ∈ C2,α
0 (Ω). Here f , g are at least C1, then F : R×X → Y

is continuously differentiable, where X = [C2,α
0 (Ω)]2 and Y = [Cα(Ω)]2. For

weak solutions (u, v), one can also consider X = [W 2,p(Ω) ∩ W 1,p
0 (Ω)]2 and

Y = [Lp(Ω)]2 where p > 1 is properly chosen.
Apparently (λ, u, v) = (0, 0, 0) is a solution of (3.1). We apply the implicit

function theorem at (λ, u, v) = (0, 0, 0). The Fréchet derivative of F is given by

(3.4) F(u,v)(λ, u, v)
(
φ

ψ

)
=

(
∆φ+ λ[f ′1(v)ψ + f ′2(u)φ]
∆ψ + λ[g′1(u)φ+ g′2(v)ψ]

)
.

Then F(u,v)(0, 0, 0)(φ, ψ)T = (∆φ,∆ψ)T is an isomorphism from X to Y , and
the implicit function theorem implies that F (λ, u, v) = 0 has a unique solution
(λ, u(λ), v(λ)) for λ ∈ (0, δ) for some small δ > 0, and (u′(0), v′(0)) is the unique
solution of

(3.5)


∆φ+ λ(f1(0) + f2(0)) = 0, x ∈ Ω,

∆ψ + λ(g1(0) + g2(0)) = 0, x ∈ Ω,

φ(x) = ψ(x) = 0, x ∈ ∂Ω.

Then (u′(0), v′(0)) = ((f1(0) + f2(0))e, (g1(0) + g2(0))e) where e is the unique
positive solution of

(3.6) ∆e+ 1 = 0, x ∈ Ω, e(x) = 0, x ∈ ∂Ω.
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If f1(0)+ f2(0) > 0 and g1(0)+ g2(0) > 0, then (uλ, vλ) is positive for λ ∈ (0, δ).
If f1(0) + f2(0) = 0 and g1(0) + g2(0) > 0, then v(λ) > 0 for λ ∈ (0, δ).
But ∆u(λ) = −λ[f1(v(λ)) + f2(u(λ))] and fi is positive, hence u(λ) > 0 as well.
Similar conclusion holds when f1(0)+f2(0) > 0 and g1(0)+g2(0) = 0. Therefore
(3.1) has a positive solution (u(λ), v(λ)) for λ ∈ (0, δ) in this case.

Next we assume that h(0) = 0, and h′(0) > 0 for each of f1, f2, g1 and g2.
Then the linearized operator at (λ, 0, 0) is

F(u,v)(λ, 0, 0)
(

Φ
Ψ

)
=

(
∆Φ + λ[f ′2(0)Φ + f ′1(0)Ψ]
∆Ψ + λ[g′1(0)Φ + g′2(0)Ψ]

)
(3.7)

=
(

∆Φ
∆Ψ

)
+ λ

(
f ′2(0) f ′1(0)
g′1(0) g′2(0)

) (
Φ
Ψ

)
=

(
∆Φ
∆Ψ

)
+ λJ

(
Φ
Ψ

)
,

where J =
(

f ′
2(0) f ′

1(0)

g′
1(0) g′

2(0)

)
. Since h′(0) > 0 for each h = fi, gi, then all entries of

matrix J are positive. Therefore by using the Perron–Frobenius theorem (see
[23, Theorem 5.3.1]), there exists a positive principal eigenvalue χJ and the
corresponding eigenvector (1, k)T of J for some k > 0, such that (ϕ1, kϕ1)T is
a positive eigenvector of F(u,v)(λ∗, 0, 0) where λ∗ = λ1/χJ . Similarly, the adjoint
operator of F(u,v)(λJ , 0, 0), that is ∆+λJT, has the same principal eigenvalue λJ ,
and the corresponding eigenvector (ϕ1, k∗ϕ1)T, where k∗ is a positive constant.

Hence when λ = λ∗ = λ1/χJ , F(u,v)(λ, 0, 0) is not invertible and λ = λ∗ is
a potential bifurcation point. More precisely, the null space N(F(u,v)(λ∗, 0, 0)) =
span{(ϕ1, kϕ1)} is one-dimensional. Suppose that (h1, h2)

T ∈ R(F(u,v)(λ∗, 0, 0)),
then there exist (φ, ψ) ∈ X such that

(3.8) F(u,v)(λ∗, 0, 0)
(
φ

ψ

)
=

(
∆φ
∆ψ

)
+ λ∗

(
f ′2(0) f ′1(0)
g′1(0) g′2(0)

) (
φ

ψ

)
=

(
h1

h2

)
.

Consider the adjoint eigenvalue equation:

(3.9) ∆
(
φ1

ψ1

)
+ λ∗J

T

(
φ1

ψ1

)
=

(
∆φ1

∆ψ1

)
+ λ∗

(
f ′2(0) g′1(0)
f ′1(0) g′2(0)

) (
φ1

ψ1

)
= 0,

where (φ1, ψ1)
T = (ϕ1, k∗ϕ1)

T. Inner-producting the system (3.8) by (φ1, ψ1),
the system (3.9) by (φ, ψ), integrating over Ω and subtracting, we obtain

(3.10)
∫

Ω

(h1φ1 + h2ψ1) dx =
∫

Ω

(h1ϕ1 + k∗h2ϕ1) dx = 0.

Hence (h1, h2)
T ∈ R(F(u,v)(λ∗, 0, 0)) if and only if (3.14) holds, which implies

that the codimension of (R(F(u,v)(λ∗, 0, 0)) is one.
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Next we verify that Fλ(u,v)(λ∗, 0, 0)(ϕ1, kϕ1)T 6∈ R(F(u,v)(λ∗, 0, 0)). Indeed

(3.11) Fλ(u,v)(λ∗, 0, 0)
(
ϕ1

kϕ1

)
= J

(
1
k

)
ϕ1 = χJ

(
1
k

)
ϕ1.

But

(3.12) 0 = χJ

∫
Ω

(1 + kk∗)ϕ2
1 dx > 0,

hence from (3.10), Fλ(u,v)(λ∗, 0, 0)[ϕ1, kϕ1]T 6∈ R(F(u,v)(λ∗, 0, 0)).
Applying a bifurcation from simple eigenvalue theorem of Crandall–Rabi-

nowitz [4], we conclude that (λ∗, 0, 0) is a bifurcation point for (3.1), and the
nontrivial solutions of F (λ, u, v) = (0, 0) near (λ∗, 0, 0) are in form of

{(λ(s), u(s), v(s)) : s ∈ (−δ, δ)} where u(s) = sϕ1 + o(s), v(s) = ksϕ1 + o(s).

From the stability of positive solutions, each positive solution is stable thus non-
degenerate.

We claim that (3.1) has no positive solution when λ ≤ λ∗. We assume that
(u, v) is a positive solution of (3.1) and recall that (ϕ1, k∗ϕ1) satisfies

(3.13) ∆
(

ϕ1

k∗ϕ1

)
+ λ∗

(
f ′2(0) g′1(0)
f ′1(0) g′2(0)

) (
ϕ1

k∗ϕ1

)
= 0,

Multiplying the system (3.1) by (ϕ1, k∗ϕ1), the system (3.13) by (u, v), integrat-
ing over Ω and subtracting, and by using (B2) and h(0) = 0 for h = fi, gi, we
obtain

λ∗

∫
Ω

[(f ′2(0)u+ f ′1(0)v)ϕ1 + (g′1(0)u+ g′2(0)v)k∗ϕ1] dx(3.14)

=λ

∫
Ω

[(f1(v) + f2(u))ϕ1 + (g1(u) + g2(v))k∗ϕ1] dx

<λ

∫
Ω

[(f ′2(0)u+ f ′1(0)v)ϕ1 + (g′1(0)u+ g′2(0)v)k∗ϕ1] dx.

Hence (3.1) has no positive solution when λ ≤ λ∗, and the bifurcating solu-
tion (λ(s), u(s), v(s)) must satisfy λ(s) > λ∗ for s ∈ (0, δ). Hence the curve
{(λ(s), u(s), v(s)) : s ∈ (0, δ)} can also be parameterized as (λ, uλ, vλ) for
λ ∈ (λ∗, λ∗+δ). Since any positive solution is stable, then with implicit function
theorem, we can extend this curve to a largest λ∗ ≤ ∞.

Let Γ = {(λ, uλ, vλ) : λ∗ < λ < λ∗}. We show that (uλ, vλ) is strictly
increasing in λ for λ ∈ (λ∗, λ∗). In fact, (∂uλ/∂λ, ∂vλ/∂λ) satisfies the equation:

(3.15) F(u,v)(λ, u, v)

 ∂uλ

∂λ
∂vλ

∂λ

 =

 ∆
∂uλ

∂λ

∆
∂vλ

∂λ

 + λ

(
f ′2(u) f ′1(v)
g′1(u) g′2(v)

)  ∂uλ

∂λ
∂vλ

∂λ


= −

(
f1(v) + f2(u)
g1(u) + g2(v)

)
,
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hence (∂uλ/∂λ, ∂vλ/∂λ) > 0 from the maximum principle (Lemma 2.1(c)) and
the fact that µ1((λ, uλ, vλ)) > 0 from stability of positive solutions. We claim
that λ∗ = ∞. Suppose not, then λ∗ < ∞, and ‖(uλ, vλ)‖X < ∞, then one can
show that the curve Γ can be extended to λ = λ∗ from some standard elliptic
estimates, then from implicit function theorem, Γ can be extended beyond λ =
λ∗, which is a contradiction; if λ∗ < ∞, and ‖(uλ, vλ)‖X = ∞, a contradiction
can be derived with the solution curve can not blow-up at a finite λ∗(see similar
arguments for scalar equation in [24]). Hence we must have λ∗ = ∞.

If there is another positive solution for some λ > λ∗, then the arguments
above show this solution also belongs to a solution curve defined for λ ∈ (λ∗,∞),
and the solutions on the curve are increasing in λ, but the nonexistence of positive
solutions for λ < λ∗ and the local bifurcation at λ = λ∗ excludes the possibility
of another solution curve. Hence the positive solution is unique for all λ > λ∗.�

We remark that nonlinearity h(x) satisfying (B1), (B2) and (B3) appears
very often in applied problems such as ecological studies and chemical reactions.
For example, the Michaelis–Menten type functions h(x) = ax/(1+bx) for a, b > 0
and h(x) = 1− e−ax for a > 0, see [25].

4. Application: logistic type system

In this section, we consider the following semilinear elliptic system:

(4.1)


∆u+ λ(au− h1(u) + f1(v)) = 0, x ∈ Ω,

∆v + λ(bv − h2(v) + g1(u)) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

where a > 0, b > 0. Suppose that each of the functions f1, g1, h1 and h2 is
a smooth real-valued function defined on R+. Moreover, we assume that each
of f1(v) and g1(u) still satisfies (B1) and (B2) as defined in Section 3; and for
i = 1, 2, hi(x) satisfies:

(H1) hi(0) = h′i(0) = 0;
(H2) h′i(x) ≥ 0, (hi(x)/x)′ ≥ 0, for all x ≥ 0;
(H3) There exists a function h3 ∈ C1(R+) such that for u, v ≥ 0 and u+v ≥ 1,

h1(u) + h2(v) ≥ h3(u+ v) and lim
x→∞

h3(x)
x

= ∞.

Our main result in this section is as follows:

Theorem 4.1. Assume that each of f1(v) and g1(u) satisfies (B1) and (B2),
f1(0) = g1(0) = 0, and hi(x) (for i = 1, 2) satisfies (H1)–(H3). Then there
exists λ∗ > 0 such that, (4.1) has no positive solution when λ ≤ λ∗; (4.1) has
a unique positive solution (u(λ), v(λ)) for λ > λ∗, and ‖u(λ) + v(λ)‖∞ ≤ K,
where the constant K depends only on a, b, g′1(0), f ′1(0) and h3. Moreover,
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Σ = {(λ, u(λ), v(λ)) : λ > λ∗} is a smooth curve and Σ is unbounded in the
positive λ direction.

Proof. A local bifurcation analysis using bifurcation from simple eigenvalue
theorem similar to the one in the proof of Theorem 3.1 can be carried out at
λ = λ∗ and we omit the details. We can get a similar analysis at the bifurcation
point (λ∗, 0, 0), where λ∗ = λ1/χJ , χJ is the positive principal eigenvalue of the
matrix

J1 =
(

a f ′1(0)
g′1(0) b

)
.

Note that from f1(0) = g1(0) = 0, and (B2), we must have f ′1(0) > 0 and
g′1(0) > 0. Let (u, v) be a positive solution of (4.1) and let (ϕ1, k

′
∗ϕ1)T satisfy

(4.2) ∆
(

ϕ1

k′∗ϕ1

)
+ λ∗

(
a g′1(0)

f ′1(0) b

) (
ϕ1

k′∗ϕ1

)
= 0,

where (1, k′∗)
T is the corresponding positive eigenvector of JT

1 with eigenvalue
χJ . Inner-producting the system (4.1) by (ϕ1, k

′
∗ϕ1), the system (4.2) by (u, v),

integrating over Ω and subtracting, and by using (B2) and (H2), we obtain that

λ∗

∫
Ω

[(au+ f ′1(0)v)ϕ1 + (g′1(0)u+ bv)k′∗ϕ1] dx(4.3)

=λ

∫
Ω

[(au− h1(u) + f1(v))ϕ1 + (bv − h2(v) + g2(u))k′∗ϕ1] dx

<λ

∫
Ω

[(au+ f ′1(0)v)ϕ1 + (bv + g′2(0)v)k′∗ϕ1] dx.

Hence (4.1) has no positive solution when λ ≤ λ∗.
Next we claim that there exists a positive constant K which depends only on

a, g′1(0), f ′1(0), b and h3 such that any positive solution (u, v) of (4.1) satisfies
‖u+v‖∞ ≤ K. Actually, adding the equation of u and the equation of v in (4.1),
owing to (H3), we get that, if x ∈ Ω and u(x) + v(x) ≥ 1, then

(4.4) −∆(u+ v) =λ[au+ g1(u) + bv + f1(v)− h1(u)− h2(v)]

≤λ[au+ g′1(0)u+ bv + f ′1(0)v − h1(u)− h2(v)]

≤λ[M(u+ v)− h1(u)− h2(v)] ≤ λ[M(u+ v)− h3(u+ v)],

where M = max{(a+g′1(0)), (f ′1(0)+d)}. Because of lim
x→∞

h3(x)
x = ∞, then there

exists K > 0 such that for x > K, Mx− h3(x) < 0. By the maximum principle,
we obtain ‖u+ v‖∞ ≤ K.

From the assumptions, au − h1(u) + f1(v), dv − h2(v) + g1(u) satisfy (A1).
Hence from Theorem 2.3, any positive solution of (4.1) is stable. Thus, we
can extend the solution branch Σ for λ > λ∗. By using the global bifurcation
theorem of Rabinowitz [20], we can conclude that either Σ is unbounded or Σ
contains another bifurcation point (λ∗, 0, 0) with λ∗ 6= λ∗. But latter case cannot
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happen as λ = λ∗ is the only λ so that the corresponding linearized operator
has a positive eigenvector. Hence Σ is unbounded. Since all positive solutions
(u, v) of (4.1) are uniformly bounded for λ > λ∗, then Σ must be unbounded
in λ direction. Similar to the proof of Theorem 3.1, we obtain that (4.1) has
a unique positive solution for any λ > λ∗. �

Example 4.2. Consider

(4.5)


∆u+ λ(au− up + cv) = 0, x ∈ Ω,

∆v + λ(bv − vq + du) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

where a, b, c, d > 0, and p, q > 1. Then (4.5) is the classical cooperative logistic
system when p = q = 2.

It is easy to see that the system (4.5) satisfies the conditions (B1), (B2),
(H1) and (H2). We only need to verify the condition (H3). In fact, when
p = q = 2, u2 + v2 ≥ (u + v)2/2, thus h3(u + v) = (u + v)2/2. When p 6= q,
without loss of generality, we assume that 1 < q ≤ p. Consider the function
j(u) = up + (1 − u)q, then for u ∈ [0, 1], j(u) achieves a global minimum value
m∗ > 0 at some u∗ ∈ (0, 1). Thus up + vq ≥ m∗ for any u+ v = 1, u, v ≥ 0. This
implies that for any u, v ≥ 0 and u+v ≥ 1, define V = u+v, then u/V +v/V = 1,
and (u/V )p + (v/V )q ≥ m∗. It follows that

up

V q
+
vq

V q
≥ up

V p
+
vq

V q
≥ m∗.

Hence we can define h3(u + v) = m∗(u + v)q which satisfies (H3). Therefore,
Theorem 4.1 implies the existence and uniqueness result for the positive solutions
of (4.5), when λ > λ1/χJ and χJ is the principal eigenvalue of the positive matrix

J =
(
a c

b d

)
.
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