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Abstract Recent advances in abstract local and global bifurcation theory is
briefly reviewed. Several applications are included to illustrate the appli-
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1 Introduction

Bifurcation theory is the mathematical study of changes in the qualitative
or topological structure in the asymptotical dynamical behavior of natural
or engineering systems. Such systems are usually described by continuous
and discrete mathematical models like differential equations and mappings.
Bifurcation occurs when certain physical parameters cross through critical
thresholds.

The earliest example of bifurcation is the buckling of an elastic beam.
In engineering, buckling is a failure mode characterized by a sudden fail-
ure of a structure subjected to high compressive stresses, where the actual
compressive stresses at failure are greater than the ultimate compressive
stresses that the material is capable of withstanding. This mode of failure is
also described as failure due to elastic instability. Bifurcation of buckling can
be found in classical Euler-Bernoulli beam theory due to Leonhard Euler and
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Daniel Bernoulli with earlier contribution of Jacob Bernoulli. Other famous
people such as Galileo Galilei and Leonardo da Vinci also have made
unsuccessful attempts before Isaac Newton invented the powerful tool of
differential and integral calculus [14,41].

For example, a pinned inextensible rod subject to prescribed axial thrust
can be described by a boundary value problem (see Refs. [35,36]):

⎧
⎪⎨

⎪⎩

φ′′ + λ sinφ = 0, 0 < x < 1, φ′(0) = φ′(1) = 0,

u′ = cosφ− 1, 0 < x < 1, u(0) = 0,

w′ = sinφ, 0 < x < 1, w(0) = w(1) = 0.

(1.1)

Here, the length of the elastic column is normalized so that 0 � x � 1, the
horizontal and vertical displacements of the buckled axis are denoted by u(x)
and w(x), respectively, φ(x) is the angle between the tangent to the column’s
axis and the x-axis, and λ is a parameter proportional to the thrust. Clearly,
the solutions of (1.1) is determined by the equation of φ. The linearization
of the equation of φ around φ = 0 is

ψ′′ + λψ = 0, 0 < x < 1, ψ′(0) = ψ′(1) = 0, (1.2)

and it is well known that the eigenvalues of (1.2) are λn = (nπ)2 for n =
0, 1, 2, . . . . When 0 < λ � λ1, φ = 0 is the only solution, but for each n � 1,
a new branch of solutions (λ, φ±n (λ, x)) bifurcates from the eigenvalue λn and
φ±n (λ, ·) exists for λ > λn. Each φ±n (λ, ·) represents a new bend-state when
the thrust λ is larger.

Many more examples of bifurcation can be found in the mathematical
studies of physics, chemistry, biology and engineering. All these problems
can be written as an abstract form:

F (λ, u) = 0, (1.3)

where F : R ×X → Y is a nonlinear differentiable mapping, and X, Y are
Banach spaces. Very often the solutions of (1.3) are also the steady state
solutions of evolution equation

du
dt

= F (λ, u). (1.4)

In this article, we survey some basic bifurcation results for equation (1.3)
in a setting of infinite dimensional Banach spaces, and we use some
important examples from reaction-diffusion models in biochemical reactions
and population ecology to illustrate the abstract theory. For a more general
introduction to bifurcation theory and other related methods in nonlinear
analysis, see for example, Refs. [1,3,5,10,15,20,24,30,39]. On the other hand,
Refs. [2,12,13,27,28,32] provide a more detailed introduction to mathematical
models in chemical reactions and population ecology. For surveys of related
problems but focusing on (a) bifurcation in diffusive predator-prey systems,
see Ref. [11]; and (b) bistability in ecological systems, see Ref. [19].
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In Section 2, we recall abstract bifurcation theorems including some recent
new results; and in Section 3, we illustrate our abstract results by showing
the application of bifurcation theory to three spatiotemporal models from
ecology and biochemistry: Turing instability and bifurcation in chemical
reaction models; cross-diffusion induced instability and bifurcation in water-
limited ecosystems; and bifurcations in classical diffusive predator-prey
models which shows the patchiness (spatial heterogeneity) of plankton
distributions in phytoplankton-zooplankton interaction. We denote by N the
set of all the positive integers, and N0 = N ∪ {0}.

2 Abstract bifurcation theory

We consider a nonlinear equation:

F (λ, u) = 0, (2.1)

where F : R × X → Y is a differentiable mapping, and X, Y are Banach
spaces. We use Fλ(λ, u) and Fu(λ, u) to denote the partial derivatives of F,
and Fλu(λ, u), etc. for the higher order derivatives. For a linear operator L,
we use N(L) as the null space of L and R(L) as the range of L. Our main
interest is on the solution set of (2.1). We review the classical bifurcation
results and also some new variants without proofs. Detailed proofs can be
found in Ref. [38,39] or original papers cited below.

If (λ0, u0) is a solution of (2.1), and Fu(λ0, u0) is an invertible linear
mapping, then the solution set is locally a curve with same smoothness as F.
That is the classical implicit function theorem.

Theorem 2.1 (Implicit Function Theorem) Let (λ0, u0) ∈ R×X and let F
be a continuously differentiable mapping of an open neighborhood V of (λ0, u0)
into Y. Let F (λ0, u0) = 0 and Fu(λ0, u0) is an isomorphism, i.e., Fu(λ0, u0) is
one-to-one and onto, and F−1

u (λ0, u0) : Y → X is a linear bounded operator.
Then the solutions of F (λ, u) = 0 near (λ0, u0) form a curve (λ, u(λ)), u(λ) =
u0 + (λ − λ0)w0 + z(λ), where w0 = −[Fu(λ0, u0)]−1(Fλ(λ0, u0)) and λ �→
z(λ) ∈ X is a continuously differentiable function near λ = λ0 with z(λ0) =
z′(λ0) = 0.

When Fu(λ0, u0) is not invertible, we call (λ0, u0) a degenerate solution
of F (λ, u) = 0. Here, we discuss the case when the kernel of Fu(λ0, u0) is
nonempty, and in particular, we discuss the case that µ = 0 is a simple
eigenvalue of Fu(λ0, u0), i.e.,

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and N(Fu(λ0, u0))
= span {w0}.

This is equivalent to that the algebraic and geometric multiplicity of the
eigenvalue 0 of the linear operator Fu(λ0, u0) are both 1. First we have the
following result of Crandall and Rabinowitz [8].
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Theorem 2.2 (Saddle-node Bifurcation Theorem) Let F : R ×X → Y be
continuously differentiable. F (λ0, u0) = 0, F satisfies (F1) and

(F2) Fλ(λ0, u0) �∈ R(Fu(λ0, u0)).
Then the solutions of F (λ, u) = 0 near (λ0, u0) form a continuously
differentiable curve (λ(s), u(s)) for s ∈ (−δ, δ), (λ(0), u(0) = (λ0, u0), λ′(0) =
0 and u′(0) = w0. Moreover, if F is C2 in u, then

λ′′(0) = −〈l, Fuu(λ0, u0)[w0, w0]〉
〈l, Fλ(λ0, u0)〉 , (2.2)

where l ∈ Y ∗ (the conjugate space of Y ) satisfying N(l) = R(Fu(λ0, u0)).

If λ′′(0) �= 0, and the solution set {(λ(s), u(s)) : |s| < δ} is a parabola-
like curve which reaches an extreme point at (λ0, u0). The degenerate solution
(λ0, u0) in this case is a turning point on the solution curve. We notice that
although the local solution set in this case cannot be parameterized by λ, it
is still a parameterized curve. We call it saddle-node bifurcation theorem to
follow the terminology in dynamical systems.

Next, it is natural to consider the case when (F2) fails. We still assume
F satisfies (F1) at (λ0, u0). Then we have decompositions of X and Y :

X = N(Fu(λ0, u0)) ⊕ Z, Y = R(Fu(λ0, u0)) ⊕ Y1,

where Z is a complement of N(Fu(λ0, u0)) in X, and Y1 is a complement
of R(Fu(λ0, u0)). In particular, Fu(λ0, u0)|Z : Z → R(Fu(λ0, u0)) is an
isomorphism. Since R(Fu(λ0, u0)) is codimension one, there exists l ∈ Y ∗

such that R(Fu(λ0, u0)) = {v ∈ Y : 〈l, v〉 = 0}. We assume the opposite of
(F2) :

(F′
2) Fλ(λ0, u0) ∈ R(Fu(λ0, u0)).

Then the equation
Fλ(λ0, u0) + Fu(λ0, u0)[v] = 0 (2.3)

has a unique solution v1 ∈ Z. The following ‘crossing curve bifurcation’
theorem was proved by Liu, Shi and Wang [23].

Theorem 2.3 Let U be a neighborhood of (λ0, u0) in R×X, and let F : U →
Y be a twice continuously differentiable mapping. Assume that F (λ0, u0) = 0,
F satisfies (F1) and (F′

2) at (λ0, u0). Let X = N(Fu(λ0, u0)) ⊕ Z be a fixed
splitting of X, let v1 ∈ Z be the unique solution of (2.3), and let l ∈ Y ∗ such
that R(Fu(λ0, u0)) = {v ∈ Y : 〈l, v〉 = 0}. We assume that the matrix (all
derivatives are evaluated at (λ0, u0))

H0 ≡
( 〈l, Fλλ + 2Fλu[v1] + Fuu[v1, v1]〉 〈l, Fλu[w0] + Fuu[w0, v1]〉

〈l, Fλu[w0] + Fuu[w0, v1]〉 〈l, Fuu[w0, w0]〉

)

(2.4)
is non-degenerate, i.e., det(H0) �= 0.

(1) If H0 is definite, i.e., det(H0) > 0, then the solution set of F (λ, u) = 0
near (λ, u) = (λ0, u0) is the single point set {(λ0, u0)}.
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(2) If H0 is indefinite, i.e., det(H0) < 0, then the solution set of F (λ, u) =
0 near (λ, u) = (λ0, u0) is the union of two intersecting C1 curves, and the
two curves are in the form of

(λi(s), ui(s)) = (λ0 + µis+ sθi(s), u0 + ηisw0 + svi(s)), i = 1, 2,

where s ∈ (−δ, δ) for some δ > 0, θi(0) = 0, vi(s) ∈ Z, vi(0) = 0 (i =
1, 2), and (µi, ηi) (i = 1, 2) are non-zero linear independent solutions of the
equation

〈l, Fλλ + 2Fλu[v1] + Fuu[v1, v1]〉µ2

+2〈l, Fλu[w0] + Fuu[w0, v1]〉ηµ+ 〈l, Fuu[w0, w0]〉η2 = 0. (2.5)

A special case of Theorem 2.3 is the well-known ‘bifurcation form simple
eigenvalue’ theorem of Crandall and Rabinowitz [7].

Theorem 2.4 (Transcritical and Pitchfork Bifurcation Theorem) Let F : R

×X → Y be continuously differentiable. Suppose that F (λ, u0) = 0 for λ ∈ R,
the partial derivative Fλu exists and is continuous. At (λ0, u0), F satisfies
(F1) and

(F3) Fλu(λ0, u0)[w0] �∈ R(Fu(λ0, u0)), where w0 ∈ N(Fu(λ0, u0)).
Then the solutions of F (λ, u) = 0 near (λ0, u0) consists precisely of the curves
u = u0 and (λ(s), u(s)), s ∈ I = (−δ, δ), where (λ(s), u(s)) are continuously
differentiable functions such that λ(0) = λ0, u(0) = u0, u′(0) = w0.
Moreover, if F is C2 in u, then λ(s) is differentiable, and

λ′(0) = −〈l, Fuu(λ0, u0)[w0, w0]〉
2〈l, Fλu(λ0, u0)[w0]〉 . (2.6)

If λ′(0) �= 0, then a transcritical bifurcation occurs; while λ′(0) = 0 and
λ′′(0) �= 0, a pitchfork bifurcation occurs. In fact, the word ‘bifurcation’
is from the Latin bifurcus, which means ‘two forks’. Again, the names
transcritical and pitchfork bifurcations are from dynamical system terms.

The implicit function theorem (transversal curve), saddle-node bifurca-
tion (bending curve), and transcritical/pitchfork bifurcation (two crossing
curves) illustrate the impact of different levels of degeneracy of the nonlinear
mapping on the structure of local solution sets.

Finally, we state the following global bifurcation theorem due to
Pejsachowicz and Rabier [33] (see also Shi and Wang [40]).

Theorem 2.5 Assume that all conditions in Theorem 2.4 hold. If in
addition, Fu(λ, u) is a Fredholm operator for all (λ, u) ∈ R × X, then the
curve {(λ(s), u(s)) : s ∈ I} in Theorem 2.4 is contained in C , which is a
connect component of S, where S = {(λ, u) ∈ R×X : F (λ, u) = 0, u �= u0};
and either C is not compact, or C contains a point (λ∗, u0) with λ∗ �= λ0.

Here we recall that a bounded linear mapping L from a Banach space
X to another Banach space Y is said to be Fredholm if the dimension of its
kernel N(L) and the co-dimension of its range R(L) are both finite. A more
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general global result is proved in Refs. [33,40], which extends the celebrated
global bifurcation theorem of Rabinowitz [34].

3 Bifurcations in biological and chemical models

3.1 Turing bifurcation

A pure diffusion process usually leads to a smoothing effect so that the
system tends to a constant equilibrium state. However, the combined effect
of diffusion and chemical reaction may result in destabilizing the constant
equilibrium. In 1952, Alan Turing published a paper ‘The chemical basis of
morphogenesis’ [42] which is now regarded as the foundation of basic chemical
theory or reaction diffusion theory of morphogenesis. Turing suggested that,
under certain conditions, chemicals can react and diffuse in such a way to
produce non-constant equilibrium solutions, which represent spatial patterns
of chemical or morphogen concentration.

Turing’s idea is a simple but profound one. He considered a reaction-
diffusion system

ut = Du∆u+ f(u, v), vt = Dv∆v + g(u, v), (3.1)

and its corresponding kinetic equation

u′ = f(u, v), v′ = g(u, v). (3.2)

He said that if, in the absence of the diffusion (considering (3.2)), u and v
tend to a linearly stable uniform steady state, then, with the presence of
diffusion and under certain conditions, the uniform steady state can become
unstable, and spatial non-homogeneous patterns can evolve through bifurca-
tions. In another word, a constant equilibrium can be asymptotically stable
with respect to (3.2), but it is unstable with respect to (3.1). Therefore,
this constant equilibrium solution becomes unstable because of the diffusion,
which is called diffusion driven instability.

To illustrate the bifurcation theory introduced earlier, we consider the
one-dimensional system:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = uxx + f(u, v), x ∈ (0, �π), t > 0,

vt = dvxx + g(u, v), x ∈ (0, �π), t > 0,

ux(t, 0) = ux(t, �π) = vx(t, 0) = vx(t, �π) = 0, t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, �π).

(3.3)

Here d > 0 is the ratio Dv/Du of the two diffusion coefficients, � > 0 repre-
sents the length of the interval. It is well known that the eigenvalue problem

−ϕ′′ = µϕ, x ∈ (0, �π), ϕ′(0) = ϕ′(�π) = 0,

has eigenvalues µn = n2/�2 (n = 0, 1, 2, . . . ), with corresponding eigenfunc-
tions ϕn(x) = cos n

� x. Suppose that (u0, v0) is a solution of f(u, v) = g(u, v) =
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0, then (u0, v0) is a constant equilibrium solution of (3.3). The stability of
(u0, v0) with respect to (3.3) is determined by the linearized operator

L

(
φ

ψ

)

=

(
φxx

dψxx

)

+

(
fu fv

gu gv

)(
φ

ψ

)

.

We assume that (u0, v0) is locally stable with respect to the ordinary
differential equation (ODE) dynamics (3.2), hence,

D1 = fugv − fvgu > 0, fu + gv < 0.

Let

k =
n

�
,

(
φ

ψ

)

=

(
A

B

)

cos kx, J =

(
fu fv

gu gv

)

, D =

(
1 0

0 d

)

.

Then the eigenvalues of L are determined by the eigenvalue problem

(J − k2D)

(
A

B

)

≡
(
fu − k2 fv

gu gv − k2d

)(
A

B

)

= µ

(
A

B

)

.

The trace and determinant of J − k2D are

tr (J − k2D) = (fu + gv) − k2(1 + d),

det(J − k2D) = (fugv − fvgu) − k2(dfu + gv) + k4d.

For (u0, v0) to be unstable with respect to (3.3), we must have det(J−k2D) <
0 since tr (J − k2D) < 0 always holds. This requires dfu + gv > 0 while we
have fu + gv < 0. Thus fu and gv must have opposite signs. Here we assume
that fu > 0 and gv < 0, hence u is an activator and v is an inhibitor. Then we
can apply the theory in Section 2 to obtain the following general bifurcation
result.

Theorem 3.1 Suppose that f, g ∈ C1(R2), there exists (u0, v0) ∈ R
2 such

that f(u0, v0) = g(u0, v0) = 0, and at (u0, v0),
(A) fu > 0 (activator), gv < 0 (inhibitor);
(B) D1 = fugv − fvgu > 0 and fu + gv < 0.

Define �n = f
−1/2
u n, and for fixed � satisfying �j−1 < � < �j , for n =

1, 2, . . . , j, define

dn(�) =
D1 − n2�−2gv

n2�−2(fu − n2�−2)
> 0.

If for some n = 1, 2, . . . , j, dn(�) �= dk(�) for any k = 1, 2, . . . , j, k �= n, then
(1) d = dn(�) is a bifurcation point where a continuum Σ of non-trivial

solutions of
{

uxx + f(u, v) = 0, dvxx + g(u, v) = 0, x ∈ (0, �π),

ux(0) = ux(�π) = vx(0) = vx(�π) = 0,
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bifurcates from the line of trivial solutions (d, u0, v0).
(2) The continuum Σ is either unbounded in the space of (d, u, v), or it

connects to another (dk(�), u0, v0).
(3) Σ is locally a curve near (dn(�), u0, v0) in the form of

(d, u, v) =
(
d(s), u0 + sA cos

nx

�
+ o(s), v0 + sB cos

nx

�
+ o(s)

)
, |s| < δ,

and d′(0) = 0 thus the bifurcation is of pitchfork type (d′′(0) can be computed
in terms of higher derivatives of f and g).

The proof of Theorem 3.1 is a direct application of Theorems 2.4 and 2.5,
and is omitted here. Similar proofs can be found in Refs. [6,18,31] for special
cases.

Over the years, Turing’s idea has attracted the attention of a great
number of investigators and was successfully developed on the theoretical
backgrounds. Not only has it been studied in biological and chemical fields,
but some investigations range as far as economics, semiconductor physics,
and star formation (see Ref. [12]). However, the search for Turing patterns
in real chemical or biological systems turned out to be difficult. Almost
40 years after Turing’s seminal paper, the first experimental observation of
a Turing pattern in a chemical reactor was due to De Kepper’s group, who
observed a spotty pattern in a chlorite-iodide-malonic acid (CIMA)
reaction [9] in 1990. The experiment on the CIMA reaction has revealed the
existence of stationary spatial periodic concentration patterns, the so-called
Turing structures, in open gel reactors. Later, Lengyel and Epstein have
suggested [22] that these patterns could arise because the iodine activator
species forms a reversible complex of low mobility with the starch molecules
used as color indicator for this reaction. In particular, they have also
developed a simple two-variable model [21] that includes the three overall
stoichiometric processes that lie at the heart of the mechanism of the CIMA
reaction: the chlorine dioxide-iodine-malonic acid model. The corresponding
dimensionless reaction-diffusion equations take the following form:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = ∆u + a− u− 4uv
1 + u2

, x ∈ Ω, t > 0,

vt = σ
[
c∆v + b

(
u− uv

1 + u2

)]
, x ∈ Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

(3.4)

where Ω is a bounded connected domain (the reactor) in R
n (n � 1), with

smooth boundary ∂Ω; the reactor is assumed to be closed, thus reflexive
Neumann boundary condition is imposed (here ∂νu is the outer normal
derivative of u); u(x, t) and v(x, t) denote the dimensionless iodide (I−) and
chlorite (ClO−

2 ) concentrations respectively; a and b are parameters related
to the feed concentrations; and c is the ratio of the diffusion coefficients;
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σ > 0 is a rescaling parameter depending on the concentration of the starch,
which enlarges the effective diffusion ratio to σc.

One can apply Theorem 3.1 to the corresponding one-dimensional version
of (3.4), see Ref. [18] (and also Ref. [29] for higher dimensional case). System
(3.4) has a unique fixed point (u∗, v∗) = (α, 1 + α2), where α = a/5. The
Jacobian matrix at (u∗, v∗) is

J :=

⎛

⎜
⎜
⎝

3α2 − 5
1 + α2

− 4α
1 + α2

2σα2b

1 + α2
− σαb

1 + α2

⎞

⎟
⎟
⎠ .

Hence, when 0 < 3α2 − 5 < σαb, conditions (A) and (B) in Theorem 3.1 are
satisfied. Therefore, for the system (here we denote d = c/b)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uxx + a− u− 4uv
1 + u2

= 0, x ∈ (0, �π),

dvxx + u− uv

1 + u2
= 0, x ∈ (0, �π),

u′(0) = u′(�π) = v′(0) = v′(�π) = 0,

the bifurcation points are

dn =
α

1 + α2
· 5 + µn

µn(f0 − µn)
,

where f0 = (3α2 − 5)/(1 + α2), and µn = n2/�2. In fact, in Ref. [18], it
was showed that all the bifurcating branches are unbounded in positive d-
direction but bounded in (u, v) norm with the a priori estimates.

A complete understanding of the asymptotical behavior of solutions to
Lengyel-Epstein system (3.4) or any other systems with complicated
spatiotemporal dynamics is still beyond reach. Yi, Wei and Shi [44,46] showed
that (3.4) also possess periodic orbits through Hopf bifurcation for certain
parameters, but the dynamics is relatively simpler when a is small, or when a
is large but the domain Ω is small. Jin, Shi, Wei and Yi1) consider the global
bifurcation diagrams with intervening steady state and Hopf bifurcations. In
particular, they showed that (3.4) has spatially non-homogeneous periodic
orbits, which is another indication of complex spatiotemporal dynamics.

3.2 Cross-diffusion induced bifurcation

Some of these self-organized patterns have been attributed to the cross-
diffusion and advection in the systems. Shi, Xie and Little2) further explored
Turing’s diffusion-induced instability for the cross-diffusion systems. The idea
can be summarized as follows: assume that in the absence of self-diffusion

1) Jin J Y, Shi J P, Wei J J, Yi F Q. Bifurcations of patterned solutions in diffusive
Lengyel-Epstein system. Preprint, 2008

2) Shi J P, Xie Z F, Little K. Cross-diffusion induced instability and stability in
reaction-diffusion systems. Preprint, 2008
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and cross-diffusion, there is a spatial homogeneous stable steady state; in the
presence of self-diffusion but not cross-diffusion, this steady state remains
stable hence it does not belong to the classical Turing instability scheme, but
it could become unstable when cross-diffusion also comes to play a role in the
system; thus it is a cross-diffusion induced instability. On the other hand,
if Turing instability does occur, i.e., a spatial uniform steady state is stable
with respect to the diffusion-free system, and it is unstable when diffusion
(but not cross-diffusion) presents; this steady state could become stable with
the inclusion of cross-diffusion influence, which represents a cross-diffusion
induced stability.

Similar to the analysis in Subsection 3.1, one could consider the system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = d11uxx + d12vxx + f(u, v), t > 0, x ∈ (0, �π),

vt = d21uxx + d22vxx + g(u, v), t > 0, x ∈ (0, �π),

ux(t, 0) = ux(t, �π) = vx(t, 0) = vx(t, �π) = 0, t > 0,

u(0, x) = h(x), v(0, x) = l(x), x ∈ (0, �π).

(3.5)

Again we assume f(u0, v0) = g(u0, v0) = 0 for some (u0, v0) ∈ R
2. Define

D =

(
d11 d12

d21 d22

)

, J =

(
fu fv

gu gv

)

, (3.6)

where the derivatives of f and g are evaluated at (u0, v0). The following
instability result was shown1).

Theorem 3.2 Suppose that f, g ∈ C1(R2), there exists (u0, v0) ∈ R
2 such

that f(u0, v0) = g(u0, v0) = 0, and at (u0, v0), the Jacobian matrix J satisfies
(A) fu > 0 (activator), gv < 0 (inhibitor);
(B) detJ = fugv − fvgu > 0 and tr J = fu + gv < 0;

and the diffusion matrix D satisfies
(C) d11 > 0, d22 > 0, d12, d21 ∈ R such that detD = d11d22−d12d21 > 0.

If in addition,

−F (J,D) − 2
√

detD det J � detD
�2

, (3.7)

where
F (J,D) = −d22fu + d21fv + d12gu − d11gv,

then (u0, v0) is an unstable equilibrium solution with respect to (3.5).

To demonstrate the cross-diffusion induced instability, we consider a
reaction-diffusion model proposed by von Hardenberg, Meron, et al. [26,43],
which gives a theoretical explanation of desertification phenomena in water
limited systems. The model predicts no vegetation at low water levels and
homogeneous vegetation at high water levels, with intermediate states of
spots, stripes, and labyrinths. These patterns have all been documented in

1) See footnote 2) on p. 415
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desert systems. The model also predicts the coexistence of steady states for
several precipitation ranges. The non-dimensional form of the equations is

nt =
γw

1 + σw
n− n2 − µn+ ∆n,

wt = p− (1 − ρn)w − w2n+ δ∆(w − βn) − v(w − αn)x,
(3.8)

where n(x, t) is the vegetation biomass density and w(x, t) is the soil water
density. More explanation on the model can be found in Ref. [43]1). Here,
we only consider the case of v = 0, and concentrate on the impact of cross-
diffusion term −β∆n on the stability of equilibrium solutions. Again for
simplicity, we only consider the one-dimensional problem:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

nt = nxx +
γw

1 + σw
n− n2 − µn, t > 0, x ∈ (0, �π),

wt = δwxx − βδnxx + p− (1 − ρn)w − w2n, t > 0, x ∈ (0, �π),

nx(t, 0) = nx(t, �π) = wx(t, 0) = wx(t, �π) = 0, t > 0,

n(0, x) = h(x), w(0, x) = l(x), x ∈ (0, �π).
(3.9)

It was shown that1) if

0 < γ − µσ <
σ

ρ
, w > ρ, (3.10)

then
(n0, w0) =

( γw

1 + σw
− µ,w

)

is a constant equilibrium solution of (3.9) satisfying 1 − ρn > 0. Moreover,
this equilibrium is linearly stable with respect to the corresponding ODE
dynamics of (3.9). For the reaction-diffusion system (3.9), one can show that
(n0, w0) is still stable with respect to the dynamics of (3.9) if β = 0. But
from Theorem 3.2, if

β >
(δn0 + pw−1

0 + w0n0 + 2
√
δ detJ + δ�−2)(1 + σw0)2

δγn0
, (3.11)

then (n0, w0) becomes unstable. Hence the instability is induced by strong
cross-diffusion effect.

(3.11) is a sufficient condition for instability but not necessary. In fact, if

β >
(δn0 + pw−1

0 + w0n0 + 2
√
δ detJ)(1 + σw0)2

δγn0
, (3.12)

then the instability holds for (3.9) and certain length �π, and the bifurcations
to non-homogeneous steady states occur. To formulate the bifurcation

1) See footnote 2) on p. 415
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problem, we make a change of variables y = �−1x, and the steady state
equation for (3.9) becomes

⎧
⎪⎪⎨

⎪⎪⎩

nyy + λ
[ γw

1 + σw
n− n2 − µn

]
= 0, y ∈ (0, π),

δwyy − βδnyy + λ[p− (1 − ρn)w − w2n] = 0, y ∈ (0, π),

n′(0) = n′(π) = w′(0) = w′(π) = 0,

(3.13)

where λ = �2 is a parameter representing the characteristic wave length of
the spatial pattern. If (3.12) is satisfied, then one can show that if λ± are
the two positive real roots of

(det J)λ2 + (δn0 + pw−1
0 + w0n0 − βδγn0(1 + σw0)−2)λ+ δ = 0, (3.14)

such that 0 < λ− < λ+, then λ = λ±k = k2λ± for integer k � 1 are
bifurcation points for (3.13). Indeed essentially only one branch of periodic
non-homogeneous steady state solutions bifurcates from the curve (λ, n0, w0)
since the ones bifurcating from λ±k correspond to the mode cos(ky) but
after a rescaling they are the same as the one from λ±1 . Pitchfork bifurcation
theorem (Theorem 2.4) can be applied here, and we omit the details. Notice
that the global branch from each λ±k must be unbounded, but it is not clear
whether the ‘essential branch’ (the branch of monotone solutions bifurcating
from λ±1 ) is unbounded or not.

3.3 Pattern formation with arbitrary diffusion coefficients

In our final example, we consider a diffusive predator-prey system with
Holling type II functional response, which has been considered in ecological
literature, especially when studying the patchiness of plankton distributions
in phytoplankton-zooplankton interaction (see Ref. [25]). The nondimension-
alized equation in one space dimension is in the form:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut − d1uxx = u
(
1 − u

k

)
− muv

u+ 1
, x ∈ (0, �π), t > 0,

vt − d2vxx = −θv +
muv

u+ 1
, x ∈ (0, �π), t > 0,

ux(0, t) = vx(0, t) = 0, ux(�π, t) = vx(�π, t) = 0, t > 0,

u(x, 0) = u0(x) � 0, v(x, 0) = v0(x) � 0, x ∈ (0, �π).
(3.15)

For the ODE system in (3.15) without the diffusion:

u′ = u
(
1 − u

k

)
− muv

u+ 1
, v′ = −θv +

muv

u+ 1
, (3.16)

there is a rich dynamics which we shall describe briefly, see Refs. [16,17] for
more details and related references. System (3.16) has three non-negative
equilibrium solutions: (0, 0), (k, 0), (λ, vλ), where

λ =
θ

m− θ
, vλ =

(k − λ)(1 + λ)
km

.
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The coexistence equilibrium (λ, vλ) is in the first quadrant if and only if
m > θ(1 + k)/k (or 0 < λ < k). In the following, we shall fix θ and k and
use λ as the main bifurcation parameter (or equivalently, m as a parameter).
We have the following stability information for the dynamics of (3.16): when
λ � k, (k, 0) is globally asymptotically stable; when (k − 1)/2 < λ < k, the
coexistence equilibrium (λ, vλ) is globally asymptotically stable; and when
0 < λ < (k − 1)/2, there is a globally asymptotically stable periodic orbit
[4]. λ = (k − 1)/2 is a bifurcation point where a subcritical Hopf bifurcation
occurs. The appearance of the limit cycle is related to the famous paradox
of enrichment of Rosenzweig [37].

In Ref. [45], Yi, Wei and Shi considered the bifurcation of steady state
solutions and also periodic solutions of (3.15) from the curve of constant
steady state solution (λ, vλ), and gave the following results. Similar to the
setting in Subsection 3.1, the linearization operators at (λ, vλ) are

L(λ) :=

⎛

⎜
⎜
⎝

d1
∂2

∂x2
+
λ(k − 1 − 2λ)
k(1 + λ)

−θ
k − λ

k(1 + λ)
d2

∂2

∂x2

⎞

⎟
⎟
⎠ ,

Ln(λ) :=

⎛

⎜
⎜
⎝

−d1n
2

�2
+
λ(k − 1 − 2λ)
k(1 + λ)

−θ
k − λ

k(1 + λ)
−d2n

2

�2

⎞

⎟
⎟
⎠ .

The trace and the determinant of Ln(λ) are

Tn(λ) =
λ(k − 1 − 2λ)
k(1 + λ)

− (d1 + d2)n2

�2
,

Dn(λ) =
θ(k − λ)
k(1 + λ)

− d2λ(k − 1 − 2λ)
k(1 + λ)

n2

�2
+
d1d2n

4

�4
.

If there exists an n ∈ N0 such that

Dn(λ0) = 0, Tn(λ0) �= 0; Tj(λ0) �= 0, Dj(λ0) �= 0, j �= n, (3.17)

and
d
dλ
Dn(λ0) �= 0, (3.18)

then λ = λ0 is a bifurcation point for the steady state solutions, and one can
apply Theorems 2.4 and 2.5 to obtain a global branch of nontrivial steady
state solutions of (3.15). On the other hand, if there exists an n ∈ N0 such
that

Tn(λ0) = 0, Dn(λ0) > 0; Tj(λ0) �= 0, Dj(λ0) �= 0, j �= n, (3.19)

and for the unique pair of complex eigenvalues near the imaginary axis
α(λ) ± iω(λ),

α′(λ0) �= 0, (3.20)
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then a Hopf bifurcation occurs for (3.15), and a branch of nontrivial periodic
orbits bifurcate from the curve of constant steady states.

We know that λH
0 := (k − 1)/2 is always a Hopf bifurcation point where

a spatial homogeneous periodic solution of (3.15) bifurcates. Define

A(λ) :=
λ(k − 1 − 2λ)
k(1 + λ)

for λ ∈ [0, λH
0 ]. Then A(0) = A(λH

0 ) = 0, and A(λ) > 0 in (0, λH
0 ), and A(λ)

has a unique critical point λ = λ∗ at which A(λ) achieves a local maximum
A(λ∗) = 2λ2

∗/k := M∗ > 0. Define

�n = n

√
d1 + d2

M∗
, n ∈ N, (3.21)

where

M∗ =
(
√
k + 1 −√

2)2

k
> 0.

Then for �n < � � �n+1, 1 � j � n, we define λH
j,− and λH

j,+ to be the roots
of A(λ) = (d1 + d2)j2/�2 satisfying 0 < λH

j,− < λ∗ < λH
j,+ < λH

0 . And these
λH

j,± satisfy

0 < λH
1,−(�) < λH

2,−(�) < · · · < λH
n,−(�) < λ∗

< λH
n,+(�) < · · · < λH

2,+(�) < λH
1,+(�) < λH

0 ,

Clearly, Tj(λH
j,±) = 0 and Ti(λH

j,±) �= 0 for i �= j. Hence, λH
j,± are potential

Hopf bifurcation points.
Define

h(λ) :=
λ2(k − 1 − 2λ)2

k(1 + λ)(k − λ)
. (3.22)

One can show that for all λ ∈ (0, λH
0 ), h(λ) > 0, h(0) = h(λH

0 ) = 0, and
there exists a unique λ# ∈ (0, λH

0 ), such that h′(λ#) = 0, h′(λ) > 0 in (0, λ#)
and h′(λ) < 0 in (λ#, λH

0 ). Then we have the following result on the Hopf
bifurcations.

Theorem 3.3 Suppose that the constants d1, d2,m, θ > 0 and k > 1, �n
are defined as in (3.21), and λH

j,± are defined as above.
(1) If

d1

d2
>
h(λ#)

4θ
, (3.23)

then system (3.15) undergoes a Hopf bifurcation at λ = λH
j,±, and there is no

steady state bifurcation along the curve {(λ, vλ) : 0 < λ < λH
0 }.

(2) If
d1

d2
<
h(λ#)

4θ
, (3.24)
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and λH
j,± /∈ [λ, λ], where 0 < λ < λ are the only two roots of h(λ) = 4θd1/d2 in

(0, λH
0 ), then system (3.15) undergoes a Hopf bifurcation at λ = λH

j,± /∈ [λ, λ].

Moreover, the periodic solutions bifurcating from λ = λH
j,± are spatially

non-homogeneous, and can be parameterized in the form

(u(s), v(s)) = (λH
j,±, vλH

j,±
) + s(a0, b0) cos

jx

�
cos(ωj,±t) + o(|s|)

for small s > 0.

For the steady state bifurcations, we notice that

Dn(λ) = θC(λ) − d2A(λ)p + d1d2p
2,

where

p =
n2

�2
, C(λ) =

k − λ

k(1 + λ)
.

Solving p from Dn(λ) = 0, we have

p = p±(λ) :=
d2A(λ) ±√C(λ)(d2

2h(λ) − 4d1d2θ)
2d1d2

.

Then we have the result on steady state bifurcation based on Theorems 2.4
and 2.5.

Theorem 3.4 Suppose that the constants d1, d2,m, θ > 0 and k > 1 satisfy
(3.24), and define

�̃n,+ :=
n

√
max p+(λ)

, �̃n,− :=
n

√
min p−(λ)

.

If for some n ∈ N, � ∈ (�̃n,+, �̃n,−) except a finite many values, there exists
exactly two points λS

n,± ∈ (λ, λ), with λS
n,− < λS

n,+, such that p±(λS
n,±) =

n2/�2, then there is a smooth curve Γn,± of positive solutions of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1uxx + u
(
1 − u

k

)
− muv

1 + u
= 0, x ∈ (0, �π),

d2vxx − θv +
muv

1 + u
= 0, x ∈ (0, �π),

u′(0) = u′(�π) = v′(0) = v′(�π) = 0,

(3.25)

bifurcating from (λ, u, v) = (λS
n,±, λS

n,±, vλS
n,±

), with Γn,± contained in a global
branch Cn,± of the positive solutions of (3.25). Moreover,

(1) Near (λ, u, v) = (λS
n,±, λ

S
n,±, vλS

n,±
),

Γn,± = {(λ(s), u(s), v(s)) : s ∈ (−ε, ε)},
where

(u(s, x), v(s, x)) = (λH
n,±, vλH

n,±
) + s(a0, b0) cos

nx

�
+ o(|s|)
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for |s| small.
(2) Either Cn,± contains another (λS

j,±, λ
S
j,±, vλS

j,±
), or the projection of

Cn,± onto λ-axis contains the interval (0, λS
n,±).

We remark that all the bifurcating spatial non-homogeneous periodic
solutions and steady state solutions are unstable, but nevertheless, it shows
the richness of spatiotemporal patterns for λ ∈ (0, (k− 1)/2). These patterns
exist no matter what the effective diffusion coefficient d1/d2 is, although
d1/d2 may affect the type of spatiotemporal patterns. Thus the mechanism
of pattern formation here is different from Turing’s idea described earlier.
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