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The existence, stability and uniqueness of positive solutions to a semilinear elliptic
system with sublinear nonlinearities are proved. It is shown that the precise global
bifurcation diagram of the positive solutions is a monotone curve with different
asymptotical behaviour according to the form of the nonlinearities. Equations with
Hölder continuous nonlinearities are also considered.

1. Introduction

Reaction–diffusion systems are used to model many chemical and biological phe-
nomena in the natural world [25, 26], and systems of coupled partial differential
equations are also used in other physical models such as nonlinear Schrödinger sys-
tems in multi-component Bose–Einstein condensates and nonlinear optics [19, 23].
The steady-state solutions or standing-wave solutions of such systems of nonlinear
partial differential equations satisfy a nonlinear elliptic system with more than one
equation. Much effort has been devoted to the existence of solutions of such systems
(see, for example, [4, 8, 10, 11, 13, 15–17, 24, 30, 33, 34]), but it is usually difficult to
determine whether or not the solution is unique.

We consider the positive solutions of a semilinear elliptic system of the form

∆u + λf(u, v) = 0, x ∈ Ω,

∆v + λg(u, v) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (1.1)

where λ > 0 and Ω is a bounded smooth domain. Here f and g are real-valued
functions defined on R

2
+ := (0,∞) × (0,∞) which satisfy
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(A1) f, g ∈ Cα(R2
+) ∩ C1(R2

+) for α ∈ (0, 1),

(A2) (cooperativeness) define the Jacobian of the vector field (f, g) as

J(u, v) =

⎛
⎜⎜⎝

∂f

∂u
(u, v)

∂f

∂v
(u, v)

∂g

∂u
(u, v)

∂g

∂v
(u, v)

⎞
⎟⎟⎠ ≡

(
fu(u, v) fv(u, v)

gu(u, v) gv(u, v)

)
. (1.2)

Then fv(u, v) � 0 and gu(u, v) � 0 for (u, v) ∈ R
2
+.

We consider the existence, uniqueness and stability of positive solutions to (1.1).
From assumption (A1), we look for positive solutions (u, v) ∈ C2,α

0 (Ω̄). The stability
of a solution is determined by the following eigenvalue problem:

∆ξ + λfu(u, v)ξ + λfv(u, v)η = −µξ, x ∈ Ω,

∆η + λgu(u, v)ξ + λgv(u, v)η = −µη, x ∈ Ω,

ξ(x) = η(x) = 0, x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (1.3)

From the maximum principle of cooperative elliptic systems (see lemma 2.1 and
[40]), equation (1.3) has a real principal eigenvalue µ1(u, v), which has the smallest
real part among all spectrum points. A solution (u, v) is stable if µ1(u, v) > 0 and
it is unstable otherwise.

For a scalar semilinear elliptic equation

∆u + λf(u) = 0, x ∈ Ω, u(x) = 0, x ∈ ∂Ω, (1.4)

the stability of a solution can be defined in a similar fashion. If the nonlinear func-
tion is sublinear, that is, if f(u)/u is a non-increasing function, then it is well known
that a positive solution of (1.4) is stable and one can prove that the solution must
be unique with various methods. Brezis and Kamin [2] presented several different
proofs for the uniqueness (see also [20,27,28,35,36]).

Here we use the stability defined above to prove that under some general sublinear
conditions similar to the one for scalar equations, the positive solution of (1.1) is
stable. Then one can use bifurcation theory to prove the existence and uniqueness
of the positive solution. We also obtain the precise global bifurcation diagrams of
the system in (λ, u, v) space under these conditions. In all cases that we consider,
the bifurcation diagram is a single monotone solution curve (see §§ 3 and 4 for more
precise statements). The notation of sublinearity and superlinearity of the nonlinear
vector field (f(u, v), g(u, v)) or of those in higher dimensions were considered in [39].
But our definition is quite different and our purpose is to prove uniqueness under a
sublinear assumption. Our definition of sublinear nonlinearity is similar to the one
in [28] for the scalar case.

Dalmasso [11,12] obtained an existence and uniqueness result for a more special
sublinear system and it was extended by Shi and Shivaji [37]. The uniqueness of
positive solutions for large λ was proved in [15–18]. For superlinear-type systems,
Clément et al . [8] obtained a priori estimates of positive solutions and used topolog-
ical methods to prove the existence of solutions. Rellich–Pohozaev-type identities
can be established for systems with variational structure [24], which is very useful
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for the non-existence result, among others. We note that many of these results are
for the special Hamiltonian system case,

∆u + λf(v) = 0, x ∈ Ω,

∆v + λg(u) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (1.5)

while we consider equations in a more general form.
For (1.1) satisfying (A2) with Ω being a finite ball or the whole space, it is

known that a positive solution is radially symmetric [3, 41]. Hence, the system can
be converted into a system of ordinary differential equations. Several authors have
taken that approach for the existence of the solutions [30,33,34] and much success
has been achieved for Lane–Emden systems. Using the scaling invariant in the
Lane–Emden system, the uniqueness of the radial positive solution has been shown
in [10,11,22] for a system with three equations. Korman [21] obtained a uniqueness
and exact multiplicity result for the one-dimensional case. A more general approach,
using shooting method and linearized equations for the radial case, has been taken
by the present authors [6, 7].

We recall the maximum principle and prove the main stability result in § 2.
In § 3 we use the stability result and bifurcation theory to prove the existence
and uniqueness of solution under several different assumptions on the differentiable
nonlinearities; in § 4 we consider a similar question for nonlinearities that are merely
Hölder continuous, and we use the monotonicity method for the existence and a
method in [2, 11] for the uniqueness.

2. The maximum principle and stability

Let (u, v) be a solution of (1.1). The stability of (u, v) is determined by the linearized
equation (1.3), which can be written as

Lu = Ju + µu, (2.1)

where

u =
(

ξ

η

)
, Lu =

(
−∆ξ

−∆η

)
and J = λ

(
fu fv

gu gv

)
. (2.2)

If we assume that (f, g) is cooperative (satisfying (A2)), then system (2.1), (2.2) is a
linear elliptic system of cooperative type. If we also assume that fv(u(x), v(x)) �≡ 0
and gu(u(x), v(x)) �≡ 0, then J is irreducible, and the maximum principles hold for
irreducible cooperative systems. We now recall some known results.

Lemma 2.1. Suppose that Ω is a bounded, open, connected subset of R
n satis-

fying a uniform exterior cone condition, and u, v ∈ C0(Ω̄), with L and J as
given in (2.2). Suppose that the entries of J are in Lq(Ω) with q � pn/(p − n)
and that (f, g) satisfies (A2), fv(u(x), v(x)) �≡ 0 and gu(u(x), v(x)) �≡ 0. Let
X ≡ [W 2,p(Ω) ∩ W 1,p

0 (Ω)]2 and Y ≡ [Lp(Ω)]2, where p > n. Then we have the
following.

(i) µ1 = inf{Re(µ) : µ ∈ spt(L−J)} is a real eigenvalue of L−J , where spt(L−J)
is the spectrum of L − J .
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(ii) For µ = µ1, there exists a unique (up to a constant multiple) eigenfunction
u1 ∈ X, and u1 > 0 in Ω.

(iii) For µ < µ1, the equation Lu = Ju + µu + f is uniquely solvable for any
f ∈ Y , and the solution u(∈ X) > 0 as long as f � 0.

(iv) (Maximum principle.) For µ � µ1, suppose that u ∈ [W 2,p(Ω)]2 satisfies
Lu � Ju + µu in Ω, and u � 0 on ∂Ω. Then u � 0 in Ω.

(v) If there exists a u ∈ [W 2,p(Ω)]2 that satisfies Lu � Ju in Ω, u � 0 on ∂Ω
and either u �≡ 0 on ∂Ω or Lu �≡ Ju in Ω, then µ1 > 0.

For a more general result and proofs see proposition 3.1, theorem 1.1 and remark
1.4 of [40]. Moreover, from a standard compactness argument, the eigenvalues {µi}
of L − J are countable, and |µi − µ1| → ∞ as i → ∞. We note that µi is not
necessarily real valued.

We prove the following basic result on the stability of a positive solution.

Theorem 2.2. Suppose that f, g satisfies (A1) and (A2) and that (u, v) is a positive
solution of (1.1). We assume that there exists q > n such that

each entry of J(u, v) is in Lq(Ω). (2.3)

If f and g also satisfy the condition

(A3) for any (u, v) ∈ R
2
+,

f(u, v) > fv(u, v)v + gv(u, v)u, g(u, v) > gu(u, v)u + fu(u, v)v, (2.4)

then (u, v) is stable.

Proof. We choose p > n such that q � pn/(p − n). Then lemma 2.1 can be applied
to L − J defined in (2.1) and (2.2). Let (u, v) be a positive solution of (1.1), and
let (µ1, ξ, η) be the corresponding principal eigenpair such that ξ > 0 and η > 0 in
Ω. Multiplying the equation for u in (1.1) by η, multiplying the equation for η in
(1.3) by u, integrating over Ω and subtracting, we obtain

λ

∫
Ω

fη dx = λ

∫
Ω

guuξ dx + λ

∫
Ω

gvuη dx + µ1

∫
Ω

uη dx. (2.5)

Similarly, from the equations for v and ξ, we find

λ

∫
Ω

gξ dx = λ

∫
Ω

fuvξ dx + λ

∫
Ω

fvvη dx + µ1

∫
Ω

vξ dx. (2.6)

Suppose that µ1 � 0. Then we have

λ

∫
Ω

fη dx � λ

∫
Ω

guuξ dx + λ

∫
Ω

gvuη dx (2.7)

and

λ

∫
Ω

gξ dx � λ

∫
Ω

fuvξ dx + λ

∫
Ω

fvvη dx. (2.8)
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If (A3) is satisfied, then, adding (2.7) and (2.8), we obtain∫
Ω

fη dx +
∫

Ω

gξ dx �
∫

Ω

(gvu + fvv)η dx +
∫

Ω

(fuv + guu)ξ dx, (2.9)

which is in contradiction with (A3) and ξ > 0, η > 0 in Ω. Hence, µ1 > 0 if (A3)
is satisfied.

The maximum principle can also be used to construct solutions of the elliptic
system (1.1) which satisfy the cooperative condition (A2). Let X = [C2,α

0 (Ω̄)]2. A
pair of functions (ū, v̄) ∈ X is an upper solution for (1.1) if

∆ū + λf(ū, v̄) � 0, x ∈ Ω,

∆v̄ + λg(ū, v̄) � 0, x ∈ Ω,

ū(x) � 0, v̄(x) � 0, x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (2.10)

and (u, v) ∈ X is a lower solution for (1.1) if

∆u + λf(u, v) � 0, x ∈ Ω,

∆v + λg(u, v) � 0, x ∈ Ω,

u(x) � 0, v(x) � 0, x ∈ ∂Ω.

⎫⎪⎬
⎪⎭ (2.11)

The following existence result based on the monotone iteration method is well
known [29,32].

Theorem 2.3. Suppose that f and g satisfy (A1) and (A2), and suppose that (ū, v̄)
and (u, v) are pairs of upper and lower solutions which satisfy ū(x) � u(x) and
v̄(x) � v(x) for x ∈ Ω. Define X1 ⊂ X by

X1 = {(u, v) ∈ X : u(x) � u(x) � ū(x), v(x) � v(x) � v̄(x)}.

Then (1.1) possesses a minimal solution (um, vm) and a maximal solution (uM, vM)
in X1; that is, for any solution (ua, va) ∈ X1, then

um � ua � uM and vm � va � vM.

3. Existence and uniqueness: smooth case

In this section we always assume that f and g are smooth, i.e. they satisfy

(A1′) f, g ∈ C1(R2
+).

We note that if (A1′) is satisfied, then J(u, v) ∈ C0(Ω̄) and (2.3) is automatically
true. Let (λ1, ϕ1) be the principal eigenpair of

−∆ϕ = λϕ, x ∈ Ω, ϕ(x) = 0, x ∈ ∂Ω, (3.1)

such that ϕ1(x) > 0 in Ω and ‖ϕ1‖∞ = 1.
First we recall an existence and uniqueness result proved in [37].
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Theorem 3.1. Consider

∆u + λf1(v) = 0, x ∈ Ω,

∆v + λg1(u) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

⎫⎪⎬
⎪⎭ (3.2)

Suppose that f1 and g1 satisfy, for any u � 0 and v � 0,

f ′
1(v) > 0, g′

1(u) > 0, (3.3)

d
dv

(
f1(v)

v

)
< 0,

d
du

(
g1(u)

u

)
< 0 (3.4)

and

lim
v→∞

f1(v)
v

= lim
u→∞

g1(u)
u

= 0. (3.5)

Then

(i) if at least one of f1(0) and g1(0) is positive, then (3.2) has a unique positive
solution (u(λ), v(λ)) for all λ > 0,

(ii) if f1(0) = g1(0) = 0, and f ′
1(0) > 0 and g′

1(0) > 0, then, for some λ∗ =
λ1/

√
f ′
1(0)g′

1(0) > 0, (3.2) has no positive solution when λ � λ∗, and (3.2)
has a unique positive solution (u(λ), v(λ)) for λ > λ∗.

Moreover, {(λ, u(λ), v(λ)) : λ > λ∗} (in the first case, we assume that λ∗ = 0) is a
smooth curve, so u(λ) and v(λ) are strictly increasing in λ, and (u(λ), v(λ)) → (0, 0)
as λ → λ+

∗ .

Theorem 3.1 is identical to theorem 6.1 of [37] and we omit the proof here. Note
that if f1 and g1 satisfy (3.4), then it is necessary that f1(0) � 0 and g1(0) � 0.
Hence, f1 and g1 are positive for u, v > 0 here. If f1(0) = 0, then we must have
f ′
1(0) > 0 since f ′

1(0) > f1(v)/v for v > 0. Some examples of smooth sublinear
functions satisfying conditions (3.3)–(3.5) are

f(u) = ln(u + 1) + k,

f(u) = 1 − e−u + k,

f(u) = (1 + u)p − 1 + k, 0 < p < 1,

and

f(u) =
u

(m + u)
+ k, k � 0.

In the following we consider the case when f and g depend on both u and v. In
all results in this section we assume that f and g are additionally separated in the
form

f(u, v) = f1(v) + f2(u) and g(u, v) = g1(u) + g2(v). (3.6)

All of our results generalize theorem 3.1, but the structure and bifurcation of the
solution sets are different. First we have the following.
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Theorem 3.2. Consider

∆u + λ[f1(v) + f2(u)] = 0, x ∈ Ω,

∆v + λ[g1(u) + g2(v)] = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

⎫⎪⎬
⎪⎭ (3.7)

Suppose that f1(v) and g1(u) satisfy (3.3)–(3.5), and suppose that f2(u) and g2(v)
satisfy, for any u � 0 and v � 0,

f2(u) � 0, f ′
2(u) � 0, g2(v) � 0, g′

2(v) � 0 (3.8)

and

f1(0) + f2(0) > 0 or g1(0) + g2(0) > 0. (3.9)

Then (3.7) has a unique positive solution (u(λ), v(λ)) for all λ > 0. Moreover,
{(λ, u(λ), v(λ)) : λ > 0} is a smooth curve so that u(λ) and v(λ) are strictly increas-
ing in λ, and (u(λ), v(λ)) → (0, 0) as λ → 0+.

Proof. Our proof follows that of theorem 6.1 in [37]. First we extend fi and gi

to be defined on R for u, v < 0 in the following way: if fi(0) = 0 or gi(0) = 0,
then we define fi(x) or gi(x) ≡ 0 for x < 0; if fi(0) > 0 or gi(0) > 0, then we
define fi(x) or gi(x) ≡ 0 for x < −θ for some θ > 0 and we define the function
properly so it is continuous on R. From the assumptions, f(u, v) = f1(v) + f2(u)
and g(u, v) = g1(u) + g2(v) satisfy (A3). Hence, from theorem 2.2, any positive
solution of (3.7) is stable. We define

F (λ, u, v) =

(
∆u + λ[f1(v) + f2(u)]

∆v + λ[g1(u) + g2(v)]

)
, (3.10)

where λ ∈ R and u, v ∈ C2,α
0 (Ω̄). Here, since fi and gi are C1, F : R × X → Y is

continuously differentiable, where X = [C2,α
0 (Ω̄)]2 and Y = [Cα(Ω̄)]2.

Apparently (λ, u, v) = (0, 0, 0) is a solution of (3.7). We apply the implicit func-
tion theorem at (λ, u, v) = (0, 0, 0). Note that the Fréchet derivative of F is given
here by

F(u,v)(λ, u, v)

(
φ

ψ

)
=

(
∆φ + λ[f ′

1(v)ψ + f ′
2(u)φ]

∆ψ + λ[g′
1(u)φ + g′

2(v)ψ]

)
, (3.11)

Thus, F(u,v)(0, 0, 0)(φ, ψ)T = (∆φ, ∆ψ)T, and it is an isomorphism from X to Y .
The implicit function theorem implies that F (λ, u, v) = 0 has a unique solution
(λ, u(λ), v(λ)) for λ ∈ (0, δ) for some small δ > 0, and that (u′(0), v′(0)) is the
unique solution of

∆φ + f1(0) + f2(0) = 0, ∆ψ + g1(0) + g2(0) = 0, x ∈ Ω,

φ(x) = ψ(x) = 0, x ∈ ∂Ω. (3.12)

Then (u′(0), v′(0)) = ([f1(0)+f2(0)]e, [g1(0)+g2(0)]e), where e is the unique positive
solution of

∆e + 1 = 0, x ∈ Ω, e(x) = 0, x ∈ ∂Ω. (3.13)
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Figure 1. Possible graphs of f1(v) − au = 0 and g1(u) − bv = 0 in (3.15). Here
f1(v) = ln(v + 1) and g1(u) = ln(2u + 1). (a) a = b = 0.9, unique intersection; (b)
a = b = 1.5, no intersection.

If f1(0)+f2(0) > 0 and g1(0)+g2(0) > 0, then (u(λ), v(λ)) is positive for λ ∈ (0, δ).
If f1(0)+f2(0) > 0 and g1(0)+g2(0) = 0, then u(λ) > 0 for λ ∈ (0, δ) and g2(0) = 0.
Thus, g2(v) = 0 for all v ∈ R by (3.8) and the extension of g2 to R. However,

∆v(λ) = −λ[g1(u(λ)) + g2(v(λ))] = −λg1(u(λ)) < 0.

Hence, v(λ) > 0 as well. A similar conclusion holds when f1(0) + f2(0) = 0 and
g1(0)+g2(0) > 0. Therefore, (3.7) has a positive solution (u(λ), v(λ)) for λ ∈ (0, δ).

Now we can follow the proof of theorem 6.1 in [37] to obtain the remaining part
of the proof. In particular, we can show that the solution (λ, u(λ), v(λ)) is strictly
increasing in λ as (∂u(λ)/∂λ, ∂v(λ)/∂λ) satisfies the following equation:

F(u,v)(λ, u, v)

⎛
⎜⎜⎝

∂u(λ)
∂λ

∂v(λ)
∂λ

⎞
⎟⎟⎠ = −

(
f1(v) + f2(u)
g1(u) + g2(v)

)
. (3.14)

Then (∂u(λ)/∂λ, ∂v(λ)/∂λ) > 0 from the maximum principle (lemma 2.1(iii)) and
the fact that µ1((u(λ), v(λ))) > 0 from theorem 2.2.

Next we consider the case when f(u, v) and g(u, v) are not necessarily positive
for all (u, v) ∈ R

2
+. Consider

∆u + λ[f1(v) − au] = 0, x ∈ Ω,

∆v + λ[g1(u) − bv] = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (3.15)

where a > 0 and b > 0.
First we observe the following geometric properties of the curves f1(v) − au = 0

and g1(u) − bv = 0 (see figure 1).

Lemma 3.3. Suppose that f1(v) and g1(u) satisfy (3.3)–(3.5) and that a, b > 0.

(i) If f1(0) = g1(0) = 0 and ab � f ′
1(0)g′

1(0), then the curves f1(v) − au = 0 and
g1(u)− bv = 0 have no intersection points in the first quadrant. Furthermore,
for any (u, v) ∈ R

2
+, f1(v) − au � 0 or g1(u) − bv � 0.
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(ii) If f1(0) = g1(0) = 0 and ab < f ′
1(0)g′

1(0), then the curves f1(v) − au = 0 and
g1(u) − bv = 0 have a unique intersection point (u∗, v∗) in the first quadrant.

(iii) If at least one of f1(0) and g1(0) is positive, then the curves f1(v)−au = 0 and
g1(u) − bv = 0 have a unique intersection point (u∗, v∗) in the first quadrant.

Proof. First we assume that f1(0) = g1(0) = 0. If (u∗, v∗) is an intersection point
of f1(v) − au = 0 and g1(u) − bv = 0, then, from (3.4),

f ′
1(0) � f1(v∗)

v∗
=

au∗
v∗

, g′
1(0) � g1(u∗)

u∗
=

bv∗
u∗

.

Thus, by multiplying the two inequalities, we obtain f ′
1(0)g′

1(0) � ab. If ab =
f ′
1(0)g′

1(0), then we must have (u∗, v∗) = (0, 0) from the strict decreasing property
in (3.4). Hence, when ab � f ′

1(0)g′
1(0), f1(v) − au = 0 and g1(u) − bv = 0 have no

positive intersection points.
If ab < f ′

1(0)g′
1(0), then near (u, v) = (0, 0), the curve f1(v) − au = 0 is below

g1(u) − bv = 0, and hence the existence of an intersection is clear from (3.5).
Suppose that (u∗, v∗) and (u∗∗, v∗∗) are two distinct intersection points. Without
loss of generality we assume that u∗∗ > u∗; then, from the monotonicity of f1 or
g1, it is necessary that v∗∗ > v∗. But we have

f1(v∗)
av∗

>
f1(v∗∗)
av∗∗

=
bu∗∗

g1(u∗∗)
>

bu∗
g1(u∗)

=
f1(v∗)
av∗

, (3.16)

which is a contradiction. Hence, the intersection point (u∗, v∗) is unique. The case
that at least one of f1(0) and g1(0) is positive is similar and we therefore omit the
details.

The following result classifies the structure of the solution set of (3.15) under
different conditions on f1, g1 at u, v = 0 and the parameters a, b.

Theorem 3.4. Suppose that f1(v) and g1(u) satisfy (3.3)–(3.5) and that a = b > 0.

(i) If f1(0) = g1(0) = 0, f ′
1(0) > 0, g′

1(0) > 0 and a2 � f ′
1(0)g′

1(0), then (3.15)
has no positive solution for any λ > 0.

(ii) If f1(0) = g1(0) = 0, f ′
1(0) > 0, g′

1(0) > 0 and a2 < f ′
1(0)g′

1(0), then, for
some

λ∗ =
λ1√

f ′
1(0)g′

1(0) − a
� 2λ1

f ′
1(0) + g′

1(0) − 2a
, (3.17)

equation (3.15) has no positive solution when λ � λ∗ and has a unique positive
solution (u(λ), v(λ)) for λ > λ∗.

(iii) If at least one of f1(0) and g1(0) is positive, then (3.15) has a unique positive
solution (u(λ), v(λ)) for all λ > 0.

Moreover, in the last two cases, {(λ, u(λ), v(λ)) : λ > λ∗} (in the second case, we
assume λ∗ = 0) is a smooth curve, (u(λ), v(λ)) → (0, 0) as λ → λ+

∗ .
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Proof. First we prove that if (u(x), v(x)) is a positive solution of (3.15), u(x1) =
maxx∈Ω̄ u(x) and v(x2) = maxx∈Ω̄ v(x), then, for i = 1, 2,

f1(v(xi)) − au(xi) > 0 and g1(u(xi)) − av(xi) > 0. (3.18)

In fact, from the maximum principle and the monotonicity of f1 and g1,

0 � ∆u(x1) = λ[au(x1) − f1(v(x1))] � λ[au(x2) − f1(v(x2))]. (3.19)

Similarly, we also have g1(u(xi)) − av(xi) � 0, and the strict inequalities hold
because of the strong maximum principle.

If f1(0) = g1(0) = 0, f ′
1(0) > 0, g′

1(0) > 0 and a2 � f ′
1(0)g′

1(0), then, from
lemma 3.3, for any (u, v) ∈ R

2
+ either f1(v) − au � 0 or g1(u) − av � 0. Hence,

(3.15) has no positive solution from (3.18). In other cases, from (3.18), we must
have 0 < u(x) < u∗ and 0 < v(x) < v∗ for x ∈ Ω if (u(x), v(x)) is a positive
solution of (3.15).

Now we assume that f1(0) = g1(0) = 0, f ′
1(0) > 0, g′

1(0) > 0 and a2 < f ′
1(0)g′

1(0).
We claim that, when

λ <
2λ1

f ′
1(0) + g′

1(0) − 2a
, (3.20)

(3.15) has no positive solution. First of all, the denominator in (3.20) is positive,
since

f ′
1(0) + g′

1(0) � 2
√

f ′
1(0)g′

1(0) > 2a.

Now, from integration of the equations, we obtain∫
Ω

(|∇u|2 + |∇v|2 + aλu2 + aλv2) dx =
∫

Ω

λ(f1(v)u + g1(u)v) dx. (3.21)

From the left-hand side of (3.21), we see that∫
Ω

(|∇u|2 + |∇v|2 + aλu2 + aλv2) dx �
∫

Ω

(λ1u
2 + λ1v

2 + aλu2 + aλv2) dx

� (λ1 + aλ)
∫

Ω

(u2 + v2) dx, (3.22)

while the right-hand side of (3.21) can be estimated as∫
Ω

λ(f1(v)u + g1(u)v) dx � λ

∫
Ω

f ′
1(0)uv dx + λ

∫
Ω

g′
1(0)uv dx

� 1
2λ(f ′

1(0) + g′
1(0))

∫
Ω

(u2 + v2) dx. (3.23)

Now (3.22) and (3.23) imply that

λ � 2λ1

f ′
1(0) + g′

1(0) − 2a
(3.24)

is necessary for the existence of a positive solution (u, v).
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Next, similarly to the proof of theorem 3.2, we define

F (λ, u, v) =
(

∆u + λ[f1(v) − au]
∆v + λ[g1(u) − av]

)
, (3.25)

where λ ∈ R and u, v ∈ C2,α
0 (Ω̄). Then (λ, 0, 0) is a trivial solution of (3.15) for any

λ > 0. The linearization of F at (λ, 0, 0) is

F(u,v)(λ, 0, 0)

(
φ

ψ

)
=

(
∆φ + λ[f ′

1(0)ψ − aφ]

∆ψ + λ[g′
1(0)φ − aψ]

)
. (3.26)

Since f1, g1 satisfy (3.3), then, from lemma 2.1, F(u,v)(λ, 0, 0) has a principal eigen-
value µ1(λ), which is the only eigenvalue with positive eigenfunction. Then one
can verify that the principal eigenpair of F(u,v)(λ, 0, 0) is (µ1(λ), ϕ1, cϕ1), where
µ = µ1(λ) and c satisfy

(µ + λa + λ1)2 = f ′
1(0)g′

1(0)λ2, c =
µ + λa + λ1

λf ′
1(0)

. (3.27)

In particular, when µ1(λ) = 0, we can show that the corresponding λ = λ∗ is the
positive root of

[f ′
1(0)g′

1(0) − a2]λ2 − 2aλ1λ − λ2
1 = 0, (3.28)

and c = c∗ is the positive root of

f ′
1(0)c2 − g′

1(0) = 0. (3.29)

Hence, when λ = λ∗, F(u,v)(λ∗, 0, 0) is not invertible and λ = λ∗ is a potential bifur-
cation point. More precisely, the null space N(F(u,v)(λ∗, 0, 0)) = span{(ϕ1, c∗ϕ1)},
the range space

R(F(u,v)(λ∗, 0, 0)) =
{

(φ, ψ) ∈ Y :
∫

Ω

[c∗φ + ψ]ϕ1 dx = 0
}

.

Next, note that (c∗ϕ1, ϕ1) is the principal eigenvector of the conjugate operator
F ∗

(u,v)(λ∗, 0, 0). Finally, we can verify that

Fλ(u,v)(λ∗, 0, 0)[ϕ1, c∗ϕ1]T �∈ R(F(u,v)(λ∗, 0, 0)).

If this is not true, then

Fλ(u,v)(λ∗, 0, 0)

(
ϕ1

c∗ϕ1

)
=

(
(c∗f

′
1(0) − a)ϕ1

(g′
1(0) − ac∗)ϕ1

)
∈ R(F(u,v)(λ∗, 0, 0)),

and the definition of R(F(u,v)(λ∗, 0, 0)) implies that

f ′
1(0)c2

∗ − 2ac∗ + g′
1(0) = 0. (3.30)

But, (3.29) and (3.30) would, taken together, imply that c∗ = g′
1(0)/a = a/f ′

1(0),
which is in contradiction with a2 < f ′

1(0)g′
1(0). Hence, Fλ(u,v)(λ∗, 0, 0)[ϕ1, c∗ϕ1]T �∈

R(F(u,v)(λ∗, 0, 0)).
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Now we are in a position to apply a bifurcation from a simple eigenvalue theorem
of Crandall and Rabinowitz [9]. The non-trivial solutions of F (λ, u, v) = (0, 0) near
(λ∗, 0, 0) are in the form of (λ(s), u(s), v(s)) for s ∈ (−δ, δ), where u(s) = sϕ1 +o(s)
and v(s) = c∗sϕ1 + o(s). In particular, the solution (u(s), v(s)) is positive when
s ∈ (0, δ) from the positivity of ϕ1. Moreover, one can use a global bifurcation
theorem of Rabinowitz [31] (see also [38]) to conclude that an unbounded continuum
Σ of positive solutions of F (λ, u, v) = (0, 0) emanates from (λ∗, 0, 0). Since (3.15)
has no positive solution when

λ <
2λ1

f ′
1(0) + g′

1(0) − 2a
,

and all solutions (u, v) are bounded by (u∗, v∗), Σ must be unbounded in the
positive λ direction. This proves that (3.15) has at least one positive solution for
each λ > λ∗.

Since (A3) is satisfied for f(u, v) = f1(v) − au and g(u, v) = g1(u) − av, any
positive solution (u, v) of (3.15) is stable from theorem 2.2. Hence, the implicit
function theorem can be applied to any positive solution (λ, u, v) so that it belongs
to a smooth curve of positive solutions Γ = {(λ, u(λ), v(λ))}. Let

λ∗∗ = inf{λ : (λ, u(λ), v(λ)) ∈ Γ}.

Then

λ∗∗ � 2λ1

f ′
1(0) + g′

1(0) − 2a
> 0.

From the boundedness of (λ, u(λ), v(λ)) ∈ Γ , there exists a sequence (λn) such
that λn > λ∗∗, λn → λ∗∗, and (u(λn), v(λn)) → (u∗∗, v∗∗) in [C2(Ω̄)]2 as n →
∞. Hence, (u∗∗, v∗∗) satisfies F (λ∗∗, u∗∗, v∗∗) = 0 and u∗∗(x) � 0, v∗∗(x) � 0.
From the maximum principle, either u∗∗(x) > 0 and v∗∗(x) > 0, or u∗∗(x) ≡
0 and v∗∗(x) ≡ 0 for x ∈ Ω. But if (u∗∗, v∗∗) is positive, then it is stable, so
one can apply implicit function theorem to extend Γ , which contradicts with the
definition of λ∗∗. Thus (u∗∗, v∗∗) = (0, 0), and we must have λ∗∗ = λ∗ since it is the
only bifurcation point for the line of trivial solutions. Since we can use the same
argument for each smooth curve of positive solutions, there is only one such curve,
which is Σ from the global bifurcation theorem, and Σ = {(λ, u(λ), v(λ)) : λ >
λ∗}. This also implies that (3.15) has no positive solution when λ � λ∗. Here we
note that the argument that stability implies uniqueness described above was used
in [5].

The case where at least one of f1(0) and g1(0) is positive is similar, and the
existence of a curve of positive solutions can be proved via the implicit func-
tion theorem at (λ, u, v) = (0, 0, 0) in a similar way to the proof of theorem 3.2.

We note that the condition a = b in theorem 3.4 is needed for the stability
condition (A3). When a �= b, the bifurcation arguments can still be applied if
ab < f ′

1(0)g′
1(0), but it is not known whether the stability result in theorem 2.2

holds.
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Our last result is about sublinear nonlinearities with positive linear terms. Con-
sider

∆u + λ[f1(v) + au] = 0, x ∈ Ω,

∆v + λ[g1(u) + bv] = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

⎫⎪⎪⎬
⎪⎪⎭ (3.31)

where a, b > 0.

Theorem 3.5. Suppose that f1(v) and g1(u) satisfy (3.3)–(3.5) and a = b > 0. Let
λ∗ = λ1/a, and we define λ∗ as follows:

(i) if f1(0) = g1(0) = 0, f ′
1(0) > 0 and g′

1(0) > 0, then

λ∗ =
λ1√

f ′
1(0)g′

1(0) + a
> 0; (3.32)

(ii) if at least one of f1(0) and g1(0) is positive, then λ∗ = 0.

Then (3.31) has no positive solution when λ � λ∗ or λ � λ∗, and (3.31) has a
unique positive solution (u(λ), v(λ)) for λ ∈ (λ∗, λ

∗). Moreover,

{(λ, u(λ), v(λ)) : λ ∈ (λ∗, λ
∗)}

is a smooth curve so that u(λ) and v(λ) are strictly increasing in λ, (u(λ), v(λ)) →
(0, 0) as λ → λ+

∗ and ‖u(λ)‖∞ + ‖v(λ)‖∞ → ∞ as λ → (λ∗)−.

Proof. First we assume that f1(0) = g1(0) = 0, f ′
1(0) > 0 and g′

1(0) > 0. We
multiply the equation of u in (3.31) by ϕ1 and integrate on Ω, obtaining

λ1

∫
Ω

uϕ1 dx = λ

∫
Ω

[f1(v)ϕ1 + auϕ1] dx > λa

∫
Ω

uϕ1 dx. (3.33)

Hence, λ < λ1/a. On the other hand, from (3.33), we have

(λ1 − λa)
∫

Ω

uϕ1 dx = λ

∫
Ω

f1(v)ϕ1 � λf ′
1(0)

∫
Ω

vϕ1 dx. (3.34)

Similarly,

(λ1 − λa)
∫

Ω

vϕ1 dx = λ

∫
Ω

g1(u)ϕ1 � λg′
1(0)

∫
Ω

uϕ1 dx. (3.35)

Multiplying (3.34) and (3.35), we obtain that

(λ1 − λa)2 � λ2f ′
1(0)g′

1(0). (3.36)

Hence, if (λ, u, v) is a positive solution of (3.31), then λ must satisfy (3.36) and

λ <
λ1

a
. (3.37)

Define
h(λ) = (λ1 − λa)2 − λ2f ′

1(0)g′
1(0). (3.38)
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Then there exists a unique λ∗ ∈ (0, λ1/a) (defined as in (3.32)) such that h(λ) > 0
for 0 � λ < λ∗ and h(λ) < 0 when λ∗ < λ < λ1/a. Hence, (3.31) can have positive
solutions only when λ ∈ (λ∗, λ

∗).
A local bifurcation analysis using bifurcation from a simple eigenvalue theorem

similar to the one in the proof of theorem 3.4 can be carried out at λ = λ∗, and we
omit the details. The positive solution (λ, u(λ), v(λ)) is strictly increasing in λ as
(∂u(λ)/∂λ, ∂v(λ)/∂λ) satisfies

F(u,v)(λ, u, v)

⎛
⎜⎜⎝

∂u(λ)
∂λ

∂v(λ)
∂λ

⎞
⎟⎟⎠ = −

(
f1(v) + au

g1(u) + av

)
, (3.39)

and hence (∂u(λ)/∂λ, ∂v(λ)/∂λ) > 0 from the same arguments in the proof of
theorem 3.2. The proof of existence of solutions when at least one of f1(0) and
g1(0) is positive is also similar.

Note that (A3) is satisfied for f(u, v) = f1(v) + au and g(u, v) = g1(u) + av, so
any positive solution (u, v) of (3.31) is stable from theorem 2.2. Hence, in all cases,
we can show as before that any positive solution is on a smooth curve, that there is
only one such solution curve Σ, and that the left endpoint of Σ is the bifurcation
point (depending on the case studied) from the trivial solutions. It only remains to
prove that the Σ can be extended to λ∗.

Let λ∗∗ = sup{λ : (λ, u(λ), v(λ)) ∈ Σ}. From (3.37), we know that Σ can be
extended at most to λ∗. Hence, λ∗∗ � λ∗. As λ → (λ∗∗)−, we must have

Mλ = ‖u(λ)‖∞ + ‖v(λ)‖∞ → ∞,

otherwise a limiting process will yield a positive solution at λ∗∗; then Σ can be
extended further beyond λ = λ∗∗, which contradicts with the definition of λ∗∗.
Now we define U(λ) = u(λ)/Mλ and V (λ) = v(λ)/Mλ. Then (U(λ), V (λ)) satisfies

∆U + λ

[
f1(v)
Mλ

+ aU

]
= 0, x ∈ Ω,

∆V + λ

[
g1(u)
Mλ

+ aV

]
= 0, x ∈ Ω,

U(x) = V (x) = 0, x ∈ ∂Ω.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.40)

From the boundedness of (U(λ), V (λ)) we can obtain a sequence (λn) such that
λn < λ∗∗, λn → λ∗∗ and (U(λn), V (λn)) → (U∗∗, V ∗∗) in [C2(Ω̄)]2 as n → ∞.
From (3.5), (λ∗∗, U∗∗, V ∗∗) satisfies

∆U∗∗ + λ∗∗aU∗∗ = 0, x ∈ Ω,

∆V ∗∗ + λ∗∗aV ∗∗ = 0, x ∈ Ω,

U∗∗(x) = V ∗∗(x) = 0, x ∈ ∂Ω,

⎫⎪⎪⎬
⎪⎪⎭ (3.41)

‖U∗∗‖∞+‖V ∗∗‖∞ = 1, and U∗∗ � 0, V ∗∗ � 0. Therefore, we must have λ∗∗ = λ1/a,
U∗∗ = sϕ1 and V ∗∗ = (1 − s)ϕ1 for some s ∈ [0, 1]. This proves that λ∗∗ = λ∗,
which completes the proof.
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4. Existence and uniqueness: the Hölder continuous case

In this section we always assume that f and g satisfy (A1) and (A2), so f and g may
not be differentiable. Then the nonlinear operator F (λ, u, v) defined in § 3 is not
necessarily differentiable, and hence the implicit function theorem and bifurcation
theorems cannot be used easily. We shall prove results similar to theorems 3.4 and
3.5 by using different methods.

Theorem 4.1. Consider (3.15). Suppose that f1(0) = g1(0) = 0, f1(v) and g1(u)
satisfy (3.5) for any u > 0 and any v > 0,

f ′
1(v) > 0, g′

1(u) > 0, (4.1)

and there exists 0 < p, q < 1 such that, for any u > 0 and any v > 0,

d
dv

(
f1(v)
vq

)
� 0,

d
du

(
g1(u)
up

)
� 0. (4.2)

Then, for λ ∈ (0,∞), (3.15) has a unique positive solution (u(λ), v(λ)). Moreover,

{(λ, u(λ), v(λ)) : λ > 0}

is a continuous curve, so (u(λ), v(λ)) → (0, 0) as λ → 0+.

Proof. First we show that the curves −au+f1(v) = 0 and −bv+g1(u) = 0 intersect
at a unique point in R

2
+. From (3.5), for large u, v = g1(u)/b is below the curve

u = f1(v)/a. Suppose that the two curves do not intersect. Then, for any u > 0,
we have

f−1
1 (au) >

g1(u)
b

. (4.3)

We note that (4.2) implies that, for τ ∈ (0, 1),

f1(τv) � τ qf1(v) and g1(τu) � τpg1(u). (4.4)

For u > 0 small, g1(u) < 1 and u < 1, and then (4.3) and (4.4) imply that

au > f1

(
g1(u)

b

)
� [g1(u)]qf1

(
1
b

)
� upq[g1(1)]qf1

(
1
b

)
, (4.5)

which contradicts pq < 1. Hence, the two curves must intersect. Suppose that
(u∗, v∗) is an intersection point, and that (u∗∗, v∗∗) is another. Without loss of
generality we assume u∗∗ > u∗; then, from the monotonicity of f1 or g1, it is
necessary that v∗∗ > v∗. From

a =
f1(v∗)

u∗
=

f1(v∗)
vq

∗

vq
∗

u∗
� f1(v∗∗)

vq
∗∗

vq
∗

u∗
= a

(
v∗
v∗∗

)q
u∗∗
u∗

.

Thus, we have (
v∗∗
v∗

)q

� u∗∗
u∗

, (4.6)
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and similarly (
u∗∗
u∗

)p

� v∗∗
v∗

. (4.7)

But (4.6) and (4.7) yield (
u∗∗
u∗

)pq

� u∗∗
u∗

,

which contradicts u∗∗ > u∗ and pq < 1. Therefore, the curves −au + f1(v) = 0 and
−bv + g1(u) = 0 intersect at only one point.

Now we use the monotonicity method to prove the existence of a solution. Let
(u∗, v∗) be the unique intersection point of −au + f1(v) = 0 and −bv + g1(u) = 0.
Then, from the proof of theorem 3.4, any positive solution of (3.15) satisfies 0 <
u(x) < u∗ and 0 < v(x) < v∗. Let (ū, v̄) = (u∗, v∗). Then it is clear that (ū, v̄) is an
upper solution of (3.15).

Let

Lf =
f1(v∗)

vq
∗

, Lg =
g1(u∗)

up
∗

. (4.8)

Since 0 � u � u∗ and 0 � v � v∗, in this range f1(v) � Lfvq and g1(u) � Lgu
p.

We construct a lower solution in the form of (u, v) = (ε1ϕ1, ε2ϕ1), where ε1, ε2
will be specified later. Recall that ϕ1 is the positive principal eigenfunction with
‖ϕ1‖∞ = 1. Now

∆(ε1ϕ1) + λ[−aε1ϕ1 + f1(ε2ϕ1)] � −ε1λ1ϕ1 − λaε1ϕ1 + λLfεq
2ϕ

q
1

= ε1ϕ
q
1[−(λa + λ1)ϕ

1−q
1 + λLfεq

2ε
−1
1 ]

� ε1ϕ
q
1[−(λa + λ1) + λLfεq

2ε
−1
1 ].

Similarly,

∆(ε2ϕ1) + λ[−bε2ϕ1 + g1(ε1ϕ1)] � ε2ϕ
p
1[−(λb + λ1) + λLgε

p
1ε

−1
2 ].

Hence, if we choose

0 < ε1 �
(

λLg

λb + λ1

)q/(1−pq)(
λLf

λa + λ1

)1/(1−pq)

,

(
ε1(λa + λ1)

λLf

)1/q

� ε2 � λLg

λb + λ1
εp
1,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.9)

then (u, v) = (ε1ϕ1, ε2ϕ1) is a lower solution of (3.15). We can choose smaller ε1 and
ε2 but still satisfy (4.9), so that (u, v) � (ū, v̄) = (u∗, v∗). Then from theorem 2.3,
there exists a positive solution (u, v) of (3.15) between the lower and upper solutions.

Next we prove the uniqueness of the solution for any λ > 0. Here we follow an
argument of [2, 11]. We fix λ > 0. We define Gc(x, y) as the Green function of the
linear elliptic operator −∆+ cI with zero boundary condition where c � 0. Then it
is well known that Gc(x, y) > 0 for x, y ∈ Ω. Let (uj , vj), j = 1, 2, be two positive
solutions of (3.15). Define

S = {s ∈ (0, 1] : u1 − tu2 � 0, v1 − tv2 � 0 for t ∈ [0, s]}.
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Since uj , vj ∈ C2,α(Ω̄) with α = min{p, q}, there exists small ε > 0 such that ε ∈ S,
and thus S �= ∅. Let θ = supS and assume that θ < 1. Then u1 − θu2 � 0 and
v1 − θv2 � 0 in Ω̄. Then, from (4.1) and (4.4), we have

u1(x) = λ

∫
Ω

Gλa(x, y)f1(v1(y)) dy

� λ

∫
Ω

Gλa(x, y)f1(θv2(y)) dy

� λθq

∫
Ω

Gλa(x, y)f1(v2(y)) dy

= θqu2(x). (4.10)

Similarly, we have v1(x) � θpv2(x). From these relations, we obtain

(−∆ + λa)(u1 − θu2) = λ[f1(v1) − θf1(v2)]

� λ[f1(θpv2) − θf1(v2)]

� λ(θpq − θ)f1(v2) (4.11)

and, similarly,

(−∆ + λb)(v1 − θv2) � λ(θpq − θ)g1(u2). (4.12)

Since f1(v2(x)) > 0 and g1(u2(x)) > 0 for x ∈ Ω, θpq − θ > 0, from the strong
maximum principle, (4.11) and (4.12), we have

u1(x) − θu2(x) > 0, v1(x) − θv2(x) > 0 for x ∈ Ω, (4.13)

and the Hopf lemma implies that the normal derivatives on the boundary satisfy

u1(x) − θu2(x)
∂ν

< 0,
v1(x) − θv2(x)

∂ν
< 0 for x ∈ ∂Ω. (4.14)

This would allow that u1(x)−(θ+ε)u2(x) � 0 and v1(x)−(θ+ε)v2(x) � 0 for a small
ε > 0, which contradicts the definition of θ. Hence, we must have θ = 1, u1 � u2
and v1 � v2. On the other hand, substituting u1, v1 with u2, v2, we have u1 � u2
and v1 � v2. Therefore, u1 ≡ u2 and v1 ≡ v2, and this proves the uniqueness of the
solution.

Finally, we prove that the set of solutions {(λ, u(λ), v(λ)) : λ > 0} is a con-
tinuous curve. Indeed, for any λa > 0, choose a sequence λn → λa. Then, from
the uniqueness of solutions and the form of the upper/lower solution, one can see
that (u(λn), v(λn)) → (u(λa), v(λa)) as n → ∞. Hence, the set of solutions is a
continuous curve.

Theorem 4.2. Consider (3.31) with a, b > 0. Suppose that f1(0) = g1(0) = 0,
f1(v) and g1(u) satisfy (3.5) and, for any u > 0 and v > 0, (4.1) and (4.2) hold.
Then (3.31) has a unique positive solution (u(λ), v(λ)) for λ ∈ (0, λ∗), where λ∗ =
min{λ1/a, λ1/b}. Moreover, {(λ, u(λ), v(λ)) : λ ∈ (0, λ∗)} is a continuous curve, so
u(λ) and v(λ) are strictly increasing in λ, (u(λ), v(λ)) → (0, 0) as λ → 0+, and

‖u(λ)‖∞ + ‖v(λ)‖∞ → ∞ as λ → (λ∗)−.
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Proof. The proof is similar to that of theorem 4.1, so we only point out the differ-
ence. For the existence part we still use (u, v) = (ε1ϕ1, ε2ϕ1) as a lower solution of
(3.31), but now ε1, ε2 ∈ (0, 1) satisfy

0 < ε1 �
(

λDg

λ1 − λb

)q/(1−pq)(
λDf

λ1 − λa

)1/(1−pq)

,

(
ε1(λ1 − λa)

λDf

)1/q

� ε2 � λDg

λ1 − λb
εp
1,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.15)

where
Df =

(
inf
x∈Ω

ϕq−1
1 (x)

)
f1(1), Dg =

(
inf
x∈Ω

ϕp−1
1 (x)

)
g1(1),

and here we assume that λ < min{λ1/a, λ1/b}. Note that, from the proof of theo-
rem 3.5, we can only have the solution for λ < min{λ1/a, λ1/b}.

For any c < λ1 we define ec to be the unique positive solution of

∆e + ce + 1 = 0, x ∈ Ω, e(x) = 0, x ∈ ∂Ω. (4.16)

For the upper solution we choose (ū, v̄) = (M1eλa, M2eλb), where M1 � 1 and
M2 � 1. Then

∆(M1eλa) + λ[aM1eλa + f1(M2eλb)]

= −M1 + λf1(M2eλb)

� −M1 + λMq
2 f1(eλb)

� −M1 + λMq
2 Cf ,

where Cf = maxx∈Ω̄ f1(eλb(x)). Similarly, if Cg = maxx∈Ω̄ g1(eλa(x)), then

∆(M2eλb) + λ[bM2eλb + g1(M1eλa)] � −M2 + λMp
1 Cg.

Thus, if we choose M1 and M2 by

M1 � (λ1+qCq
gCf )1/(1−pq) and

(
M1

λCf

)1/q

� M2 � λMp
1 Cg, (4.17)

then (ū, v̄) = (M1eλa, M2eλb) is an upper solution of (3.31). By choosing M1 and M2
larger (but still satisfying (4.17)) so that (u, v) � (ū, v̄), we have a pair of upper and
lower solutions needed in theorem 2.3. Hence, the existence of a positive solution
is proved.

For the uniqueness proof we only change the operator −∆ + λc to −∆ − λc for
c = a, b. The elliptic operator is still positive and the maximum principle still holds,
since λ < min{λ1/a, λ1/b}. The other parts of the proof are same as those in the
proof of theorem 3.5.

We remark that the stability defined in § 1 can still be established for f and g in
theorems 4.1 and 4.2, although fv and gu become ∞ near ∂Ω. By using remark 3.1
of [1] we can extend the spectral theory to the case when the Jacobian has a
singularity of the form up−1 or vq−1 with 0 < p, q < 1.
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Example 4.3. We can apply the existence and uniqueness results of theorems 4.1
and 4.2 to

∆u + λ[±au + vq] = 0, x ∈ Ω,

∆v + λ[±bv + up] = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (4.18)

where 0 < p, q < 1. When p, q > 1 and pq are subcritical, (4.18) (with − sign)
was considered in [14]. Here we prove the existence and uniqueness of the positive
solution for the sublinear case.
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