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a b s t r a c t

In thisworkwe investigate a diffusive Gierer–Meinhardt systemwith gene expression time
delays in the production of activators and inhibitors, and also a saturation in the activator
production, which was proposed by Seirin Lee et al. (2010) [10]. We rigorously consider
the basic kinetic dynamics of the Gierer–Meinhardt system with saturation. By using an
upper and lower solution method, we show that when the saturation effect is strong, the
unique constant steady state solution is globally attractive despite the time delays. This
result limits the parameter space for which spatiotemporal pattern formation is possible.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since the pioneering work of Turing [1], Reaction–Diffusion systems have been used to demonstrate morphogenetic
pattern formation [2–7]. During the process of cell division and differentiation, gene expressions control the establishment
of stable patterns of differentiated cell types. Recent experimental studies have shown that timing of the pattern-forming
events may have important implications in the development of the patterns [8,9,4,5,10,11]. In particular, there exists
a considerable delay between the start of protein signal transduction (ligand–receptor binding) and the result (a gene
production) via gene expression regulations [10].

In 1972, Gierer and Meinhardt [12] proposed a nonlinear reaction–diffusion model to describe the interaction dynamics
of two chemical substances: (see [12, Eq. (12)])

∂a
∂t

= ρ0ℓa + cℓa
ap

hq
− νaa + Da

∂2a
∂x2

,

∂h
∂t

= c ′ℓh
ar

hs
− νhh + Dh

∂2h
∂x2

,

(1.1)

where a(x, t) and h(x, t) are the concentrations of the activator and the inhibitor respectively; the reactions of activators and
inhibitors are assumed to be power functions of a and h, and at the same time both substances are removed at a linear rate;
the activator a and the inhibitor hdiffuse in the environmentwith diffusion constantDa andDh respectively, and it is assumed
that h diffuses faster than a; finally a constant source term for a initiates the whole reaction. Here ℓa, ρ0, ℓh, c, νa, c ′, νh are
all positive constant parameters, and the exponents p, q, r, s are all nonnegative. One of particular examples of exponents

✩ Partially supported by a grant from China Scholarship Council, NSF grant DMS-1022648, and Shanxi 100-talent program.
∗ Corresponding author. Tel.: +1 757 221 2030.

E-mail addresses: shij@math.wm.edu, jxshix@wm.edu (J. Shi).

1468-1218/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
doi:10.1016/j.nonrwa.2012.12.004

http://dx.doi.org/10.1016/j.nonrwa.2012.12.004
http://www.elsevier.com/locate/nonrwa
http://www.elsevier.com/locate/nonrwa
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.nonrwa.2012.12.004&domain=pdf
mailto:shij@math.wm.edu
mailto:jxshix@wm.edu
http://dx.doi.org/10.1016/j.nonrwa.2012.12.004


1872 S. Chen, J. Shi / Nonlinear Analysis: Real World Applications 14 (2013) 1871–1886

they considered was q = 1, s = 0, and p = r = 2. That is, two molecules of activator are necessary to activate, and one
molecule of inhibitor is needed for inhibit; and the activators activate both substances and the inhibitors only inhibit the
activator source.

On the other hand, by assuming a saturation of activator production for the case q = 1, s = 0, and p = r = 2 in (1.1),
Gierer and Meinhardt [12] also considered (see [12, Eq. (16)])

∂a
∂t

= ρ0ℓa + cℓa
a2

(1 + κa2)h
− νaa + Da

∂2a
∂x2

,

∂h
∂t

= c ′ℓha2 − νhh + Dh
∂2h
∂x2

.

(1.2)

For system (1.2), the activator concentration is limited to amaximumvalue so that the activated area forms an approximately
constant proportion of the total structure size. Numerical simulation of concentration patterns were obtained in [12] as well
as [13,14] for one and two-dimensional spatial domains.

Since then, the Gierer–Meinhardt system has been regarded as one of the prototype reaction–diffusion models of
spatiotemporal pattern formation [15,16], and extensive research has been done for a more general Gierer–Meinhardt
system in the form of (with κ = 0 or κ > 0)

∂u
∂t

= ϵ21u − u + ρa
up

(1 + κup)vq
+ σa, x ∈ Ω, t > 0,

τ
∂v

∂t
= D1v − v + ρh

ur

vs
+ σh, x ∈ Ω, t > 0,

∂u(x, t)
∂ν

=
∂v(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω.

(1.3)

Here, Ω is a bounded smooth region in Rn, n ≥ 1 and the Laplace operator 1w(x, t) =
n

i=1
∂2w(x,t)

∂x2i
for w = u, v

shows the diffusion effect; ∂w(x,t)
∂ν

is the outer normal derivative of w = u, v, and a no-flux boundary condition is
imposed; the coefficients ϵ, τ and D are positive constants, whereas κ is a nonnegative constant; the basic production terms
σa = σa(x), σh = σh(x) are nonnegative, and the interaction coefficients ρa = ρa(x), ρh = ρh(x) are positive over Ω . Up
to now, there are many research results on the nonhomogeneous steady state solutions (such as multi-peak steady state
solutions, etc.) of the Gierer–Meinhardt system (1.1), (see Refs. [17–25]) and the Gierer–Meinhardt system with saturation
(1.2), (see Refs. [26–29]), and the a priori estimates, global existence and asymptotic behavior of the solution [30–35].

In this paperwe assume that σa, ρa and ρh are positive constants, the basic production term σh(x) ≡ 0, and the saturation
parameter κ is a positive constant. Then system (1.3) becomes:

∂u
∂t

= ϵ21u − u + ρa
up

(1 + κup)vq
+ σa, x ∈ Ω, t > 0,

τ
∂v

∂t
= D1v − v + ρh

ur

vs
, x ∈ Ω, t > 0,

∂u(x, t)
∂ν

=
∂v(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω

(1.4)

where ρa, κ, σa, ρh, ϵ, τ and D are positive constants. We show that when the saturation constant κ is large then the
unique constant steady state solution is globally attractive, hence no spatiotemporal pattern is possible. In [28] assuming
p = r = 2, s = 0 and q = 1, Morimoto showed that system (1.4) admits a radially symmetric steady state solution when
κ is small, and the global stability proved here implies that (1.4) cannot have such radially symmetric steady state solution
when κ is large.

In recent studies Gaffney and Monk [8] and Seirin Lee et al. [10] (see also [36,37]) considered the effect of gene
expression time delays on morphogenesis and pattern formation. The time delays in the feedback can be caused by the
signal transduction, gene transcription and mRNA translation in the process of gene expression [10]. Here we consider the
Gierer–Meinhardt system with gene expression time delays and saturation of activator induced activator production as
proposed in [10] (model I with saturation of activator induced activator production in [10]):

∂u
∂t

= D1
∂2u
∂x2

+ k1 − k2u(x, t) + k3
u2(x, t − γ )

(1 + κu2(x, t − γ ))v(x, t − γ )
,

∂v

∂t
= D2

∂2v

∂x2
+ k4u2(x, t − γ ) − k5v(x, t),

(1.5)
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where u, v are the concentrations of the activator and the inhibitor respectively; ki (1 ≤ i ≤ 5) are positive and indicate
the production rate, the decay rates and the rate of gene product interaction of morphogens, κ ≥ 0 represents the effect of
the saturation, and γ ≥ 0 is the gene expression time delay in the morphogen induced protein production.

Indeed we consider a generalized nonlocal Gierer–Meinhardt system with gene expression time delays:

∂u
∂t

= ϵ21u − u + ρa


Ω

k1(x, y)
up(y, t − γ )

(1 + κup(y, t − γ ))vq(y, t − γ )
dy + σa, x ∈ Ω, t > 0,

τ
∂v

∂t
= D1v − v + ρh


Ω

k2(x, y)ur(y, t − γ )dy x ∈ Ω, t > 0,

∂u(x, t)
∂ν

=
∂v(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x, t) > 0, v(x, t) = v0(x, t) > 0, x ∈ Ω, t ∈ [−γ , 0],

(1.6)

following the general version in Suzuki and Takagi [34]. And the dispersal kernel functions ki(x, y), (i = 1, 2), satisfy the
following property (see, for example [38,39]):

(K ) Either ki(x, y) = δ(x − y) (Dirac Delta function), or ki(x, y) is a continuous and nonnegative function such that
Ω
ki(x, y)dy = 1 for any x ∈ Ω and the linear operator

Li(φ)(x) :=


Ω

ki(x, y)φ(y)dy

is strictly positive on C(Ω, R) in the sense that

Li(C(Ω, R+) \ {0}) ⊂ C(Ω, R+) \ {0}.

The generalization of (1.5) to a nonlocal model as in (1.6) is motivated by recent work in [40,41,38,42], as the effects of
diffusion and time delays are not independent of each other, and the individuals have not been at the same point in space at
previous time. Hence a spatial averaging of the population in the past time should be added to take account of that effect in
the models, and a detailed review on that topic can be found in Gourley, So and Wu [42]. Such formulation for the models
in a bounded domain first appeared in Gourley and So [38], and see also [40,41,43,39]. In Section 4, we will also comment
on the validity of assumption (K ).

Note that when ki(x, y) = δ(x − y), (i = 1, 2), system (1.6) reduces to the following time-delayed reaction–diffusion
system (as in [10]):

∂u
∂t

= ϵ21u − u + ρa
up(x, t − γ )

(1 + κup(x, t − γ ))vq(x, t − γ )
+ σa, x ∈ Ω, t > 0,

τ
∂v

∂t
= D1v − v + ρhur(x, t − γ ) x ∈ Ω, t > 0,

∂u(x, t)
∂ν

=
∂v(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x, t) > 0, v(x, t) = v0(x, t) > 0, x ∈ Ω, t ∈ [−γ , 0].

(1.7)

Again our main result is that the unique constant steady state solution is globally asymptotically stable when the saturation
constant κ is large, but the result for the delayed system (1.6) is that the exponent s in system (1.4) is 0 in (1.6). While
this shows the restriction of the mathematical method of proving the global stability, it may suggest that the additional
feedback of vs term in (1.4) could enrich the dynamics. We use a upper–lower solution method for the proof of global
stability, which was developed by Pao [44–47], and see also related work in [48,49]. We remark that the global stability
of constant equilibrium in a scalar delayed reaction–diffusion equation have also been proved by using dynamical system
approach [50,51], Lyapunov method [52,53], and fluctuation method [43,39].

Our analysis here shows that a strong saturation effect plays a role of stabilizing the constant steady state even when the
delays exist. That is, when κ is sufficiently large, the constant steady state is globally stable and no complex spatiotemporal
patterns appear despite gene expression delays. This shows that in the delayed Gierer–Meinhardt system with saturation,
the degree of saturation is the most important parameter for the dynamics, while the time-delay is a secondary parameter
which can be the determining factor in the small saturation case. This is one step to rigorously analyze the dynamical
behavior of this prototype biological pattern formation system. Another step is to analyze the bifurcation of the systemusing
the time-delay as bifurcation parameter when κ is small, which has been reported in [10]. The instability of the constant
equilibrium for a small κ but a large delay has been rigorously proved in our other work [54]. Hence the present work
complements the one in [54,10].

The rest of this paper is organized as follows. In Section 2, we present some preliminaries: in Section 2.1, the basic
dynamics of the kinetic model is presented; and in Section 2.2, we recall the comparison method of the reaction–diffusion
systemswith delay effect. In Section 3, we prove the global stability of the unique constant steady state solutionwith respect
to the reaction–diffusion system without the delay effect (1.4). In Section 4, we prove the global stability of the unique
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constant steady state solution with respect to the reaction–diffusion system with gene expression time delays (1.6) for any
delay γ > 0. Section 5 contains some concluding remarks. Throughout the paper, (a, b) > 0 means a > 0 and b > 0 for
(a, b) ∈ R2.

2. Preliminaries

2.1. Analysis of the kinetic system

In this subsection, we analyze the following kinetic system corresponding to system (1.4):
du
dt

= −u + ρa
up

(1 + κup)vq
+ σa, t > 0,

τ
dv
dt

= −v + ρh
ur

vs
, t > 0,

u(0) = u0 > 0, v(0) = v0 > 0.

(2.1)

In this subsection, we always assume that ρa, ρh, σa, τ , p, q, r > 0, and s, κ ≥ 0.

Lemma 2.1. Suppose that the parameters ρa, ρh, σa, τ , p, q, r > 0, and s, κ ≥ 0. If

p − 1
r

<
q

s + 1
, (2.2)

then system (2.1) has a unique positive constant equilibrium (u∗, v∗), where v∗ = (ρhur
∗
)

1
s+1 .

Proof. If (u, v) is an equilibrium of system (2.1), then (u, v) satisfies

−u + ρa
up

(1 + κup)vq
+ σa = 0, −v + ρh

ur

vs
= 0,

which implies u satisfies

1 + κup
= ρaρ

−
q

s+1
h

up− qr
s+1

u − σa
. (2.3)

Define

I1(u) := ρaρ
−

q
s+1

h
up− qr

s+1

u − σa
,

and it can be easily verified that I1(u) is a strictly decreasing function foru > σa if (2.2) is satisfied.Moreover limu→σ+
a
I1(u) =

∞, limu→∞ I1(u) = 0 if (2.2) is satisfied. On the other hand, the function I2(u) := 1 + κup satisfies I2(0) = 1 and it is
increasing on (0, ∞). Hence if (2.2) is satisfied, then the system has a unique positive constant equilibrium (u∗, v∗), where
u∗ is the unique positive root of (2.3), and v∗ = (ρhur

∗
)

1
s+1 . �

From the proof of Lemma 2.1, we define β > σa to be the unique point such that I1(β) = 1. That is, β is the unique point
satisfying

ρ−1
a ρ

q
s+1
h (β − σa) = βp− qr

s+1 . (2.4)

For fixed parameters ρa, σa, ρh, p, q, r, s, we regard u∗ as a function of κ and u∗(0) = β . Then one can show that u∗(κ) is
strictly decreasing in κ . Indeed by differentiating 1 + κup

∗(κ) = I1(u∗(κ)), and using that I ′1(u) < 0 for u > σa, we see
that u′

∗
(κ) < 0. Since 1 + κup

∗(κ) = I1(u∗(κ)), we have I1(u∗(κ)) → ∞ as κ → ∞. Hence limκ→∞ u∗(κ) = σa and
limκ→0+ u∗(κ) = β .

We can now arrive at the following result about the local stability of the equilibrium (u∗, v∗).

Theorem 2.2. Suppose that the parameters ρa, ρh, σa, τ , p, q, r > 0, s, κ ≥ 0, β is defined as in Eq. (2.4), and p/r ≤ q/(s+1).

1. If

β − σa

β
<

1
p


1 +

s + 1
τ


, (2.5)

then (u∗, v∗) is locally asymptotically stable for any κ ≥ 0.
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2. If

β − σa

β
≥

1
p


1 +

s + 1
τ


, (2.6)

then there exists κ ≥ 0 such that
(i) if κ > κ , then (u∗, v∗) is locally asymptotically stable;
(ii) if κ < κ , then (u∗, v∗) is unstable;
(iii) system (2.1) undergoes a Hopf bifurcation when κ = κ at the positive equilibrium (u∗, v∗), and (2.1) possesses at least

one periodic orbit for any κ < κ;
(iv) if β−σa

β
=

1
p


1 +

s+1
τ


, then κ = 0.

Proof. Since the Jacobian matrix at the positive equilibrium (u∗, v∗) is
−1 + ρa

pup−1
∗

(1 + κup
∗)2v

q
∗

−qρa
up

∗

1 + κup
∗

v−q−1
∗

rρh

τ

ur−1
∗

vs
∗

−
s + 1

τ

 ,

using Eq. (2.3) and v∗ = (ρhur
∗
)

1
s+1 , we can calculate the determent of Jacobian matrix to be

D(u∗) =
1
τ

s + 1 + ρaρ
−

q
s+1

h
u
p−1− qr

s+1
∗

1 + κup
∗


−

p(s + 1)
1 + κup

∗

+ qr
 ,

and the trace of Jacobian matrix is

T (u∗) = −


1 +

s + 1
τ


+ ρ−1

a ρ
q

s+1
h pu

−p−1+ qr
s+1

∗ (u∗ − σa)
2.

Since p/r ≤ q/(s + 1), we see that for any σa < u∗ ≤ β , D(u∗) > 0 and T ′(u) > 0 for u > σa. If (2.5) is satisfied, then
T (β) < 0. Hence for any σa < u∗ < β, T (u∗) < 0, which implies that (u∗, v∗) is locally asymptotically stable for any κ ≥ 0
if (2.5) is satisfied.

On the other hand, if (2.6) is satisfied, by using T ′(u) > 0 and T (σa) < 0, then we see that there exists a unique u∗ such
that T (u∗) > 0 for u∗ > u∗, T (u∗) < 0 for u∗ < u∗, and T (u∗) = 0. Since u∗(κ) is strictly decreasing in κ , there exists κ ≥ 0
such that when κ > κ , then (u∗, v∗) is locally asymptotically stable; when κ < κ , then (u∗, v∗) is unstable, and

dT (u(κ))

dκ


κ=κ

=
dT (u)
du


u=u(κ)

·
du(κ)

dκ


κ=κ

< 0.

System (2.1) undergoes a Hopf bifurcation at the positive equilibrium (u∗, v∗) for κ = κ , and from Poincáre–Bendixson
theory, system (2.1) possesses a periodic orbit when κ < κ . It is easy to verify that if β−σa

β
=

1
p


1 +

s+1
τ


, then κ = 0. �

Remark 2.3. We notice that β is a numerical value which depends on all other parameters except κ and τ , and in general β
cannot be explicitly solved. Also the condition p/r ≤ q/(s+1) in Theorem 2.2 is more restrictive than (p−1)/r < q/(s+1)
in Lemma 2.1. But for the special case p = r = 2, s = 0 and q = 1 as in (1.2), one can directly calculate β = σa + ρaρ

−1
h

and β−σa
βa

=
ρaρ

−1
h

σa+ρaρ
−1
h

in Theorem 2.2. We choose σa = 0.5, ρa = 1, ρh = 1, and τ = 4, then in this case we have that

κ ≈ 0.0234 (see Fig. 1).

We also remark that here we have only given some elementary analysis of the kinetic model, and a more detailed study
of the dynamics of (2.1) is still missing. For the non-saturation case κ = 0, the kinetic model (2.1) was recently considered
in [55].

2.2. Comparison methods for delayed reaction–diffusion systems [47]

In this subsection, we recall some known results on the upper–lower solution methods for reaction–diffusion
systems with delays and Neumann boundary condition proposed by Pao [45,47]. This method can also be applied to
reaction–diffusion system without delays, as in Pao [44].

Consider two vector-valued function f, g : O × O∗
→ R2, where O and O∗ are subsets of R2 and

f(u,w) = (f1(u,w), f2(u,w)), (u,w) ∈ O × O∗,

g(l,m) = (g1(l,m), g2(l,m)), (l,m) ∈ O × O∗.
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Fig. 1. Hopf bifurcation diagramwith parameter κ . Here p = r = 2, s = 0, q = 1, σa = 0.5, ρa = 1, ρh = 1. The horizontal axis is κ , the vertical axis is u,
and the vertical lines represent the u-range of the periodic orbits. Here a family of limit cycles bifurcate from the Hopf point κ ≈ 0.0234 and the direction
of the Hopf bifurcation is backward and supercritical. The diagram is plotted using Matcont.

By writing the vector u,w, l and m in the split form

u ≡ (ui, [u]ai , [u]bi), w ≡ ([w]ei , [w]di), l ≡ ([l]αi , [l]βi), m ≡ ([m]γi , [m]δi)

where [v]σ denotes a vector with σ number of components of v for v = u,w, l or m, the function f(u,w) is said to be
quasimonotone in O × O∗ if for any i = 1, 2, there exist nonnegative integers ai, bi, ei and di satisfying the relations

ai + bi = 1, ei + di = 2 (2.7)

such that the function

fi(u,w) ≡ fi(ui, [u]ai , [u]bi , [w]ei , [w]di)

is nondecreasing in each component of [u]ai and [w]ei , and is nonincreasing in each component of [u]bi and [w]di . Similarly,
the function g(l,m) is said to be quasimonotone in O × O∗ if for any i = 1, 2, there exist nonnegative integers αi, βi, γi and
δi satisfying the relations

αi + βi = 2, γi + δi = 2 (2.8)

such that the function

gi(l,m) ≡ gi([l]αi , [l]βi , [m]γi , [m]δi)

is nondecreasing in each component of [l]αi and [m]γi , and is nonincreasing in each component of [l]βi and [m]δi .
We consider the following general reaction–diffusion system with delay and nonlocal effect:

∂u1

∂t
= D11u1 + f1(u1(x, t), u2(x, t), u1(x, t − γ ), u2(x, t − γ ))

+


Ω

k1(x, y)g1(u1(y, t), u2(y, t), u1(y, t − γ ), u2(y, t − γ ))dy, x ∈ Ω, t > 0,

∂u2

∂t
= D21u2 + f2(u1(x, t), u2(x, t), u1(x, t − γ ), u2(x, t − γ ))

+


Ω

k2(x, y)g2(u1(y, t), u2(y, t), u1(y, t − γ ), u2(y, t − γ ))dy, x ∈ Ω, t > 0,

∂u1(x, t)
∂ν

=
∂u2(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u1(x, t) = φ1(x, t) ≥ 0, u2(x, t) = φ2(x, t) ≥ 0, x ∈ Ω, t ∈ [−γ , 0],

(2.9)

where the kernel functions k1(x, y) and k2(x, y) satisfy the second assumption in (K). If ki is the Delta function in (1.6), then
we can simply assume ki ≡ 0 in (2.9). Suppose that there exist two vectors c and c in R2 such that c ≤ c and for i = 1, 2,

fi(c i, [c]ai , [c]bi , [c]ei , [c]di) + gi([c]αi , [c]βi , [c]γi , [c]δi) ≤ 0,
fi(c i, [c]ai , [c]bi , [c]ei , [c]di) + gi([c]αi , [c]βi , [c]γi , [c]δi) ≥ 0;

(2.10)



S. Chen, J. Shi / Nonlinear Analysis: Real World Applications 14 (2013) 1871–1886 1877

f(u,w) and g(l,m) are quasimonotone in a subset ⟨c, c⟩ × ⟨c, c⟩ where ⟨c, c⟩ = {c ∈ R2
: c ≤ c ≤ c}, and for each

i = 1, 2, fi(u,w) and gi(l,m) satisfy the Lipschitz conditionfi(u,w) − fi(u′,w′)
 ≤ Ki(

u − u′
+ w − w′

),gi(l,m) − gi(l′,m′)
 ≤ Ki(

l − l′
+ m − m′

) (2.11)

for (u,w), (u′,w′), (l,m) and (l′,m′) in ⟨c, c⟩×⟨c, c⟩ and some Ki > 0. Following [47] we define two sequences of constant
vectors {cm} = {(cm1 , cm2 )}, {cm} = {(cm1 , cm2 )}, from the recursion relations

cmi = cm−1
i +

1
Ki

fi(cm−1
i , [cm−1

]ai , [c
m−1

]bi , [c
m−1

]ei , [c
m−1

]di),

+
1
Ki

gi([cm−1
]αi , [c

m−1
]βi , [c

m−1
]γi , [c

m−1
]δi),

cmi = cm−1
i +

1
Ki

fi(cm−1
i , [cm−1

]ai , [c
m−1

]bi , [c
m−1

]ei , [c
m−1

]di),

+
1
Ki

gi([cm−1
]αi , [c

m−1
]βi , [c

m−1
]γi , [c

m−1
]δi),

(2.12)

for m = 1, 2, . . . , i = 1, 2 and c0 = c, c0 = c. From [47, Lemma 2.1] and [45], the sequences {cm} and {cm} satisfy the
monotonicity property

c ≤ cm ≤ cm+1
≤ cm+1

≤ cm ≤ c, m = 1, 2, . . . . (2.13)
Hence there exist limits c̃ and č such that limm→∞ cm = c̃ and limm→∞ cm = č. From [47, Theorem 2.2], [47, Corollary 2.1]
and [45], the asymptotical dynamics of the reaction–diffusion system with delays (2.9) can be obtained as follows:

Theorem 2.4 ([47]). Suppose there exist c ≤ c satisfying (2.10), f(u,w) and g(l,m) are quasimonotone and satisfy (2.11) in
⟨c, c⟩ × ⟨c, c⟩. Then for any initial condition φ = (φ1, φ2) in ⟨c, c⟩, the solution u(x, t) = (u1(x, t), u2(x, t)) of
system (2.9) satisfies the relation

c ≤ u(x, t) ≤ c, t ∈ (0, ∞), x ∈ Ω. (2.14)

If, in addition, č = c̃ = c∗, then c∗ is the unique steady state solution of system (2.9) in ⟨c, c⟩ and

lim
t→∞

u(x, t) = c∗, uniformly for x ∈ Ω. (2.15)

Corollary 2.5 ([47]). Let the conditions in Theorem 2.4 hold, and let

u(x, t) = (u1(x, t), u2(x, t))

be the solution of system (2.9) of an arbitrary initial function φ. If there exists t∗ > 0 such that

c ≤ u(x, t) ≤ c, for t∗ − τ ≤ t ≤ t∗, x ∈ Ω,

then u(x, t) satisfies (2.14) for all t > t∗. Moreover if č = c̃, then (2.15) holds.

Remark 2.6. For reaction–diffusion systemswithout delays, f(u,w) = f(u). And since f is independent ofw, then the choice
of ei and di does not affect the equation. The general theory of upper–lower solutions of such systems have been considered
in pp. 424–431 of [44], for example.

Remark 2.7. 1. For system (1.4) without delays, g(l,m) = 0, and f(u) = (f1(u), f2(u)), where

f1(u) = −u + ρa
up

(1 + κup)vq
+ σa,

f2(u) =
1
τ


−v + ρh

ur

vs


,

and u = (u, v). Here a1 = 0, b1 = 1, a2 = 1, b2 = 0, [u]b1 = v and [u]a2 = u. In this case, the nonlinearity (f1, f2) is
called mixed quasimonotone as one of ai and one of bi are not zero. Hence the coupled upper solution (c1, c2) and lower
solution (c1, c2) of system (1.4) satisfy

0 ≥ σa − c1 + ρa
cp1

(1 + κcp1)c
q
2
, 0 ≥ ρh

cr1
cs2

− c2,

0 ≤ σa − c1 + ρa
cp1

(1 + κcp1)c
q
2
, 0 ≤ ρh

cr1
cs2

− c2.
(2.16)
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2. For system (1.7) with local delays, g(l,m) = 0, f(u,w) = (f1(u,w), f2(u,w)) are defined as

f1(u,w) = −u + ρa
wp

(1 + κwp)zq
+ σa,

f2(u,w) =
1
τ


−v + ρhw

r ,
where u = (u, v),w = (w, z). Here

a1 = 0, b1 = 1, e1 = 1, d1 = 1,
a2 = 1, b2 = 0, e2 = 2, d2 = 0,

and

[u]b1 = v, [w]e1 = w, [w]d1 = z,
[u]a2 = u, [w]e2 = (w, z).

Hence the pair of numbers (c1, c2) and (c1, c2) defined in (2.16) are still upper- and lower-solutions of (1.7). We notice
that here variables u and z are both missing in f2, hence (a2, b2) can also be (0, 1), and (e2, d2) can also be (1, 1). This
does not affect the choice of upper- and lower-solutions.

3. For system (1.6) with nonlocal delays, f(u) = (f1(u), f2(u)) and g(m) = (g1(m), g2(m)) are defined as

f1(u) = −u + σa, f2(u) = −
1
τ

v,

g1(m) = ρa
wp

(1 + κwp)zq
, g2(m) =

1
τ


ρhw

r ,
where u = (u, v),m = (w, z). Here

γ1 = 1, δ1 = 1, and γ2 = 2, δ2 = 0,

and

[m]γ1 = w, [w]δ1 = z, and [w]e2 = (w, z).

Hence the pair of numbers (c1, c2) and (c1, c2) defined in (2.16) are still upper- and lower-solutions of (1.6). Here we
remark that ai, bi, ci, di, αi and βi for i = 1, 2 can be any nonnegative integers satisfying Eqs. (2.7) and (2.8).

3. Global attractivity for system without delay and nonlocal effect

In this section we analyze system (1.4) which is without the delay effect. For more precise asymptotic behavior of the
solutions, we recall the following well-known result, and for the convenience of readers, we also sketch a proof.

Lemma 3.1. Assume that h : (0, ∞) → R is a smooth function so that h(w)(w − w0) < 0 for any w > 0 and
w ≠ w0, h(w0) = 0. Consider the initial–boundary value problem

τ
∂w

∂t
= D1w + h(w), x ∈ Ω, t > t0,

∂w(x, t)
∂ν

= 0, x ∈ ∂Ω, t > t0,

w(x, t0) > 0, x ∈ Ω

(3.1)

where τ ,D > 0, t0 ∈ R, then w(x, t) exists for all t > t0, w(x, t) → w0 uniformly for x ∈ Ω as t → ∞.

Proof. LetM = max{maxx∈Ω w(x, t0), w0} andm = min{minx∈Ω w(x, t0), w0}. Then it is easy to see that uM(t) ≥ w(x, t) ≥

um(t), where uM(t) and um(t) are the solutions of τu′
= h(u) with initial conditions uM(t0) = M and um(t0) = m

respectively. Then the convergence of w(x, t) follows from the convergence of uM(t) and um(t). �

First we prove that any solution of system (1.4) is attracted by an invariant rectangular region.

Theorem 3.2. Suppose that the parameters ρa, ρh, σa, τ , p, q, r, κ, ϵ,D > 0, s ≥ 0. Choose a constant ϵ0 so that

0 < ϵ0 < min


σa

2
, ρ

1
s+1
h

σa

2

 r
s+1


,

and define

c1 = σa − ϵ0, c2 = (ρhcr1)
1/(s+1)

− ϵ0,

c1 = σa + ρa
1

κcq2
+ ϵ0, c2 = (ρhcr1)

1/(s+1)
+ ϵ0.
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Then this chosen (c1, c2) and (c1, c2) satisfy

0 < c1 < σa < σa + ρa
1

κcq2
< c1, 0 < c2 < (ρhcr1)

1/(s+1) < (ρhcr1)
1/(s+1) < c2, (3.2)

and for any initial value φ = (u0(x), v0(x)), where u0(x) > 0, v0(x) > 0 for all x ∈ Ω , system (1.4) has a unique global solution
(u(x, t), v(x, t)), and there exists t0(φ) such that (u(x, t), v(x, t)) satisfies

(c1, c2) ≤ (u(x, t), v(x, t)) ≤ (c1, c2),

for any t > t0(φ). In particular,

lim inf
t→∞

u(x, t) ≥ σa, lim inf
t→∞

v(x, t) ≥ (ρhσ
r
a )

1/(s+1),

lim sup
t→∞

u(x, t) ≤ σa + ρa
1

κ(ρhσ r
a )

q/(s+1)
, and

lim sup
t→∞

v(x, t) ≤


ρh


σa + ρa

1
κ(ρhσ r

a )
q/(s+1)

r1/(s+1)

.

Proof. Since u(x, t) satisfies

∂u
∂t

= ϵ21u + σa − u + ρa
up

(1 + κup)vq

≥ ϵ21u + σa − u,

and the Neumann boundary condition, and the solution of ut = ϵ21u + σa − uwith same initial condition converges to σa
from Lemma 3.1, from the comparison principle of parabolic equations, for the initial value φ there exists t1(φ) > 0 such
that for any t > t1(φ), u(x, t) ≥ c1 = σa − ϵ0 > 0. And consequently v(x, t) satisfies

τ
∂v

∂t
= D1v − v + ρh

ur

vs

≥ D1v − v +
ρhcr1
vs

for t > t1(φ). Again we apply Lemma 3.1 to the equation

τ
∂v

∂t
= D1v − v +

ρhcr1
vs

, (3.3)

and any positive solution of (3.3) converges to the steady state (ρhcr1)
1/(s+1). Since ϵ0 < min


σa
2 , ρ

1
s+1
h


σa
2

 r
s+1


, we see that

c2 = (ρhcr1)
1/(s+1)

− ϵ0 > 0. Hence there exists t2(φ) ≥ t1(φ) such that for any t > t2(φ), v(x, t) ≥ c2. And consequently
for t > t2(φ),

∂u
∂t

= ϵ21u + σa − u + ρa
up

(1 + κup)vq

≤ ϵ21u + σa − u +
ρa

κcq2
.

Similar to the last two steps, any positive solution of

∂u
∂t

= ϵ21u + σa − u +
ρa

κcq2

converges to the steady state σa +
ρa
κcq2

. Hence there exists t3(φ) ≥ t2(φ) such that for any t > t3(φ), u(x, t) ≤ c1 =

σa + ρa
1

κcq2
+ ϵ0, and correspondingly

τ
∂v

∂t
= D1v − v + ρh

ur

vs

≤ D1v − v +
ρhcr1
vs
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for t > t3(φ). Finally observe that the steady state solution of

τ
∂v

∂t
= D1v − v +

ρhcr1
vs

is (ρhcr1)
1/(s+1). Hence there exists t0(φ) > t3(φ) such that for any t > t0(φ), v(x, t) ≤ c2 = (ρhcr1)

1/(s+1)
+ ϵ0. �

Remark 3.3. Define X+
= {φ ∈ C(Ω, R2) : φ > (0, 0)T }, and then from Theorem 3.2, there exists a semiflow

Φ(t) = U(·, t) : X+
→ X+ induced by system (1.4), where U(x, t) is the solution of system (1.4). Using the comparison

principle of parabolic equations,we can obtain that for any initial valueφ = (u0(x), v0(x)) satisfying (c1, c2) ≤ φ ≤ (c1, c2),
the corresponding solution (u(x, t), v(x, t)) satisfies (c1, c2) ≤ (u(x, t), v(x, t)) ≤ (c1, c2). Then define

M := {φ ∈ C(Ω) : (c1, c2) ≤ φ ≤ (c1, c2)}, (3.4)

and M is positively invariant and is attracting. Then from [56, Theorem 3.4.8], Φ(t) = U(·, t) : X+
→ X+ has a global

compact attractor.

Next we want to give some results of the global compact attractor of the semiflow Φ(t). Using the upper and lower
solution method [44,46,47], we can obtain when the saturation effect is strong, system (1.4) has a unique positive constant
steady state (u∗, v∗) which is the global attractor of semiflow Φ(t) = U(·, t) : X+

→ X+.

Theorem 3.4. Suppose that the parameters ρa, ρh, σa, τ , p, q, r, κ, ϵ,D > 0, and s ≥ 0. Then there exists κ0 depending only
on σa, ρa and ρh such that for any κ > κ0, system (1.4) has a unique positive constant steady state solution (u∗, v∗), which
is the global attractor of the semiflow Φ(t) = U(·, t) : X+

→ X+. That is, for any initial value φ = (u0(x), v0(x)), where
u0(x) > 0, v0(x) > 0, the corresponding solution (u(x, t), v(x, t)) of system (1.4) converges uniformly to (u∗, v∗) as t → ∞.
Proof. From Theorem 3.2, we know that c1, c1, c2 and c2 satisfy (3.2). From (3.2), we obtain that

0 ≥ σa − c1 + ρa
cp1

(1 + κcp1)c
q
2
, 0 ≥ ρh

cr1
cs2

− c2,

0 ≤ σa − c1 + ρa
cp1

(1 + κcp1)c
q
2
, 0 ≤ ρh

cr1
cs2

− c2.
(3.5)

Then (c1, c2) and (c1, c2) is a pair of coupled upper and lower solution of system (1.4). It is clear that there exists K > 0
such that for any (c1, c2) ≤ (u1, v1), (u2, v2) ≤ (c1, c2),−u1 + ρa

up
1

(1 + κup
1)v

q
1

+ u2 − ρa
up
2

(1 + κup
2)v

q
2

 ≤ K(|u1 − u2| + |v1 − v2|),

τ−1
ρh

ur
1

vs
1

− v1 − ρh
ur
2

vs
2

+ v2

 ≤ K(|u1 − u2| + |v1 − v2|).

We define two iteration sequences (cm1 , cm2 ) and (cm1 , cm2 ) as follows: for m ≥ 1,

cm1 = cm−1
1 +

1
K


σa − cm−1

1 + ρa
(cm−1

1 )p

(1 + κ(cm−1
1 )p)(cm−1

2 )q


,

cm2 = cm−1
2 +

1
K


ρh

(cm−1
1 )r

(cm−1
2 )s

− cm−1
2


,

cm1 = cm−1
1 +

1
K


σa − cm−1

1 + ρa
(cm−1

1 )p

(1 + κ(cm−1
1 )p)(cm−1

2 )q


,

cm2 = cm−1
2 +

1
K


ρh

(cm−1
1 )r

(cm−1
2 )s

− cm−1
2


,

where (c01, c
0
2) = (c1, c2) and (c01, c

0
2) = (c1, c2). Then for m ≥ 1, (c1, c2) ≤ (cm1 , cm2 ) ≤ (cm+1

1 , cm+1
2 ) ≤ (cm+1

1 , cm+1
2 ) ≤

(cm1 , cm2 ) ≤ (c1, c2), and there exist (c̃1, c̃2) and (č1, č2) such that (c1, c2) ≥ (c̃1, c̃2) ≥ (č1, č2) ≥ (c1, c2) which satisfy
limm→∞ cm1 = c̃1, limm→∞ cm2 = c̃2, limm→∞ cm1 = č1, limm→∞ cm2 = č2 and

0 = σa − c̃1 + ρa
c̃p1

(1 + κ c̃p1)č
q
2
, 0 = ρh

c̃r1
c̃s2

− c̃2,

0 = σa − č1 + ρa
čp1

(1 + κ čp1)c̃
q
2
, 0 = ρh

čr1
čs2

− č2.
(3.6)
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From (3.6), we obtain that c̃1, č1 > σa, c̃1 ≤ σa +
ρ

κ(σa)
rq
s+1

, where ρ = ρaρ
−

q
s+1

h , and consequently č1 and c̃1 satisfy

č1 = ρ
s+1
rq


c̃p1

(1 + κ c̃p1)(c̃1 − σa)

 s+1
rq

, c̃1 = ρ
s+1
rq


čp1

(1 + κ čp1)(č1 − σa)

 s+1
rq

. (3.7)

Define R(x) := ρ
s+1
rq


xp
(1+κxp)(x−σa)

 s+1
rq

; we notice that

R′(x) = ρ
s+1
rq

s + 1
rq

xµ(−κxp+1
+ (p − 1)x − σap)

(1 + κxp)
s+1
qr +1

(x − σa)
s+1
qr +1

, (3.8)

where µ =
p(s+1)

qr − 1. Define σ∗ = σa +
ρ

κ(σa)
rq
s+1

. Hence if µ ≥ 0, p > 1, and κ >
(p−1)ρ

(σa)
rq
s+1 +1

, then

κσ p+1
a − (p − 1)σ∗ + σap ≥ κσ p+1

a > 0,

and consequently,

−R′(x) ≥ ρ
s+1
rq

s + 1
rq

σ
µ
a


κσ

p+1
a − (p − 1)σ∗ + σap



1 + κσ

p
∗

 s+1
qr +1

(σ∗ − σa)
s+1
qr +1

(3.9)

for any x ∈ (σa, σ∗], and if µ < 0, p > 1, and κ >
(p−1)ρ

(σa)
rq
s+1 +1

, then

−R′(x) ≥ ρ
s+1
rq

s + 1
rq

σ
µ
∗


κσ

p+1
a − (p − 1)σ∗ + σap



1 + κσ

p
∗

 s+1
qr +1

(σ∗ − σa)
s+1
qr +1

(3.10)

for any x ∈ (σa, σ∗]. If µ ≥ 0, p ≤ 1, and κ >
(p−1)ρ

(σa)
rq
s+1 +1

, then

−R′(x) ≥ ρ
s+1
rq

s + 1
rq

σ
µ
a


κσ

p+1
a + σap



1 + κσ

p
∗

 s+1
qr +1

(σ∗ − σa)
s+1
qr +1

(3.11)

for any x ∈ (σa, σ∗], and if µ < 0, p ≤ 1, and κ >
(p−1)ρ

(σa)
rq
s+1 +1

, then

−R′(x) ≥ ρ
s+1
rq

s + 1
rq

σ
µ
∗


κσ

p+1
a + σap



1 + κσ

p
∗

 s+1
qr +1

(σ∗ − σa)
s+1
qr +1

(3.12)

for any x ∈ (σa, σ∗].
Let H(ρ, σa, κ) be the right hand side of Eqs. (3.9) and (3.10) if µ ≥ 0 and µ < 0, respectively for p > 1 and be

the right hand side of Eqs. (3.11) and (3.12) if µ ≥ 0 and µ < 0, respectively for p ≤ 1. Since for any fixed σa and ρ,
limκ→∞ H(ρ, σa, κ) = +∞, then there exists κ0(σa, ρ) such that −R′(x) > 1 for any κ > κ0 and x ∈ (σa, σ∗]. Then from
the intermediate-value theorem,

č1 − c̃1 = R(c̃1) − R(č1) = R′(θ)(c̃1 − č1) ≤ ϑ(c̃1 − č1)

for some θ ∈ (č1, c̃1), ϑ < −1 and hence č1 = c̃1.
From Theorem 2.4 and Corollary 2.5, we obtain that there exists κ0 depending only on σa, ρa and ρh such that for any

κ > κ0, system (1.4) has a unique positive constant steady state solution (u∗, v∗), which is the global attractor of the
semiflow Φ(t) = U(t, ·) : X+

→ X+. �

Remark 3.5. If p > 1 and κ >
(p−1)ρ

(σa)
rq
s+1 +1

, then

κσ p+1
a − (p − 1)


σa +

ρ

κ(σa)
rq
s+1


+ σap ≥ κσ p+1

a .
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If κ >
ρ

(σa)
rq
s+1

, then


1 + κ


σa +

ρ

κ(σa)
rq
s+1

p s+1
qr +1 

ρ

κ(σa)
rq
s+1

 s+1
qr +1

≤


1 +

ρ

(σa)
qr
s+1

(σa + 1)p
 s+1

qr +1

.

So if µ =
p(s+1)

qr − 1 ≥ 0, we can choose

κ0 = max


(p − 1)ρ

(σa)
rq
s+1 +1

,
ρ

(σa)
rq
s+1

,


1 +

ρ

(σa)
qr
s+1

(σa + 1)p
 s+1

qr +1

ρ
s+1
rq s+1

rq σ
µ+p+1
a


in Theorem 3.4. Similarly, we can choose κ0 in the case of µ < 0.

We consider a special case of p = r = 2, s = 0 and q = 1, and choose σa = 0.5, ρa = 1, ρh = 1, and τ = 4. Then we
can choose κ0 ≈ 505.965 in Theorem 3.4, and from Theorem 2.2 we can compute the Hopf bifurcation point is κ ≈ 0.0234.
Hence there is a rather large gap between the regimes of global stability and oscillatory behavior.

Remark 3.6. Since limρ→0 H(ρ, σa, κ) = limσ→∞ H(ρ, σa, κ) = ∞, using the same method as in Theorem 3.4, we can
obtain that

1. there exists σH depending only on ρ and κ such that for any σa > σH , (u∗, v∗) is globally asymptotically stable;
2. there exists ρH depending only on κ and σa such that for any ρ < ρH , (u∗, v∗) is globally asymptotically stable.

4. Global attractivity for system with nonlocal gene expression time delays

In this section we analyze system (1.6) and assume the gene expression time delay γ > 0. Denote X = C(Ω, R2), and
define A : Dom(A) ⊂ X → X by

Aφ =


ϵ21φ1 − φ1,

D
τ

1φ2 −
1
τ

φ2

T

for φ = (φ1, φ2)
T

∈ X . It is well known that A generates an analytic, compact and strongly positive semigroup T (t) on
X [57]. Let C = C([−γ , 0], X), and define F : C → X by

F(U)(x) =

σa + ρa


Ω

k1(x, y)
up(y, −γ )

(1 + κup(y, −γ ))vq(y, −γ )
dy

ρh

τ


Ω

k2(x, y)ur(y, −γ )dy

 , (4.1)

where U = (u, v)T ∈ C and each of ki(x, y) satisfies the assumption (K ). Then we consider the following integral equationU(t) = T (t)φ(0) +

 t

0
T (t − s)F(Us)ds, t > 0,

U0 = φ ∈ C,

(4.2)

whose solution is called the mild solution of (1.6). Denote

C+
= {φ = (φ1, φ2)

T
∈ C : φ1 > 0, φ2 > 0}.

Theorem 4.1. Suppose that the parameters ρa, ρh, σa, τ , p, q, r, κ, ϵ,D, γ > 0, s ≥ 0. Then for any initial value φ ∈ C+,
Eq. (4.2) has a unique positive solution U(φ, t) exists on [0, ∞), and U(φ, t) is a classical solution of system (1.6) when t > γ .

Proof. For any initial values φ ∈ C+, from [57, Theorem 4.3.1], we know that when 0 < t ≤ γ , Eq. (4.2) has a unique
solution U(t) > 0 satisfyingU(t) = T (t)φ(0) +

 t

0
T (t − s)F(Us)ds, t > 0,

U0 = φ ∈ C+.

Repeating the above procedure iteratively, we can obtain that the mild solution U(t) > 0 (solution of (4.2)) is unique
and exists on [0, ∞). Furthermore, from [57, Theorem 4.3.1], U(t) is locally Hölder continuous on (0, ∞). Then from
[57, Corollary 4.3.3], we obtain that U(t) is the classical solution of (1.6) when t > γ . �
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Furthermore by using the samemethod in Section 3, we can easily arrive at the following result of asymptotic bounds of
solutions.

Theorem 4.2. Suppose that the parameters ρa, ρh, σa, τ , p, q, r, κ, ϵ,D, γ > 0. Choose a constant ϵ0 so that

0 < ϵ0 < min
σa

2
, ρh

σa

2

r
,

and define

c1 = σa − ϵ0, c2 = ρhcr1 − ϵ0,

c1 = σa + ρa
1

κcq2
+ ϵ0, c2 = ρhcr1 + ϵ0.

Then this chosen (c1, c2) and (c1, c2) satisfy

0 < c1 < σa < σa + ρa
1

κcq2
< c1, 0 < c2 < ρhcr1 < ρhcr1 < c2, (4.3)

and for any initial value φ = (u0(x, t), v0(x, t)), where u0(x, t) > 0, v0(x, t) > 0 for all (x, t) ∈ Ω × [−γ , 0], there exists
t0(φ) such that the corresponding solution (u(x, t), v(x, t)) of system (1.6) satisfies

(c1, c2) ≤ (u(x, t), v(x, t)) ≤ (c1, c2),

for any t > t0(φ). In particular,

lim inf
t→∞

u(x, t) ≥ σa, lim inf
t→∞

v(x, t) ≥ ρhσ
r
a ,

lim sup
t→∞

u(x, t) ≤ σa + ρa
1

κ(ρhσ r
a )

q
, and

lim sup
t→∞

v(x, t) ≤ ρh


σa + ρa

1
κ(ρhσ r

a )
q

r

.

Proof. From Theorem 4.1, we know that for any initial values φ = (u0(x), v0(x)), u0(x) > 0, v0(x) > 0, the corresponding
solution (u(x, t), v(x, t)) of system (1.6) exists and is positive for all t > 0.

Since u(x, t) satisfies

∂u
∂t

= ϵ21u + σa − u + ρa


Ω

k1(x, y)
up(y, t − γ )

(1 + κup(y, t − γ ))vq(y, t − γ )
dy

≥ ϵ21u + σa − u,

and the Neumann boundary condition, and the solution of ut = ϵ21u + σa − uwith same initial condition converges to σa
from Lemma 3.1, then from the comparison principle of parabolic equations, for the initial value φ there exists t1(φ) > 0
such that for any t > t1(φ), u(x, t) ≥ c1 = σa − ϵ0 > 0. And consequently v(x, t) satisfies

τ
∂v

∂t
= D1v − v + ρh


Ω

k2(x, y)ur(y, t − γ )dy

≥ D1v − v + ρhcr1
for t > t1(φ) + γ . Again we apply Lemma 3.1 to the equation

τ
∂v

∂t
= D1v − v + ρhcr1, (4.4)

and any positive solution of (4.4) converges to the steady state ρhcr1. Since ϵ0 < min


σa
2 , ρh


σa
2

r, then c2 = ρhcr1−ϵ0 > 0.
Hence there exists t2(φ) ≥ t1(φ) + γ such that for any t > t2(φ), v(x, t) ≥ c2. And consequently for t > t2(φ) + γ ,

∂u
∂t

= ϵ21u + σa − u + ρa


Ω

k1(x, y)
up(y, t − γ )

(1 + κup(y, t − γ ))vq(y, t − γ )
dy

≤ ϵ21u + σa − u +
ρa

κcq2
.

Similar to the last two steps, any positive solution of

∂u
∂t

= ϵ21u + σa − u +
ρa

κcq2
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converges to the steady state σa +
ρa
κcq2

. Hence there exists t3(φ) ≥ t2(φ) + γ such that for any t > t3(φ), u(x, t) ≤ c1 =

σa + ρa
1

κcq2
+ ϵ0, and correspondingly

τ
∂v

∂t
= D1v − v + ρh


Ω

k2(x, y)ur(y, t − γ )dy

≤ D1v − v + ρhcr1
for t > t3(φ) + γ . Finally observe that the steady state solution of

τ
∂v

∂t
= D1v − v + ρhcr1

is ρhcr1. Hence there exists t0(φ) > t3(φ) + γ such that for any t > t0(φ), v(x, t) ≤ c2 = (ρhcr1)
1/(s+1)

+ ϵ0. �

Remark 4.3. From the proof of Theorem4.2, if s > 0, thenwe cannot have the above result of asymptotic bounds of solutions
with delays. So we only have the result of bound and global stability for the case of s = 0 in this section.

We can also arrive at the following result using the upper and lower solutions method [46,47] by using the similar
argument as Theorem 3.4:

Theorem 4.4. Suppose that the parameters ρa, ρh, σa, τ , p, q, r, κ, ϵ,D, γ > 0. Then there exists κ0 > 0 depending only on
σa, ρa and ρh such that for any κ > κ0, there exists a unique positive constant steady state solution (u∗, v∗) of system (1.6)which
is the global attractor of the semiflow Φ(t) = Ut(·) : C+

→ C+. That is, for any initial values φ ∈ C+, the corresponding
solution (u(x, t), v(x, t)) converges uniformly to (u∗, v∗) as t → ∞.

Remark 4.5. Similar to Remark 3.6,

1. there exists σH depending only on ρ and κ such that for any σa > σH , for any positive initial values, the corresponding
solution (u(x, t), v(x, t)) converges uniformly to (u∗, v∗) as t → ∞;

2. there exists ρH depending only on κ and σa such that for any ρ < ρH , for any positive initial values, the corresponding
solution (u(x, t), v(x, t)) converges uniformly to (u∗, v∗) as t → ∞.

Remark 4.6. The integral operator L(φ)(x) =


Ω
k(x, y)φ(y)dy defined in (K ) is of Fredholm type [58]. The positivity

assumption on the linear operator L is easily satisfied if the kernel function k(x, y) > 0 for x, y ∈ Ω . The assumption that
Ω
k(x, y)dy = 1 is equivalent to that the constant function φ(x) = 1 is the eigenfunction corresponding to the principal

eigenvalue 1 of L. In many applications, it is also assumed that the kernel k(x, y) is symmetric so that k(x, y) = k(y, x) for
x, y ∈ Ω . Under this additional assumption, it is known that k(x, y) must be of form

k(x, y) = 1 +

∞
i=2

λiφi(x)φi(y), (4.5)

where (λi, φi(x)) is the eigenpair of the Fredholm integral operator L satisfying

1 = λ1 < |λ2| ≤ |λ3| ≤ · · · ,


Ω

φ2
i (x)dx = 1,

see [59, p. 243] or [58, p. 63, Theorem 14]. A Fredholm integral operator L with kernel as in (4.5) is known as the
Hilbert–Schmidt operator. In the case L is also positive, Mercer’s Theorem ([59, p. 245] or [58, p. 90, Theorem 17]) implies
that the convergence in (4.5) is uniform and absolute.

5. Conclusions

The role of time delay in a spatiotemporal pattern formation process has received attention in recent research [60,54,61,
8,62,10,11]. It adds one more dimension to the already complex reaction–diffusion models which exhibit patterns such as
nonhomogeneous steady states and spatiotemporal oscillation [54,10,11]. On the other hand, for certain parameter ranges,
the systemcan achieve the global stability hence nonontrivial patterns exist despite the timedelays [50,47]. In this paper,we
consider the impact of the saturation rate κ on the dynamics of the Gierer–Meinhardt systemwith diffusion, gene expression
delay and saturation of activator production. For small κ , time-periodic patterns can appear as result of Hopf bifurcation
from the homogeneous steady state [54]; and for large κ , the system always stabilizes at the homogeneous steady state
in the Gierer–Meinhardt system with saturation and gene expression delays (see Theorem 4.4). Indeed our approach of
upper–lower solutions defines an attraction region in the phase space for all parameter ranges, and this attraction region
shrinks to a single point for large κ . Identifying this attraction region will be helpful for further analysis of pattern formation
dynamics.
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For a reaction–diffusion system modeling spatial chemical reactions, it has been shown that the variation of certain
system parameters can trigger the transition from a globally asymptotically stable equilibrium to multiple spatially
nonhomogeneous steady states or spatially nonhomogeneous time-periodic orbits via a sequence of steady state or Hopf
bifurcations [63–65]. Such transitions also occur for the Gierer–Meinhardt systemwith diffusion and saturation of activator
production with κ as the bifurcation parameter, even without the gene expression delay [66]. On the other hand, it is
well known that a larger delay usually destabilizes the homogeneous steady state, as shown in [67,49,64] for example,
and for the Gierer–Meinhardt system with diffusion, delay and saturation of activator production (that is (1.7)), such an
instability/bifurcation result was proved recently in [54]. Instability/bifurcation analysis for the nonlocal system (1.6) is not
known yet, as the analytical form of the steady state is not known.
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