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1. Introduction

In this paper, we revisit the steady state equation of a diffusive logistic model with harvesting
Duþ au� u2 � cgðxÞ ¼ 0; x 2 X;

u ¼ 0; x 2 @X;

(
ð1:1Þ
where a; c are positive constants, X is a smooth bounded region with @X of class C2;a in Rn for n P 1, and g 2 CaðXÞ for
0 < a < 1. Eq. (1.1) arises from the studies of population biology of one species which disperses in a habitat X with hostile
boundary @X, and the population is subject to a harvesting rate c � gðxÞ. We refer to [5] for more explanation of the mathe-
matical model.

We denote by kk the kth eigenvalue of

D/þ k/ ¼ 0; x 2 X;

/ ¼ 0; x 2 @X:

�
ð1:2Þ
In particular, k1 > 0 is the principal eigenvalue with a positive eigenfunction /1. In [5], we assume that gðxÞP 0. Under this
condition, the main results of [5] can be summarized as follows:

1. If a 6 k1, then for any c > 0, (1.1) has no non-negative solution.
2. If a > k1, there exists c2 > 0 such that when 0 < c 6 c2, (1.1) has a positive solution u1, and u1 is the maximal solution

which is also stable; and when c > c2, there is no non-negative solution.
3. There exists a d > 0, such that if k1 < a < k1 þ d for some d > 0, (1.1) has exactly two positive solutions u1 and u2 when

c 2 ð0; c2Þ, has exactly one positive solution when c ¼ c2, and has no non-negative solution when c > c2.
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Theorem 1.1. For any c 2 R; g 2 CaðXÞ and gðxÞP ðXÞ0 for x 2 X, if k1 < a < k2, then (1.1) has either zero, or one, or two
positive solutions. Moreover, there exists c2 > 0 such that (1.1) has at least one positive solution u1 and at most two positive
solutions when c 2 ð0; c2Þ, has exactly one positive solution when c ¼ c2, and has no non-negative solution when c > c2.

Compared to the previous exact multiplicity result in Oruganti et al. [5], the main improvement is that the parameter
a here is not restricted to a small interval ðk1; k1 þ dÞ, but the interval ðk1; k2Þ. On the other hand, we have less precise
information on the exact multiplicity of positive solutions for a given gðxÞ, but we give an upper bound of number of
positive solutions. The exact multiplicity result in [5] was proved by a perturbation argument based on implicit function
theorem. Here we take a quite different approach following the classical paper of Ambrosetti and Prodi [1]. We rewrite
(1.1) into
Duþ au� u2 ¼ gðxÞ; x 2 X;

u ¼ 0; x 2 @X:

(
ð1:3Þ
We have dropped the constant c in the equation since c can be arbitrary constant in our result. The left hand side of the equa-
tion in (1.3) defines a differentiable mapping F : u#Duþ au� u2 for u 2 C2;a

0 ðXÞ. Hence the question of exact multiplicity of
solutions to (1.1) becomes the number of pre-images for a given g 2 CaðXÞ.

Although the mapping F is well-defined, the behavior of the nonlinearity au� u2 makes it impossible to prove a global
inversion theorem as in Ambrosetti and Prodi [1]. Instead we consider a modified problem as follows: fix a 2 ðk1; k2Þ; let
jðuÞ be defined as
jðuÞ ¼
�2; u 2 ½0; a�;
properly defined; u 2 ½�e; 0Þ [ ða; aþ e�;
0; u 2 ð�1;�eÞ [ ðaþ e;þ1Þ:

8><>: ð1:4Þ
Here jðuÞ is properly defined for u 2 ½�e;0Þ [ ða; aþ e� so that jðuÞ is continuous. Next we define ef ðuÞ to be the unique function
satisfying ef 00ðuÞ ¼ jðuÞ;ef ð0Þ ¼ 0 and ef 0ð0Þ ¼ a. Notice that ef ðuÞ � f ðuÞ for u 2 ½0; a�, and ef 00ðuÞ 6 0 for all u 2 R. Moreover we
can choose a small enough e and the value of jðuÞ in ½�e;0Þ [ ða; aþ e� appropriately so that ef ðuÞ satisfies
lim
u!�1

ef ðuÞ
u
¼ lim

u!�1
ef 0ðuÞ ¼ l� 2 ðk1; k2Þ; lim

u!þ1

ef ðuÞ
u
¼ lim

u!þ1
ef 0ðuÞ ¼ lþ < 0: ð1:5Þ
Then we have the following theorem of global inversion with singularity:

Theorem 1.2. Let X � Rn be a bounded open subset of class C2;a, and let ef and j ¼ ef 00 satisfy (1.4) and (1.5). Consider the
boundary-value problem:
Duþ ef ðuÞ ¼ gðxÞ; x 2 X;

u ¼ 0; x 2 @X;

(
ð1:6Þ
where g 2 C0;aðXÞ. Then there exists a closed connected C1-manifold M of codimension 1 in C0;aðXÞ, such that C0;aðXÞ nM consists
exactly of two connected components A1 and A2 with the following properties:

(a) if g 2 A1, then the problem (1.6) has no solution;
(b) if g 2 A2, then the problem (1.6) has exactly two solutions; and
(c) if g 2 M, then the problem (1.6) has a unique solution.

Moreover if gðxÞP ðXÞ0 for x 2 X, then there exists c2 > 0 such that
Duþ ef ðuÞ ¼ c � gðxÞ; x 2 X;

u ¼ 0; x 2 @X;

(
ð1:7Þ
has exactly two solutions when c 2 ð0; c2Þ with at least one of them being positive, has exactly one solution which is positive when
c ¼ c2, and has no solution when c > c2.

Theorem 1.1 is a corollary of Theorem 1.2, since any positive solution u of (1.1) with g P 0 satisfies 0 6 uðxÞ 6 a,
hence u also satisfies (1.6). In general it is not known whether both solutions when c 2 ð0; c2Þ are positive. This question
is closely related to whether the anti-maximum principle holds for the parameter a and the function gðxÞ. Two positive
cases are (i) when k1 < a < k1 þ d for some d ¼ dðgÞ > 0 [5]; and (ii) n ¼ 1;X ¼ ð�1;1Þ and gðxÞ satisfies an integral con-
straint [7].

The structure of a differential mapping between infinite dimensional spaces have been studied by many people since the
pioneer work of Ambrosetti and Prodi [1], see the survey article [3] and the references therein. It would also be interesting to
know more about the structure of the separating manifold M in Theorem 1.2, in which we show that each ray fcg : c > 0g
intersects M exactly once for g P ðXÞ0. By using the arguments in [6] (see also [8,4]), we can show that the opposite ray
fcg : c < 0g stays entirely in A2. However for sign-changing g, no such information is known.
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For the remaining part of the paper, we prove Theorem 1.2. In Section 2, we recall the abstract framework of differentiable
mapping; and we prove the main result and related lemmas in Section 3. Our proofs mostly follow the lines in Refs. [1,2], but
we use a different eigenvalue problem as in Shi and Wang [9] while the ones in Refs. [1,2] cannot be used in our situation.

2. Preliminaries

In order to obtain the exact multiplicity of solutions to (1.6), we recall some preliminaries about the inversion of differ-
entiable mappings between Banach spaces as preparation for the main results of the paper. Since all definitions and theo-
rems are from [1] and [2], and we omit the proofs.

Definition 2.1. A mapping U : X ! Y (X and Y are topological spaces) is said to be proper if for every compact set K � Y , the
set U�1ðKÞ is compact in X.

Let us remark that if U is proper then it maps closed sets into closed sets.

Definition 2.2. Let X and Y be topological spaces. A continuous mapping U : X ! Y is said to be locally invertible at u0 2 X, if
there exists a neighborhood U of u0 and a neighborhood V of y0 ¼ Uðu0Þ such that U induces a homeomorphism between U
and V.

We set NðyÞ ¼ ]U�1ðfygÞ (cardinal number of U�1ðfygÞ).

Proposition 2.3. Let X and Y be metrizable topological spaces, and let U : X ! Y be a proper, continuous mapping which is locally
invertible at every point. Then the function y#NðyÞ is finite and locally constant.

As a corollary of this proposition, we obtain that if Y is connected then NðyÞ is constant. For our purpose it is fundamental
to study the set of the points at which the mapping is not invertible.

Definition 2.4. Let U : X ! Y be a continuous mapping (X; Y topological spaces). We say that u 2 X is a singular point if U is
not locally invertible at u; y 2 Y is said to be a critical point if y ¼ UðuÞ, for some singular point u 2 X.

Proposition 2.5. Let X and Y be a metrizable topological spaces and U : X ! Y a continuous proper mapping. We denote the sin-
gular set (consist of all singular points) by W. Then NðyÞ is constant on every connected component of Y nUðWÞ.

Now we introduce some notions that we shall use in the study of the singular and critical set of a differentiable mapping.

Definition 2.6. Let X be a Banach space. A set M � X is said to be a Ck-manifold of codimension 1, if for every point u0 2 M
there exists a neighborhood U of u0 and a Ck-functional C : U ! R such that
ðaÞ C0ðu0Þ–0;

ðbÞ M \ U ¼ fu : u 2 U;CðuÞ ¼ 0g:
Then we have an important result:

Proposition 2.7. Let M be a closed connected Ck-manifold (k P 1) of codimension 1 in the Banach space X. Then X nM has at most
two components.

Here is the local structure theorem near an ‘‘ordinary singular point” of Ambrosetti and Prodi [1]:

Theorem 2.8. Let X and Y be Banach spaces, let K be an open subset of X, and let / : K! Y be a mapping of class Ck with k P 2.
Assume that u0 2 K is such that:

(I) /0ðu0Þ has a kernel of dimension 1 and an image of codimension 1.
(II) If v0 2 X is a non-zero vector such that /0ðu0Þv0 ¼ 0 and c0 is a functional on Y such that Imð/0ðu0ÞÞ ¼ fz : hz; c0i ¼ 0g, then

the linear functional
z#h/00ðu0Þ½z; v0�; c0i

is not identically zero.
Then the singular set W of / is, in a neighborhood of u0, a Ck�1-manifold of codimension 1. If the condition ðIIÞ is replaced by
(II*)
h/00ðu0Þ½v0;v0�; c0i – 0;

then we can find an open neighborhood U of u0 such that /ðW \ UÞ is a Ck�1-manifold of codimension 1.
Definition 2.9. We say that u 2 M is an ordinary singular point if ðIÞ and ðII�Þ hold.

If u0 is an ordinary singular point, then we can compute locally the number of the solutions of the equation /ðuÞ ¼ y.
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Theorem 2.10. Let / : K! Y be a mapping of class Ck with k P 2, and let u0 2 K be an ordinary singular point. Then denoted by s
a vector which is transversal to /ðWÞ in y0 ¼ /ðu0Þ, there exists a neighborhood U of u0 and an e 2 R such that (a)
8y 2 ðy0; y0 þ es� the equation /ðuÞ ¼ y has two solutions in U. (b) 8y 2 ½y0 � es; y0Þ the equation /ðuÞ ¼ y has no solution in U.
3. Proof of the main results

3.1. Proof of Theorem 1.2

We consider the mapping / : C2;a
0 ðXÞ ! C0;aðXÞ defined by
/ðuÞ ¼ Duþ ef ðuÞ:

From the assumptions on ef it follows that / is of class C2. The Fréchet derivative of / evaluated on u 2 C2;aðXÞ is given by
/0ðuÞ : v#Dv þ ef 0ðuÞv :

To complete the proof of Theorem 1.2, we state here some lemmas, which we shall prove in the following subsections.

Lemma 3.1. The mapping / is proper.

Lemma 3.2. The singular set W of / is non-empty, closed and connected; each point in W is an ordinary singular point.

Lemma 3.3. If g 2 /ðWÞ, then (1.6) has a unique solution.

Assuming these three lemmas, now we complete the proof of the Theorem 1.2. Since all the points of W are ordinary sin-
gular points, then by Theorem 2.8, /ðWÞ is a manifold of codimension 1. By Lemma 3.1, / is proper; and since W is closed and
connected, /ðWÞ is also closed and connected. From Proposition 2.7 we can say that C0;aðXÞ n /ðWÞ has at most 2 connected
components. Moreover since / is proper, then by Proposition 2.5, the number of the solutions of /ðuÞ ¼ g is constant on each
connected component of C0;aðXÞ n /ðWÞ. To compute such number, we first observe that, for every neighborhood U of u0 2W ,
there exists a neighborhood V of g0 ¼ /ðu0Þ such that /�1ðVÞ � U. Otherwise, there should exists a neighborhood U� of u0 and
a sequence un such that un R U� and limn!1/ðunÞ ¼ g0. Since / is proper, we might extract a subsequence converging to a
point u� such that un R U� and /ðu�Þ ¼ g0; u�–u0. This would be against Lemma 3.3.

On the other hand, since u0 is an ordinary singular point, by Theorem 2.10, we can compute locally the number of solu-
tions to the equation /ðuÞ ¼ g when g lies on a segment which is transversal to /ðWÞ in g0. The number of solutions is 2 or 0
according to g lying on which side of /ðWÞ. Hence part ðaÞ and ðbÞ of the theorem hold. Finally if g 2 /ðWÞ, by Lemma 3.3, the
solution of /ðuÞ ¼ g is unique.

Finally if g P 0 and gX0, then the existence of c2 > 0 is shown in Oruganti et al. [5], and other statements of the exact
multiplicity results follow from Oruganti et al. [5]. That completes the proof of the theorem.

3.2. Proof of Lemma 3.1

First we prepare several lemmas. The first one is part of Theorem 0.5 in Ambrosetti and Prodi [2].

Proposition 3.4. Let X � Rn be a bounded subset of class C2;aðXÞ, and let v be the solution of the boundary-value problem
Dv ¼ h; x 2 X;

v ¼ 0; x 2 @X;

�
ð3:1Þ
where h is a bounded function. Then for every fixed a ð0 < a < 1Þ the following estimate holds
kvk1;a 6 kakhkL1
where ka is a suitable constant.

Now we consider the following eigenvalue problem:
Dv þ ef 0ðuÞv ¼ �lv ; x 2 X;

v ¼ 0; x 2 @X:

(
ð3:2Þ
It is well-known that (3.2) has a sequence of eigenvalues li ¼ liðef 0ðuÞÞ satisfies l1 < l2 6 � � �, and li !1 as i!1. From [9]
(page 3689), for i ¼ 1;2; � � �,
liðef 0ðuÞÞ ¼ MiniMaxi

R
X jrv j2 � ef 0ðuÞv2
� �

dxR
X v2dx

ð3:3Þ
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where Maxi is taken over all vð–0Þ 2 Ti, and Mini is over all i-dimentional subspaces Ti of H1
0ðXÞ. The following result on the

monotonicity of the eigenvalues is well-known:

Lemma 3.5 [9] Lemma 2.1. Suppose that W1;W2 2 L1ðXÞ satisfy W2ðxÞP W1ðxÞ a.e., then liðW2Þ 6 liðW1Þ, here liðWiÞ are
the eigenvalues of (3.2) with ef 0ðuÞ replaced by Wi. If in addition the Lebesgue measure mðfW2 > W1gÞ > 0, then
liðW2Þ < liðW1Þ.

The following lemma is a key to the global inversion result:

Lemma 3.6. Let un be a sequence in C2;a
0 ðXÞ and /ðunÞ ¼ Dun þ ef ðunÞ ¼ gn. If the sequence gn is bounded in C0;aðXÞ, then the

sequence un is bounded in C0;aðXÞ.

Proof 1. Suppose that the opposite holds: limn!þ1kunk0;a ¼ þ1. We set zn ¼ unkunk�1
0;a; we have zn 2 C2;a

0 ðXÞ and kznk0;a=1.
We introduce the real function h defined as follows:
hðtÞ ¼
ef ðtÞ

t ; for t–0;ef 0ð0Þ; for t ¼ 0:

8<:

In virtue of the hypothesis on ef , h is of class C1 and is bounded.

From the equation Dun þ ef ðunÞ ¼ gn, dividing by kunk0;a, we get
Dzn þ hðunÞzn ¼
gn

kunk0;a
: ð3:4Þ
The sequence gnkunk�1
0;a � hðunÞzn is bounded in L1ðXÞ. By Proposition 3.4, we have that kznk1;a is bounded. Therefore we can

extract a subsequence converging in C1ðXÞ to a function z�, and since kznk0;a ¼ 1, then kz�k0;a ¼ 1 from the continuity of the
norm. In particular z�–0.

We write (3.4) in distribution sense:
�
Z

X

X
i

@zn

@xi

@x
@xi

dxþ
Z

X
hðunÞznxdx ¼

Z
X

gn

kunk0;a
xdx ð3:5Þ
for every x 2 C10 ðXÞ. We observe that for the points x 2 X where we have z�ðxÞ < 0, limn!þ1unðxÞ ¼ �1 and hence
limn!þ1hðunðxÞÞ ¼ l�, while for the points where we have z�ðxÞ > 0, it results in limn!þ1hðunðxÞÞ ¼ lþ. Thus if we set
aðxÞ ¼
l�; if z�ðxÞ < 0;
lþ; if z�ðxÞ > 0;
f 0ð0Þ; if z�ðxÞ ¼ 0;

8><>:

we have for any x 2 X; limn!þ1hðunðxÞÞznðxÞ ¼ aðxÞz�ðxÞ. Taking the limit, from (3.5) we obtain (by Lebesgue’s dominant con-
vergent theorem)
�
Z

X

X
i

@z�

@xi

@x
@xi

dxþ
Z

X
az�xdx ¼ 0; 8x 2 C10 ðXÞ: ð3:6Þ
This relation shows that there exists k P 1 such that lkðaðxÞÞÞ ¼ 0 is an eigenvalue of the problem
Dv þ aðxÞv ¼ �lv ; x 2 X;

v ¼ 0; x 2 @X:

�

We claim that l1ðaðxÞÞ ¼ 0. In fact, since aðxÞ 6 l�, by Lemma 3.5, lkðaðxÞÞP lkðl�Þ ¼ kk � l�. In particular
l2ðaðxÞÞP l2ðl�Þ ¼ k2 � l� > 0. We must have l1ðaðxÞÞ ¼ 0. This prove z� is of one sign in all of X. Now, if we suppose
z�ðxÞ > 0 in X, then the following equation is fulfilled
Dz� þ lþz� ¼ 0; z�j@X ¼ 0;
which is a contradiction, since lþ is not an eigenvalue for �D. On the other hand, if we have z�ðxÞ < 0 in X, then we have
Dz� þ l�z� ¼ 0; z�j@X ¼ 0:
Also this relation cannot be true since l� is not an eigenvalue for �D. This contradiction shows that un must be bounded in
C0;aðXÞ.
3.2.1. Proof of Lemma 3.1
Let fung be a sequence in C2;a

0 ðXÞ such that /ðunÞ ¼ Dun þ ef ðunÞ ¼ gn is convergent in C0;aðXÞ. By Lemma 3.6 we know that
fung is bounded in C0;aðXÞ, and then Dun ¼ gn � ef ðunÞ is a bounded sequence in C0;aðXÞ. But since, under our hypothesis for X,
the operator D is an isomorphism of C2;a

0 ðXÞ onto C0;aðXÞ, then we can say that fung is a bounded sequence in C2;a
0 ðXÞ. Hence
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we can extract a subsequence from fung converging in C0;aðXÞ, then the equation itself shows that this subsequence con-
verges in C2;a

0 ðXÞ, which proves Lemma 3.1.
3.3. Proof of Lemmas 3.2 and 3.3

3.3.1. Proof of Lemma 3.2
First we prove that each point u0 of the singular manifold W is an ordinary singular point, namely the hypothesis ðIÞ and

ðII�Þ of Theorem 2.8 are fulfilled. We consider the eigenvalue problem:
Dv þ ef 0ðu0Þv ¼ �lv; x 2 X;

v ¼ 0; x 2 @X:

(
ð3:7Þ
Note that u is singular if and only if liðuÞ ¼ 0 for some i. From the proof of Lemma 3.1, we know l1ðuÞ ¼ 0. Then it is a simple
eigenvalue: the kernel of /0ðu0Þ is associated with a non-zero vector v0 2 C2;a

0 ðXÞ. It is known that Im/0ðu0Þ consists of the
elements g 2 C0;aðXÞ, for which

R
X gðxÞv0ðxÞdx ¼ 0. Then the hypothesis ðIÞ of Theorem 2.8 is satisfied. The functional c0

which is associated with Im/0ðu0Þ is
z!
Z

X
zðxÞv0ðxÞdx:
Now we compute /00. Since the second differential of the linear term vanishes, we have
ð/00ðu0Þ½v;w�ÞðxÞ ¼ ef 00ðu0ðxÞÞvðxÞwðxÞ:
Then the condition ðII�Þ of Theorem 2.8 becomes
Z
X

ef 00ðu0Þv3
0dx–0:
This relation is satisfied since ef 00ðtÞ 6 0 for any t 2 R, and ef 00ðtÞX0, and v0 is of the same sign on the whole X, since it is the
first eigenfunction of (3.7).

Next, we show that W is non-empty, closed, and connected. We show W has a cartesian representation on a linear sub-
space of C2;a

0 ðXÞ of codimension 1. Namely, let s 2 C2;a
0 ðXÞwith sðxÞ > 0 for all x 2 X and let Z be any linear subspace of C2;a

0 ðXÞ
of codimension 1, such that s R Z. Every element u 2 C2;a

0 ðXÞ can be represented in a unique way in the form u ¼ zþ ss; s 2 R,
and z 2 Z. We consider the eigenvalue problem:
Dv þ ef 0ðzþ ssÞv ¼ �lv ; x 2 X;

v ¼ 0; x 2 @X;

(

where z is a fixed element of Z, and s 2 R. Also, liðf 0ðzþ ssÞÞ is a monotone function of s 2 R, thus there is only one s such
that l1ðef 0ðzþ ssÞÞ ¼ 0 for fixed z 2 Z. Then we have proved that every straight line s! zþ ss meets the manifold W at a un-
ique point: it is easy to show that this point depends continuously on Z.
3.3.2. Proof of Lemma 3.3
Let u0 2W;/ðu0Þ ¼ g0, we assume that equation /ðuÞ ¼ g0 has another solution eu. We set
xðxÞ ¼
ef ðeuðxÞÞ�ef ðu0ðxÞÞeuðxÞ�u0ðxÞ

; if euðxÞ–u0ðxÞ;ef 0ðu0ðxÞÞ; if euðxÞ ¼ u0ðxÞ:

8<:

Then eu � u0 is a nontrivial solution of the problem
Dv þxv ¼ �lv; x 2 X;

v ¼ 0; x 2 @X;

�

with l ¼ 0. On the other hand, since ef 00ðtÞ 6 0, it follows that xðxÞ 6 ðXÞef 0ðu0ðxÞÞ for x 2 X. By the hypothesis we have
u0 2W , thus also the problem
Dv þ ef 0ðu0Þv ¼ �lv; x 2 X;

v ¼ 0; x 2 @X;

(

has l ¼ 0 as the first eigenvalue. Then l1ðwÞ > l1ðef 0ðu0ÞÞ ¼ 0 from Lemma 3.5, thus l1ðxÞ > 0 for all i P 1. That is a con-
tradiction. Hence u0 is the unique solution of /ðuÞ ¼ g0.
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