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Abstract. The effects of a higher vorticity moment on a variational prob-
lem for barotropic vorticity on a rotating sphere is examined rigorously in the
framework of the Direct Method. This variational model differs from previous
work on the Barotropic Vorticity Equation (BVE) in relaxing the angular mo-
mentum constraint, which then allows us to state and prove theorems that give
necessary and sufficient conditions for the existence and stability of constrained
energy extremals in the form of super and sub-rotating solid-body steady flows.
Relaxation of angular momentum is a necessary step in the modeling of the im-
portant tilt instability where the rotational axis of the barotropic atmosphere
tilts away from the fixed north-south axis of planetary spin. These conditions
on a minimal set of parameters consisting of the planetary spin, relative en-
strophy and the fourth vorticity moment, extend the results of previous work
and clarify the role of the higher vorticity moments in models of geophysical
flows.

1. Introduction. The question of how many of the infinite number of Casimir
invariants should be retained in the formulation of a tractable and physically rele-
vant equilibrium statistical mechanics theory for ideal 2D flows, is at the center of
many recent works in the field. Chorin [8], Majda and Holen [25] and others have
concluded that it is enough to keep the energy, total circulation and the quadratic
vorticity moment known as enstrophy. See Miller [26] and Robert [29] for another
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point of view. There is little doubt that the enstrophy constraints capture most of
the physics in this problem. However, this question remains a matter of discussion,
and informs the investigation presented here.

Apart from the above issue of the number of vorticity invariants to retain in
statistical mechanics, there is the related question of how many invariants to use
in dynamical crude closure models of 2D turbulence, and also in the variational
formulation of the dynamics of ideal 2D flows.

In this paper, a variational formulation for barotropic flows is presented, with
the specific aim of modeling super-rotation and the tilt instability in planetary
atmospheres. We seek a minimal inviscid model for rotating barotropic flows that
has features related to these phenomena. The Barotropic Vorticity Equation (BVE)
is the simplest geophysically relevant PDE which is the basis of our model. Since
the problem we are treating here involves full spherical geometry approximating the
very small amplitude random topography and non-uniform Coriolis parameter, key
invariants of the BVE are the reduced energy -equal to the total mechanical energy
minus the relative angular momentum- and the vorticity moments.

Due to the small random topography, a cumulative mountain torque can nonethe-
less change the three components of the fluid’s angular momentum, conveniently
taken to be the z component aligned with the north pole of planetary spin, and the
x and y components. Thus, to first order accuracy in the modelling process, we
will use spherical geometry in the analysis below except for not fixing the angular
momentum, to address the relaxation of barotropic vorticity on a rotating planet.

There is another good reason for not fixing the angular momentum, besides our
stated aim of providing a minimal model of super-rotation - from a mathematical
point of view [28], adding the angular momentum constraints to the energy - relative
enstrophy theory in [21] over-constrain or over-determine the variational formula-
tion, for the simple reason that in that earlier theory as in the current formulation,
the objective functional is total mechanical energy (kinetic energy measured from
the rest frame minus some constants) which contains a second term that is pro-
portional to the angular momentum aligned with planetary spin. Moreover, it was
shown there that the energy extremals (constrained only by relative enstrophy)
contain maximum amount of z-component of the angular momentum.

Hence, the reader should bear in mind that the statistical mechanics and stability
properties arising from the variational analysis presented here, are for barotropic
flows on a rotating sphere, that exchange energy and angular momentum inviscidly
with their respective reservoirs residing in both the small scales of the flow and the
massive rotating planet. This generalized variational model captures vital proper-
ties of the barotropic component of a vertically averaged, multi-layered, rotating
atmosphere as it relaxes, without the complications of a full-blown theory based on
the general circulation model (GCM)(cf. [9]). Such a theory that is based on the
GCM, will include a detailed mechanism for the exchange of angular momentum
between the fluid and the bottom topography (due to spin-ups and spin-downs) but
will likely be too complex to be analyzed by classical mathematical techniques.

To begin the construction of a minimalist variational model, we have to choose
how many and which invariants of the BVE to retain. The generalized BVE models
retain the effects of spherical geometry on differential rotation in the sense that
the β parameter varies with latitude. They are non-divergent models in the sense
that the Rossby Radius of deformation is taken to be infinite. Thus, these ideal
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flows are strictly 2D and the surface of the fluid is a rigid lid. They differ sub-
stantially from more realistic models of the atmosphere which start usually from a
damped driven multi-layer flow, that is insolated differentially and interacts with
the bottom topography through a very complex torque mechanism. Nonetheless,
Cho and Polvani [6] and Yoden and Yamada [39], amongst others, have studied the
long time asymptotics of the barotropic flows on a sphere numerically (and there-
fore with some unavoidable artificial viscosity), and found geophysically interesting
end-states.

A relationship between the inviscid variational theory in this paper and more
realistic damped quasi-2D flows can be found in terms of the Principle of Selective
Decay [40] which says that the asymptotic states of the damped system must have
minimum enstrophy to energy ratio; the constrained energy extremals of our vari-
ational models can be viewed as minimum enstrophy states for given energy in a
dual variational principle formulated originally by Leith [18]. More specifically, with
damping, both the energy and enstrophy decay to zero as a result of viscosity, and
Selective Decay states that a positive measure set of initial data satisfies the asymp-
totic property that the enstrophy decays at a faster rate than the kinetic energy.
Now by Poincare’s inequality there is a lower bound for the Dirichlet quotient in a
periodic domain or the surface of a sphere, which then yields the useful constraint
that the asymptotic quasi-steady states form a one dimensional subspace, that is,
they must be decaying multiples of the ground state of the Laplace-Beltrami oper-
ator for the flow domain. Because of this, the constrained extremals that we find
by fixing the enstrophy and maximizing the energy or equivalently, fixing the en-
ergy and minimizing the enstrophy captures the important long-time quasi-steady
properties of the solutions of a damped 2D Navier-Stokes system. Therefore, the
variational analysis in this paper is relevant not just for short times but is indeed
important in the asymptotic sense as well because of the multiple time-scales ex-
tant in inverse cascades of nearly 2D flows. In one unit of the slow dissipation time,
relative enstrophy can therefore be assumed fix while relaxation of energy to large
scales proceed at a much faster time-scale.

The first author [21] gave a complete analysis of an earlier generalized BVE model
in terms of a constrained variational formulation where the fixed-frame kinetic en-
ergy or Lagrangian of the BVE is the objective functional and the relative enstrophy
and total circulation are constraints. Precisely because angular momentum is not
fixed, he was able to state and prove a rigorous result on symmetry-breaking be-
tween the pro and retrograde rigidly rotating steady states in terms of the relevant
physical parameters in the theory, namely, the values of the kinetic energy with
respect to the relative enstrophy and planetary spin. We focus here on the effects of
constraining the higher relative vorticity invariants in the generalized BVE models
without applying any constraint on the angular momentum. This is not to say that
variational and statistical mechanics models which invoke the conservation of angu-
lar momentum are without merit. In fact, previous work have mainly focussed on
such models [12], [35], [34] and produced interesting results on stability and the en-
ergy and enstrophy spectra of rotating barotropic flows, confirming what Kraichnan
[14] and others have found numerically.

This is a good point to discuss the types of constraints that one could apply to
the remaining active or robust invariants of the inviscid barotropic models. When
the bottom topography is non-trivial, it can be shown that the enstrophy is no
longer conserved by the dynamics (cf. Salmon et al [30], Shepherd [32]). However,
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provided the bottom topography is small (nearly a perfect sphere), the dynamics
of inviscid barotropic models can be assumed to fix the vorticity moments but not
the angular momentum. At the level of statistical equilibrium models, one usually
distinguish between applying the relative enstrophy constraints microcanonically
(fixing it as in Ding and Lim [11]), canonically (let it relax to equilibrium in con-
tact with a reservoir of infinite capacity) or in a well-defined mean field way as in
Lim [22]. There is an important difference between the first two Gibbs probabil-
ity measures: the former is equivalent to the Kac’s spherical model (cf. Kac and
Berlin [3] and Lim [22]) for ferromagnetism and the latter is a Gaussian model. The
former is well-defined at all positive and negative temperatures. The latter is not
well-defined at low temperatures but is exactly solvable where it is defined. The
spherical model for barotropic flows on a rotating sphere that do not fix the angular
momentum has been recently solved in closed form [23]. It is a better formulation
for the calculations of phase transitions than the classical energy-enstrophy theory
because it is well-defined at all temperatures (cf. Lim [22]). Ding and Lim [11]
gives the results of extensive Monte-Carlo simulations of this spherical model for
the equilibrium statistics of barotropic flows, and reports that at least three dif-
ferent equilibrium vorticity states can be distinguished as planetary spin, relative
enstrophy and temperature (or expected value of the energy) are changed. They
confirmed the mean field calculations of critical temperatures for the generalized
barotropic flows in Lim [22] and in Lim and Singh [24].

At the level of variational models for generalized barotropic flows, the micro-
canonical constraint corresponds to fixing the relative enstrophy while optimizing
usually the kinetic energy of the barotropic flows. On the other hand, the canonical
constraint is associated with a Lagrange multiplier which arise in necessary condi-
tions for constrained energy extremals. We show that these two levels of description
are equivalent for variational models of generalized barotropic flows.

Next, we explain how the angular momentum invariants (and constraints) are
related to the relative, total enstrophy and kinetic energy in barotropic flows. The
kinetic energy (more correctly the fluid’s total mechanical energy relative to a fixed-
frame and thus, the non-conserved Lagrangian of the BVE) of barotropic flows on
a sphere,

H [q] = − 1

2

∫

S2

dx ψq = −1

2

∫
dx ψ(x) [w(x) + 2Ω cos θ]

= − 1

2

∫
dx ψ(x)w(x) − Ω

∫
dx ψ(x) cos θ

(1)

where Ω denotes planetary spin, ψ denotes the stream function, w is the relative
vorticity, and q is the total vorticity, can be written in the form of an ellipsoid in the
Hilbert space of square-integrable vorticity distributions with zero total circulation,
that is shifted to the left along the axis for aligned rigid rotation by an amount
proportional to the planetary spin Ω, according to

H = −1

2

∑

l≥1,m

α2
lm

λlm
+

1

2
ΩCα10. (2)

Here αlm and λlm are respectively the Fourier coefficients and Laplacian eigenvalues
- discussed in mathematical settings below - for the lm-th spherical harmonics
ψlm in the Fourier expansion of the relative vorticity. The z component of the
angular momentum, that is aligned with the north pole due to planetary spin, is
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associated with the spherical harmonic ψ10; the x and y components are associated
respectively with the harmonics ψ1,1 and ψ1,−1. Adding small amounts of x and y
angular momenta to a solid-body steady-state with a large z angular momentum
is kinematically equivalent to tilting the axis of atmospheric rotations away from
the planetary spin axis (or north-south axis), hence the name tilt instability that
is usually associated with these two spherical harmonics. If we fix the z angular
momentum, then as Frederiksen and Sawford observed in [12], we are essentially
working with a reduced kinetic energy expression in which the symmetry-breaking
term is missing, and the energy is then represented by an ellipsoid that is no longer
shifted. Similarly, if we also fix the x and/or y angular momenta, the resulting
energy ellipsoid and relative enstrophy sphere are concentric in a reduced Hilbert
space spanned by only the spherical harmonics ψlm, with the total wave-number
l greater than 1. This effectively reduces the statistical mechanics and variational
theory of the BVE on a rotating sphere to that of the non-rotating sphere, where
the pro and retrograde rigid rotation states are now perfectly symmetrical. Thus,
we now see how fixing angular momentum changes the other key invariants in the
problem, namely relative enstrophy and energy.

We now explain how total enstrophy is related to relative enstrophy and angular
momentum. According to the expansion of the total enstrophy,

Γ[q] =

∫

S2

dx q2 =

∫

S2

dx [w + 2Ω cos θ]
2

=

∫

S2

dx w2 + 4Ω

∫

S2

dx w cos θ + 4Ω2C2,

(3)

where C is a universal constant, the total enstrophy is essentially (modulo a con-
stant) the sum of the relative enstrophy and the z angular momentum. Thus, fixing
both the relative enstrophy and the z angular momentum is equivalent to fixing
total enstrophy in the statistical mechanics and variational theories of barotropic
flows. Conversely, fixing the total enstrophy is clearly not identical to any (equal-
ity type) constraints on the relative enstrophy and z angular momentum, which
instead, are now constrained by implicit or inequality bounds. Fixing the relative
enstrophy without fixing any of the x, y, or z angular momenta is clearly equiv-
alent to implicit inequality constraints on these components of angular momenta,
because the parts of the relative enstrophy associated with ψlm, m = −1, 0,+1 are
now allowed to fluctuate provided the square-norm of relative vorticity is fixed. Pre-
cisely in this way, the first generalized barotropic variational model by Lim and our
current work allow angular momentum to fluctuate, in order to achieve our stated
aim of a (minimalist-blackbox) variational model of the complex torque mechanisms
for the exchange of angular momentum between atmosphere and planet in relaxing
barotropic flows on a perfect rotating sphere. Only such models are simultaneously
relevant to super-rotation and the tilt instability and at the same time, amenable
to a treatment based on classical applied mathematics.

In this paper we focus on the application and analysis of the fourth vorticity
moment in the BVE model, without imposing any constraint on the angular mo-
mentum. The principal aim is to see how the phenomenon of symmetry-breaking
observed in the first BVE-variational theory under the constraint of only the rela-
tive enstrophy, depend on the higher vorticity moments. In Section 2, a summary
of the BVE with respect to its geophysical fluid dynamical properties will be given.
The methods of variational theory such as the Direct Method of the Calculus of
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Variations and general functional analysis are used extensively in Sections 3 – 5 of
this paper to extract the physically relevant rigorous results that the higher vorticity
moments make a difference in the variational theory of the BVE.

2. Barotropic vorticity equation. This equation can be written in the form

∂

∂t
ω + J(ψ, ω + 2Ω cos θ) = 0

where ω is the relative vorticity,

ω = ∆ψ,

ψ is the stream function, and the absolute or total vorticity is given by the sum,

q = ∆ψ + 2Ω cos θ,

of relative and planetary vorticity, and Ω is the rate of spin of the coordinate system
in which the solid planet (taken to be the unit sphere S2) is at rest. The operator
∆ is the Laplace-Beltrami operator for the sphere S2, J is the Jacobian operator,
and θ is co-latitude which is 0 at the north pole N.

A more realistic model is the divergent shallow-water equations (SWE) on a ro-
tating sphere (cf. Cho and Polvani [6] and Ding and Lim [10]) which we will discuss
next in order to state explicitly the approximations in the BVE. For this purpose
let us denote by U, L and H, the velocity, length and depth scales respectively.
Then two important dimensionless numbers are the Rossby and Froude numbers
respectively,

R =
U

2ΩL
, F =

U√
gH

,

where g is the gravitational constant. Within the SWE model, the relative im-
portance of convective / local flow to rotational effects is measured by the Rossby
number R. The Froude number F measures the relative importance within the SWE
model of the convective / local flow effects to gravity-depth effects. In a definite
sense, a small Rossby number R ≪ 1 signals the importance of rotational effects:
Ω has to be relatively large or the scale L of the flow has to be relatively large in
order for rotation of the planet to be important. On the other hand, a large Froude
number F ≫ 1 implies the importance of gravity effects, since in this case, the
gravity waves are relatively slow, and cannot be time-averaged out of the problem.

The Rossby Radius of deformation,

LR =

√
gH

2Ω
=
RL

F
,

measures the relative importance of gravity-depth effects to rotational effects. When
it is of O(1), both gravity and rotational effects are relevant to the problem, and
only when LR ≫ 1 that rotational and convective or inertial effects dominate. It is
convenient to label the square of LR/L by the Burgers number

B =
R2

F 2
=
L2

R

L2
.

Small values of B signals the importance of gravity-depth effects over rotational
effects; it inludes the case when the Rossby number R itself is relatively small, that
is, when rotational effects dominate convective or inertial effects, as well as the case
when R is O(1), that is, when rotational effects are comparable to convective or
inertial effects.
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The BVE can be characterized as the limit of the SWE when LR tends to ∞ or
equivalently when the depth scale H tends to ∞ with Ω and g fixed. The flow (u, v)
in the BVE model is strictly 2D, that is, ω is a scalar field and the top and bottom
boundary conditions are idealized away by taking, in effect, the depth scale H to ∞.
Thus, in a definite sense, the BVE models a rotating fluid of infinite depth. This
fact partly accounts for its tractability relative to the more complex SWE model
where boundary conditions at the top and bottom of the fluid are retained. In this
definite sense, the BVE model is non-divergent, i.e., div (u, v) = 0, while the SWE
is a divergent model.

Finally when the spin Ω = 0, the BVE reduces to the non-rotating non-divergent
model on a sphere, which has less interesting physical properties. One of the signifi-
cant properties of the generalized BVE model (Ω > 0) is the existence of symmetry-
breaking between its pro and counter-rotating solid-body rotation steady states,
which was discovered by the first author in [21], using only the relative enstrophy
constrain. One of the aims of this paper is to see whether this asymmetry is pre-
served when higher order vorticity moments are included in the variational theory
of the BVE model.

3. Mathematical settings. In the following, S2 is the unit sphere {x = (x1, x2,
x3) ∈ R3 : x2

1 + x2
2 + x2

3 = 1}; and the spherical coordinate representation is
S2 = {(φ, θ) : 0 ≤ φ < 2π, 0 ≤ θ ≤ π}, where φ is the longitude, and θ is the
colatitude; Lp(S2) is the space of real-valued measurable functions f : S2 → R

such that

∫

S2

|f |pdx <∞ for p > 0, and the norm of the space is

||f ||p =

(∫

S2

|f(x)|pdx
)1/p

. (4)

In this paper we will consider the space

V0 =

{
w ∈ L4(S2) :

∫

S2

w(x)dx = 0

}
. (5)

The norm of V0 is || · ||4 from
∫

S2

w2dx ≤
(∫

S2

w4dx

)1/2

·
(∫

S2

1dx

)1/2

=
√

4π

(∫

S2

w4dx

)1/2

, (6)

where 4π is the surface area of S2.
The key to our analysis is the Laplace-Beltrami operator ∆ on S2 and its inverse.

The solution of

∆u = f(x), x ∈ S2, (7)

is given by

u(x) = − 1

2π

∫

S2

f(y) ln
1

|x− y|dy, (8)

where |x− y| is the Euclidean distance in R3. For any f ∈ L2(S2), we define G(f)
to be the solution u of (7) defined as in (8), and we also define

V1 =

{
w ∈ L2(S2) :

∫

S2

w(x)dx = 0

}
. (9)

An orthonormal basis of V1 is given by the spherical harmonics

Y m
l (θ, φ) = cml e

imφP
|m|
l (cos θ), (10)
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where l ≥ 1, −l ≤ m ≤ l, cml is a real normalizing constant defined by

cml =

√
2l + 1

4π

(l −m)!

(l +m)!
(11)

so that
∫

S2 Y
m
l Y m′

l′ dx = δmm′δll′ , and Pm
l (·) is the Legendre polynomials. Here we

define a real valued orthonormal basis of V1:

ψlm(θ, φ) =
√

2cml cos(mφ)P
|m|
l (cos θ), 0 < m ≤ l,

ψlm(θ, φ) =
√

2cml sin(mφ)P
|m|
l (cos θ), −l ≤ m < 0,

ψl0(θ, φ) = c0l P
0
l (cos θ).

(12)

We recall that

ψ10 =

√
3

4π
cos θ, ||ψ10||2 = 1, and ||ψ10||4 =

(
9

20π

)1/4

. (13)

The operator G satisfies the following basic properties:

Lemma 3.1. Let G be defined as above.

1. The set of the eigenvalues of G is {− 1

l(l+ 1)
: l ≥ 1}, and the corresponding

eigenfunctions are ψlm, −l ≤ m ≤ l, the spherical harmonic functions on S2;
the set {ψlm : l ≥ 1,−l ≤ m ≤ l} is an orthonormal basis of V1;

2. G : V1 → V1 is self-adjoint, i.e. for any f, g ∈ V1, 〈G(f), g〉 = 〈f,G(g)〉,
where 〈·, ·〉 is the inner-product in L2(S2);

3.

0 ≤ −
∫

S2

G(w)wdx ≤ 1

2

∫

S2

w2dx, for any w ∈ V1. (14)

Proof. Parts 1-2 are standard. Part 3 and the equation below follows directly from
results in [35] and [34].

Note that the inequality (14) can also be written as in [35] and [34]

Λ1 = 2 = min
ϕ∈H2(S2)
ϕ 6≡0,

∫
ϕ=0

∫

S2

(∆ϕ)2dx
∫

S2

|∇ϕ|2dx
, (15)

where ϕ = G(w). The Rayleigh quotient in (15) defines the first buckling eigenvalue
of the surface S2.

The total kinetic energy (modulo a constant) of the fluid motion relative to a
fixed-frame is given by (see [21])

H [w] = −1

2

∫

S2

G(w)[w + 2Ω cos θ]dx, (16)

and by using Lemma 3.1 and (13), we obtain

H [w] = −1

2

∫

S2

G(w)wdx +
1

2
Ω|| cos θ||2

∫

S2

ψ10wdx. (17)

In this paper we study the energy extremals of H with conserved relative enstro-
phy

Γ2[w] ≡
∫

S2

w2dx = M2 > 0, (18)
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and also the first non-zero higher vorticity moment

Γ4[w] ≡
∫

S2

w4dx = M2
4 > 0. (19)

From (6), M2 and M4 must satisfy

M2 ≤
√

4πM4. (20)

Notice that from Stokes’s Theorem, we also have zero total circulation

Γ1[w] ≡
∫

S2

wdx = 0, (21)

thus w ∈ V1. In summary, we will

extremize H [w] on

V =
{
w ∈ L4(S2) : Γ2[w] ≡

∫

S2

w2dx = M2 > 0,

Γ4[w] ≡
∫

S2

w4dx = M2
4 > 0,

∫

S2

wdx = 0
}
.

(22)

To use the Lagrange principle for constrained variational problem, we consider
the augmented energy functional:

E(w, λ, µ) = H [w] + λΓ2[w] + µ (Γ4[w])
1/2

= − 1

2

∫

S2

G(w)wdx +
1

2
Ω|| cos θ||2

∫

S2

ψ10wdx+ λ

∫

S2

w2dx+ µ

(∫

S2

w4dx

)1/2

,

(23)

for w ∈ V0 = {w ∈ L4(S2) :

∫

S2

wdx = 0}. Note that we use ||w||24 instead of ||w||44
to get the correct dimension of the energy. The Euler-Lagrange equation of (23) is

G(w) − 2λw − 2µ

||w||24
w3 =

1

2
Ω|| cos θ||2ψ10. (24)

Lemma 3.2. Suppose that for some M2, M4, w ∈ V ⊂ V0 is an extremal of (23)
(or a solution of (24)). Then w is an extremal of the problem (22) for these values.

Proof. The tangent space of V at w is defined as

T =

{
ξ ∈ L4(S2) :

∫

S2

ξdx =

∫

S2

ξwdx =

∫

S2

ξw3dx = 0

}
. (25)

For any ξ ∈ T , the variation of H(·) along the direction ξ is

δH(w)[ξ] = −
∫

S2

G(w)ξdx +
1

2
Ω|| cos θ||2

∫

S2

ψ10ξdx

= − 2λ

∫

S2

wξdx − 2µ

||w||24

∫

S2

w3ξdx = 0,

(26)

from the Euler-Lagrange equation (24) and (25). Thus w is an extremal for (22).

Multiplying (24) by w and integrating over S2, we obtain an energy identity:

− 1

2

∫

S2

G(w)wdx+ λ

∫

S2

w2dx+ µ

(∫

S2

w4dx

)1/2

+
1

4
Ω|| cos θ||2

∫

S2

ψ10wdx = 0.

(27)
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By comparing (23) and (27), we find that

E(w, λ, µ) =
1

4
Ω|| cos θ||2

∫

S2

ψ10wdx. (28)

Thus the augmented energy functional always equals to a multiple of the angular
momentum if w is an extremal. Although the identity (28) is more mathematical
than physical (in the augmented energy functional (23), all terms are of quadratic
nature except the angular momentum), it suggests that the inclusion of an angular
momentum constraint will lead to an over-constrained problem. In the sequel to
this paper where the angular momentum is included, it will be shown that the
constraints structure of the new variational formulation is equivalent to imposing
a total enstrophy constraint on the BVE. Both (27) and (28) will be useful in our
later discussions.

The constrained variational problem (23) which only conserves the relative en-
strophy is considered in [21]. In that case the Euler-Lagrange equation is linear:

G(w) − 2λw =
1

2
Ω|| cos θ||2ψ10, (29)

and for non-resonant λ 6= −[l(l+ 1)]−1, l ≥ 1, (29) has a unique solution:

Wλ = −Ω|| cos θ||2
1 + 4λ

ψ10, (30)

and when λl = −[l(l + 1)]−1, l ≥ 2, the solution is the one in (30) plus some
higher spherical harmonics at the eigenvalue λl. The solution Wλ can also be
expressed in term of the enstrophy and energy H(·), which we will recall in Section
5, when compared to the model conserving both enstrophy and fourth order vorticity
moment.

The stability of an extremal w of (23) with respect to the augmented energy E
is determined by the second variation:

δ2E(w, λ, µ)[h, k]

= −
∫

S2

G(h)kdx + 2λ

∫

S2

hkdx+
6µ

||w||24

∫

S2

w2hkdx− 4µ

||w||64

∫

S2

w3hdx

∫

S2

w3kdx,

(31)

for h, k ∈ V0, or equivalently, the linear eigenvalue problem:

L(w)[h] ≡ G(h) − 2λh− 6µ

||w||24
w2h+

4µw3

||w||64

∫

S2

w3hdx = −γh. (32)

The eigenvalues of L can be characterized by the minimax values of a Rayleigh
quotient:

R[w, h] ≡ δ2E(w, λ, µ)[h, h]∫

S2

h2dx

. (33)

We call w a stable minimizer if all eigenvalues γi > 0, and we call w a stable
maximizer if all eigenvalues γi < 0. And an extremal w is non-degenerate if L(w)
is invertible, i.e. zero is not an eigenvalue.

Proposition 1. Let w be an extremal of (23).

1. If µ ≥ 0,λ ≥ 0 and (λ, µ) 6= (0, 0), then w is a stable minimizer;
2. If µ ≤ 0, λ ≤ −1/4 and (λ, µ) 6= (−1/4, 0), then w is a stable maximizer.
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Proof. From Cauchy-Schwarz’s inequality, we have

∫

S2

w2h2dx

∫

S2

w4dx ≥
(∫

S2

w3hdx

)2

. (34)

Thus when µ > 0 and λ > 0, R[w, h] > 0 for any h 6= 0; and when µ < 0 and
λ < −1/4, R[w, h] < 0 for any h 6= 0 from (14).

Remark. When µ = 0, the stability of Wλ is defined by (33) with µ = 0, and it is
easy to see that the solution Wλ of (29) is a stable minimizer when λ ≥ 0, and it is
a stable maximizer when λ < −1/4. Moreover when −1/4 < λ < 0, any solution of
(29) is a saddle point with both positive and negative spectral points.

4. Minimizers and maximizers. In this section, we apply the direct method of
calculus of variations to obtain the energy minimizers and maximizers for suitable
parameters (λ, µ). We use the following standard theorem (see for example, [37]
Theorem 1.2):

Theorem 4.1. Suppose that V is a reflexive Banach space with norm || · ||, and
let M ⊂ V be a weakly closed subset of V . Suppose that E : M → R ∪ {+∞} is
coercive and weakly lower semi-continuous on M with respect to V , that is suppose
the following conditions are fulfilled:

1. E(u) → ∞ as ||u|| → ∞, u ∈M ;
2. For any u ∈M , any sequence (un) in M such that um ⇀ u weakly in V there

holds: E(u) ≤ lim infn→∞ E(un).

Then E is bounded from below on M and attains its infimum in M .

Our main existence theorem is

Theorem 4.2. Let E(·, λ, µ) be defined as in (23).

1. For λ ∈ R, and µ > max{0,−
√

4πλ}, E(·, λ, µ) has a global minimizer Ψm
λ,µ ∈

V0 such that E(Ψm
λ,µ, λ, µ) = infw∈V0

E(w, λ, µ);

2. For λ ∈ R, and µ < min{0,−
√

4πλ−
√
π

2
}, E(·, λ, µ) has a global maximizer

ΨM
λ,µ ∈ V0 such that E(ΨM

λ,µ, λ, µ) = supw∈V0
E(w, λ, µ);

3. When µ = 0, and λ > 0, E(·, λ, 0) has a global minimizer Ψm
λ,µ ∈ V0 such that

E(Ψm
λ,0, λ, 0) = infw∈V0

E(w, λ, 0);

4. When µ = 0, and λ < −1/4, E(·, λ, 0) has a global maximizer ΨM
λ,0 ∈ V0 such

that E(ΨM
λ,µ, λ, 0) = supw∈V0

E(w, λ, 0).

Proof. We note that L4(S2) is a reflexive Banach space, and V0 is a closed subspace
of L4(S2). The weakly lower semi-continuity is obvious as the functional E is
continuous with respect to L4 norm from (14) and (6). When µ > 0 and λ > 0, for
any w ∈ V0,

E(w, λ, µ) ≥µ||w||24 −
1

2
Ω|| cos θ||2||w||2

≥µ||w||24 −
1

2
Ω|| cos θ||2(4π)1/4||w||4 → ∞,

(35)
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as ||w||4 → ∞; and when µ > 0 and µ > −
√

4πλ > 0,

E(w, λ, µ) ≥(µ+ λ
√

4π)||w||24 −
1

2
Ω|| cos θ||2||w||2

≥(µ+ λ
√

4π)||w||24 −
1

2
Ω|| cos θ||2(4π)1/4||w||4 → ∞,

(36)

as ||w||4 → ∞. Thus in both cases, E is coercive, and the global minimizer of E
exists by Theorem 4.1.

When µ < 0 and λ ≤ −1/4,

−E(w, λ, µ) ≥|µ|||w||24 +
1

2

∫

S2

G(w)wdx +
1

4
||w||22 −

1

2
Ω|| cos θ||2||w||2

≥|µ|||w||24 −
1

2
Ω|| cos θ||2(4π)1/4||w||4 → ∞,

(37)

as ||w||4 → ∞; and when µ < 0, λ > −1/4 and µ+
√

4πλ+

√
π

2
< 0,

−E(w, λ, µ) ≥− µ||w||24 +
1

2

∫

S2

G(w)wdx − λ||w||22 −
1

2
Ω|| cos θ||2||w||2

≥− µ||w||24 −
(

1

4
+ λ

)
||w||22 −

1

2
Ω|| cos θ||2(4π)1/4||w||4

≥
[
−µ−

√
4π

(
1

4
+ λ

)]
||w||24 −

1

2
Ω|| cos θ||2(4π)1/4||w||4 → ∞,

(38)

as ||w||4 → ∞. Thus in both cases, −E is coercive, and the global maximizer of
E exists by Theorem 4.1. The cases of µ = 0 can be similarly proved, or use the
previous results in [21] and the remark at the end of Section 2.

In more restrictive parameter regions than the ones in Theorem 4.2, we can show
that the extremal of (23) is unique, thus the global minimizer or maximizer obtained
in Theorem 4.2 is the unique extremal of (23). The uniqueness result is based on
the stability lemma Proposition 1 and the uniqueness for µ = 0 which is proved in
[21].

Theorem 4.3. Let ΨM
λ,µ and Ψm

λ,µ be as in Theorem 4.2. Then

1. If µ ≥ 0 and λ > 0, then (24) has a unique solution Ψm
λ,µ, and Ψm

λ,µ is zonal,

i.e. Ψm
λ,µ(φ, θ) ≡ Ψm

λ,µ(θ);

2. If µ ≤ 0 and λ < −1/4, then (24) has a unique solution ΨM
λ,µ, and ΨM

λ,µ is
zonal.

Proof. When µ > 0 and λ > 0, we prove that the functional E(w, λ, µ) is strictly
convex in w, i.e. E(kw1 +(1− k)w2) < kE(w1)+ (1− k)E(w2) for w1, w2 ∈ V0 and
k ∈ (0, 1). It is sufficient to show the convexity of each term of E and the strict
convexity of at least one term of E. The functional w 7→ λ

∫
S2 w

2dx = λ||w||22 and

w 7→ µ(
∫

S2 w
4dx)1/2 = µ||w||24 are both strictly convex from Hölder’s inequality and

Cauchy-Schwarz’s inequality, and µ > 0 and λ > 0; the functional w 7→
∫

S2 ψ10wdx

is linear thus convex; finally w 7→ −
∫

S2 G(w)w is convex by using the decomposition
w =

∑
l≥1 αlmψlm and Cauchy-Schwarz’s inequality:

−
∫

S2

G(w1)w2dx ≤ −1

2

∫

S2

G(w1)w1dx− 1

2

∫

S2

G(w2)w2dx.
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Hence E(w, λ, µ) is strictly convex in w, which implies the minimizer is unique. On
the other hand, from Proposition 1, any critical point of E when µ ≥ 0 and λ > 0
is a minimizer. Therefore Ψm

λ,µ obtained in Theorem 4.2 is the unique critical point

of E. The proof of uniqueness for µ < 0 and λ < −1/4 is similar and we can show
that −E is strictly convex in that case. The case of µ = 0 is proved in [21].

Finally let Vz be the subspace of V0 generated by zonal spherical harmonics,
and we restrict the definition of E(w, λ, µ) above to Vz × R × R. Then all of
the arguments in the last paragraph and the proof of Theorem 4.2 can be applied
mutatis mutandis. Again we obtain a unique minimizer in the space Vz ⊂ V0.
Thus the minimizer in Vz and the one in V0 must coincide, and Ψp

λ,µ is zonal for
p = m,M .

λ

µ

−1/4

Figure 1. Parameter regions of existence and uniqueness of min-
imizer/maximizers. Shaded regions are where the existence holds,
and darker shaded regions are where the uniqueness holds. In the
next section, we define the upper right dark region to be Q1, and
the lower left dark region to be Q2.

The parameter regions of the existence and uniqueness of extremals of E(λ, µ) are
depicted on Figure 1. The upper right shaded region is the parameter region where a
energy minimizer exists, and the darker part is where the uniqueness also holds. All
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solutions we find for the upper right shaded region are stable minimizers. Similarly
the lower left shaded region is the parameter region where an energy maximizer
exists, and the darker part is where the uniqueness also holds. The blank region
on Figure 1 (or a subset of that region) is where we expect to have saddle type
extremals, which will be discussed in a forthcoming paper. Note that when µ = 0
and λ ∈ (−1/4, 0), the existence of saddle solutions has been shown in [21] by the
first author.

Next we show that the unique minimizer(maximizer) is continuously differen-
tiable in certain function spaces with respect to parameters λ and µ, which will
be useful for further estimates and properties of solutions. We start with a lemma
about the regularity of the solutions on the spatial variable x:

Lemma 4.4. Suppose that w ∈ V0 is a solution of (24), and λµ > 0. Then
w ∈ C2,α(S2) for any α ∈ [0, 1).

Proof. Note that (24) can be written as G(w) = h where h = 2µ||w||−2
4 w3 + 2λw+

(Ω/2)|| cos θ||2ψ10. Since G is the inverse of Laplace-Beltrami operator and w ∈
L2(S2), then h ∈ H2,2(S2) →֒ C0,α(S2) for any α ∈ [0, 1) from elliptic estimates
and Sobolev embedding theorem. This implies that h1(x) = 2µ||w||−2

4 w3(x) +
2λw(x) is a function in the class of C0,α(S2). When λµ > 0, the function h2(y) =
2µ||w||−2

4 y3 +2λy is a monotone function thus invertible. Hence w(x) = h−1
2 ◦h1(x)

is a function in the class of C0,α(S2) as well. From the Hölder estimates of elliptic
equations, G(w) ∈ C2,α(S2), thus h1 ∈ C2,α(S2). Also h2 and its inverse are
smooth, hence w = h−1

2 ◦ h1 ∈ C2,α(S2).

We notice that repeating the arguments in the proof of Lemma 4.4 can produce
higher regularity of the solution, but it is not needed for our purpose. Because the
regularity of the solution, we can view the solution of (24) as the zero point of the
mapping F : R2 × (C0,α(S2)\{0}) → C0,α(S2) defined by

F (λ, µ, w) ≡ G(w) − 2λw − 2µ

||w||24
w3 − 1

2
Ω|| cos θ||2ψ10. (39)

Now we can prove the differentiability of the minimizer/maximumizer with respect
to the parameters:

Theorem 4.5. Let ΨM
λ,µ and Ψm

λ,µ be as in Theorem 4.2. Then

1. The map (λ, µ) 7→ ΨM
λ,µ is continuously differentiable from (−∞,−1/4) ×

(−∞, 0) to C0,α(S2);
2. The map (λ, µ) 7→ Ψm

λ,µ is continuously differentiable from (0,∞) × (0,∞) to

C0,α(S2).

Proof. We prove the second case and the proof for the first case is similar. We
fix (λ0, µ0) ∈ (0,∞) × (0,∞). The linearized operator DwF at w = Ψm

λ,µ is L(w)

defined in (32) for h ∈ C0,α(S2). We claim that L(w) is a Fredholm operator
C0,α(S2) → C0,α(S2) with index zero. Indeed from Lemma 4.4, G : C0,α(S2) →
C2,α(S2) is continuous, and the embedding from C2,α(S2) to C0,α(S2) is compact,
thus G : C0,α(S2) → C0,α(S2) is compact. It is well-known that Riesz-Schauder
theory holds for the operator G − 2λI, and K = G − 2λI is a Fredholm operator
with index zero. Moreover L(w) is a K-compact perturbation of K, then from the
perturbation theory of Fredholm operators (see [13] Theorem 5.26), L(w) is also a
Fredholm operator with index zero.
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The kernel of L(w) at w = Ψm
λ,µ N(L(Ψm

λ,µ)) is {0} from Proposition 1. Since

L(w) is Fredholm with index zero, then the range R(L(Ψm
λ,µ)) is of co-dimension

zero, thus (L(Ψm
λ,µ)) = C0,α(S2). From Banach open mapping theorem, L(Ψm

λ,µ) is
invertible with a bounded inverse. We can easily check that the mapping F defined
in (39) is continuously differentiable, thus we can apply implicit function theorem to
F (λ, µ, w) = 0 at (λ0, µ0,Ψ

m
λ,µ) so that the solutions of F (λ, µ, w) = 0 near it are in

form of (λ, µ, w(λ, µ)) for a C1 function w(λ, µ). But the solution of F (λ, µ, w) = 0
is unique in the parameter range λ > 0, µ > 0 according to Theorem 4.3, and this
implies the result claimed in the theorem.

Now we show that for the minimizers/maximizers, both the enstrophy and the
fourth vorticity moment approach zero as |λ|, |µ| → ∞ in the regions where a stable
minimizer or a stable maximizer exists. We need the following estimates:

Proposition 2. Let ΨM
λ,µ and Ψm

λ,µ be as in Theorem 4.2.

1. If µ > 0 and λ > 0, then

||Ψm
λ,µ||2 ≤

√
πΩ|| cos θ||2

2(µ+ λ
√

4π)
, and ||Ψm

λ,µ||24 ≤
√
πΩ2|| cos θ||22

8µ(µ+ λ
√

4π)
. (40)

2. If µ < 0 and λ < −1/4, then

||ΨM
λ,µ||2 ≤ −√

πΩ|| cos θ||2
2(µ+ λ

√
4π +

√
π/2)

, and ||ΨM
λ,µ||24 ≤ −√

πΩ2|| cos θ||22(µ+ 2
√
πλ)

8µ(µ+ λ
√

4π +
√
π/2)2

.

(41)

Proof. First we assume µ > 0 and λ > 0. To prove the L2 estimate in (40), we
multiply (24) by w and integrate it on S2, then

2λ||w||22 + 2µ||w||24 =

∫

S2

G(w)wdx − 1

2
Ω|| cos θ||2

∫

S2

ψ10wdx. (42)

From (20),

2λ||w||22 + 2µ||w||24 ≥ 1√
π

(µ+ λ
√

4π)||w||22. (43)

On the other hand,
∫

S2

G(w)wdx +
1

2
Ω|| cos θ||2

∫

S2

ψ10wdx ≤ 1

2
Ω|| cos θ||2||w||2. (44)

Hence the L2 estimate in (40) can be obtained by combining (42), (43) and (44).
The L4 estimate can be obtained from the L2 estimate and

2µ||w||24 ≤ 1

2
Ω|| cos θ||2||w||2. (45)

The proof for (41) is similar.

Next we prove the following monotonicity results regarding the angular momen-
tum, enstrophy and higher order moment of the minimizers (maximizers), which will
be crucial in analysis in the next section. A solution w of (24) is called pro-rotating
if the angular momentum Γa(w) =

∫
S2 wψ10dx is positive, and it is counter-rotating

if the angular momentum is negative.
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Proposition 3. Let ΨM
λ,µ and Ψm

λ,µ be as in Theorem 4.2.

1. Let Γa(w) =
∫

S2 wψ10dx be the angular momentum of the w ∈ V0. Then for
either µ ≥ 0 and λ ≥ 0, or µ ≤ 0 and λ ≤ −1/4,

∂Γa(Ψ)

∂p
> 0, (46)

where p = λ or µ, and Ψ = ΨM
λ,µ or Ψm

λ,µ depending on the value of (λ, µ).
Moreover the minimizer Ψm

λ,µ is always counter-rotating, and the maximizer

ΨM
λ,µ is always pro-rotating.

2. If µ ≥ 0 and λ ≥ 0, then

∂Γ2(Ψ
m
λ,µ)

∂λ
< 0, and

∂Γ4(Ψ
m
λ,µ)

∂µ
< 0. (47)

3. If µ ≤ 0 and λ ≤ −1/4, then

∂Γ2(Ψ
M
λ,µ)

∂λ
> 0, and

∂Γ4(Ψ
M
λ,µ)

∂µ
> 0. (48)

Proof. From Theorem 4.5, the extremals are differentiable with respect to the pa-
rameters. By differentiating the energy identity (27) with respect to λ and µ, we
obtain

−
∫

S2

G(Ψ)
∂Ψ

∂λ
dx+ 2λ

∫

S2

Ψ
∂Ψ

∂λ
dx +

2µ

||Ψ||24

∫

S2

Ψ3 ∂Ψ

∂λ
dx

+
1

4
Ω|| cos θ||2

∫

S2

ψ10
∂Ψ

∂λ
dx+

∫

S2

Ψ2dx = 0,

(49)

and

−
∫

S2

G(Ψ)
∂Ψ

∂µ
dx+ 2λ

∫

S2

Ψ
∂Ψ

∂µ
dx +

2µ

||Ψ||24

∫

S2

Ψ3 ∂Ψ

∂µ
dx

+
1

4
Ω|| cos θ||2

∫

S2

ψ10
∂Ψ

∂µ
dx+

(∫

S2

Ψ4dx

)1/2

= 0.

(50)

On the other hand, by multiplying (24) by ∂Ψ/∂p (p = λ or µ) and integrating on
S2, we obtain

−
∫

S2

G(Ψ)
∂Ψ

∂p
dx+ 2λ

∫

S2

Ψ
∂Ψ

∂p
dx +

2µ

||Ψ||24

∫

S2

Ψ3 ∂Ψ

∂p
dx

+
1

2
Ω|| cos θ||2

∫

S2

ψ10
∂Ψ

∂p
dx = 0.

(51)

Comparing (49) or (50) with (51), we obtain

1

4
Ω|| cos θ||2

∫

S2

ψ10
∂Ψ

∂λ
dx =

∫

S2

Ψ2dx, (52)

and

1

4
Ω|| cos θ||2

∫

S2

ψ10
∂Ψ

∂µ
dx =

(∫

S2

Ψ4dx

)1/2

. (53)

Notice that (52) and (53) implies (46). From (27), Γa(Ψm
λ,µ) < 0 when λ ≥ 0, µ ≥ 0,

and similarly Γa(Ψm
λ,µ) > 0 when λ ≤ −1/4, µ ≤ 0.
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To prove the monotonicity of enstrophy and higher order momentum, we differ-
entiate the Euler-Lagrange equation (24) with respect to λ and µ, and we obtain
the variational equations:

L(Ψ)

[
∂Ψ

∂λ

]
= 2Ψ, L(Ψ)

[
∂Ψ

∂µ

]
=

2

||Ψ||24
Ψ3, (54)

where L(W ) is defined in (32), Ψ = Ψm
λ,µ or ΨM

λ,µ, and ∂Ψ/∂p is the partial deriva-

tives with respect to p = λ or µ. We first consider the minimizer case. From (54)
and Proposition 1,

∂Γ2(Ψ
m
λ,µ)

∂λ
= 2

∫

S2

Ψm
λ,µ

∂Ψm
λ,µ

∂λ
dx =

∫

S2

L(Ψm
λ,µ)

[
∂Ψm

λ,µ

∂λ

]
∂Ψm

λ,µ

∂λ
dx < 0, (55)

and

∂(Γ4(Ψ
m
λ,µ))1/2

∂µ
=

2

||Ψm
λ,µ||24

∫

S2

(Ψm
λ,µ)3

∂Ψm
λ,µ

∂µ
dx

=

∫

S2

L(Ψm
λ,µ)

[
∂Ψm

λ,µ

∂µ

]
∂Ψm

λ,µ

∂µ
dx < 0.

(56)

The case of maximizers is similar by using (55) and (56) and Proposition 1.

To conclude this section, we investigate the asymptotic profiles of the minimizers
and maximizers when parameters λ and/or µ approach ±∞. From Proposition 3, it
is important to understand the asymptotic behavior of these solutions when λ = 0
or µ = 0. When µ = 0, the constraint on the fourth order moment is ignored, and
from [21], we have

Ψp
λ,0 = −Ω|| cos θ||2

1 + 4λ
ψ10, (57)

where p = m or M depending on λ, and λ ≥ 0 or λ < −1/4. The solutions Ψp
0,µ

cannot be explicitly solved because of the nonlinearity in the equation:

G(Ψ) − 2µ

||Ψ||24
Ψ3 =

1

2
Ω|| cos θ||2ψ10. (58)

We first assume µ > 0. From Proposition 2, ||Ψ0,µ||4 → 0 as µ → ∞. Let Nµ =
||Ψ0,µ||4 and φµ = N−1

µ Ψ0,µ. Then φµ satisfies

µ−1G(φµ) − 2φ3
µ = kµ−1N−1

µ ψ10, (59)

where k = Ω|| cos θ||2/2. From (59),

kµ−1N−1
µ = kµ−1N−1

µ

∫

S2

ψ2
10dx ≤ 2

∫

S2

|φµ|3 · |ψ10|dx+ µ−1

∫

S2

|G(φµ)ψ10|dx

≤ 2||φµ||4 · ||ψ10||4 +
1

2µ
||φµ||2 · ||ψ10||2.

(60)

Thus µ−1N−1
µ is bounded as µ→ ∞. From (59) and G = ∆−1, then φ3

µ is bounded

in H2(S2). Hence subsequences of {φ3
µ} and {µ−1N−1

µ } converge simultaneously,

and the limits (φ3
∞, h∞) satisfy

∆(φ3
∞) = kh∞ψ10. (61)
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However (61) has a solution if and only if φ3
∞ = aψ10, the eigenvalue corresponds

to ψ10. On the other hand, ||φ∞||4 = 1 thus a4/3
∫

S2 ψ
4/3
10 dx = 1. Hence

a = − 1

||ψ||4/3
, h∞ =

4

Ω||ψ10||4/3|| cos θ||2
. (62)

Therefore the asymptotic limit of Ψ0,µ as µ → ∞ is

Ψ0,µ = −µ−1
Ω||ψ10||2/3

4/3|| cos θ||2
4

ψ
1/3
10 . (63)

The case of µ < 0 can be handled similarly, and indeed (63) also holds in that
case. The formula (63) can be interpreted as following: if the enstrophy Γ2 is not
preserved but the fourth vorticity moment Γ4 is preserved, then at least for small Γ4,

the profile of the extremal is of form kψ
1/3
10 . In fact the same argument also applies

to any 2n-th vorticity moment, and the profile will be of form kψ
1/(2n−1)
10 . When n

is larger, ψ
1/(2n−1)
10 tends to 1 on the northern hemisphere, and tends to −1 on the

southern hemisphere. This suggests that as higher even order vorticity moments
are individually constrained, the extremals of the above variational problem tend to
the step function vorticity distribution. One can argue that since sharp barotropic
vorticity transitions have not been found in either numerical simulations of the
GCM or observational data of planetary atmospheres, the physical relevance of the
individual higher even order vorticity moments decreases with n. However, this
is not to say that the first few even order vorticity moments are not important
collectively. Indeed, the rigorous results in this paper are mathematical statements
of their physical significance in a natural variational formulation of the BVE.

5. Stability in constrained variational problem. According to the results in
the last section, we define parameter regions:

Q1 = {(λ, µ) : λ ≥ 0, µ ≥ 0}, Q2 = {(λ, µ) : λ ≤ −1/4, µ ≤ 0}. (64)

We have proved in Section 4, that for each give (λ, µ) ∈ Qi (i = 1, 2), there is
a unique critical point of the augmented energy functional E(w, λ, µ). We shall
show that the enstrophy and fourth order moment of this critical point is uniquely
determined.

Proposition 4. Let ΨM
λ,µ and Ψm

λ,µ be as in Theorem 4.2. Define the mapping:

G2(λ, µ) =

[∫

S2

(
Ψp

λ,µ(x)
)2

dx

]2

, G4(λ, µ) = 4π

∫

S2

(
Ψp

λ,µ(x)
)4

dx, (65)

and G(λ, µ) = (G2(λ, µ), G4(λ, µ)), where p = m or M . Then G : Qi → R2
+ is a

continuous one-to-one mapping, and G(Qi) is a closed subset of R2
+ = {(x, y) : x >

0, y > 0}, for i = 1, 2.

Proof. It is equivalent to consider the mappings

G̃2(λ, µ) =

∫

S2

(
Ψp

λ,µ(x)
)2

dx, G̃4(λ, µ) =

[∫

S2

(
Ψp

λ,µ(x)
)4

dx

]1/2

, (66)

and G̃(λ, µ) = (G̃2(λ, µ), G̃4(λ, µ)). From the calculations in the proof of Proposi-

tion 3, the Jacobian of the G̃ is

DG̃ =

(
〈L(Ψ)∂λΨ, ∂λΨ〉 〈L(Ψ)∂µΨ, ∂λΨ〉
〈L(Ψ)∂λΨ, ∂µΨ〉 〈L(Ψ)∂µΨ, ∂µΨ〉

)
, (67)
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where 〈·, ·〉 is the inner-product of L2(S2), Ψ = Ψp
λ,µ, p = m or M , and

∂µΨ =
∂Ψ

∂µ
, ∂λΨ =

∂Ψ

∂λ
. (68)

We claim that the Jacobian matrix DG̃ in (67) is invertible for any (λ, µ) ∈ Qi

(i = 1, 2), i.e. the determinant of DG̃ is nonzero. Indeed,

det(DG̃) = 〈L(Ψ)∂λΨ, ∂λΨ〉 · 〈L(Ψ)∂µΨ, ∂µΨ〉 − 〈L(Ψ)∂µΨ, ∂λΨ〉2, (69)

since L(Ψ) is self-adjoint. We have shown in Proposition 1 that L is a negative
definite operator when (λ, µ) ∈ Q1 and L is a positive definite operator when
(λ, µ) ∈ Q2. From the standard results in functional analysis, if L is a positive
definite self-adjoint operator, then

〈Lu, u〉 · 〈Lv, v〉 = 〈L1/2u, L1/2u〉 · 〈L1/2v, L1/2v〉 ≥
(
〈L1/2u, L1/2v〉

)2

= (〈Lu, v〉)2 ,
(70)

from the Cauchy-Schwarz’s inequality. The equality holds only when u = kv for
some constant k.

Applying the above arguments to L = L(Ψ) or −L(Ψ), we find det(DG̃) ≥ 0,
and the equality holds only when ∂λΨ = k∂µΨ. From (54), ∂λΨ = k∂µΨ implies
||Ψ||24Ψ = Ψ3 for almost everywhere x ∈ S2, which can only happen when Ψ is a
constant function. But

∫
S2 Ψ(x)dx = 0, thus the only possible constant solution is

Ψ(x) = 0, which is not possible when (λ, µ) ∈ Qi. Therefore det(DG̃) > 0 for any

(λ, µ) ∈ Qi, and from standard result in multi-variable calculus, G̃ is one-to-one
mapping from Qi to R2

+. The continuity is from the continuous dependence of
solutions on the parameters.

Combining with Proposition 3, we have the following corollary regarding the
angular momentum of the minimizers/maximizers:

Corollary 1. Let ΨM
λ,µ and Ψm

λ,µ be as in Theorem 4.2, and let Γ2 and Γ4 be defined

as in (18) and (19) respectively.

1. Ψp
λ,µ can be parameterized by the enstrophy Γ2 and the fourth order momentum

Γ4;
2. For the minimizer Ψm

λ,µ, we have

∂Γa(Ψm
λ,µ)

∂Γ2
> 0,

∂Γa(Ψ
m
λ,µ)

∂Γ4
> 0; (71)

and for the maximizer ΨM
λ,µ, we have

∂Γa(ΨM
λ,µ)

∂Γ2
< 0,

∂Γa(Ψ
M
λ,µ)

∂Γ4
< 0. (72)

Proof. Part (1) is from Proposition 4, since (λ, µ) → (Γ2,Γ4) is an invertible change
of variables. Part 2 can be obtained since




∂Γa(Ψ)

∂Γ2
∂Γa(Ψ)

∂Γ4


 = [DG̃]−1




∂Γa(Ψ)

λ
∂Γa(Ψ)

µ


 , (73)

then the result follows from the positive (negative) definiteness of the matrix [DG̃]−1

and (46).
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Now we determine the images of the mapping G, which will determine the range
of the enstrophy and fourth order momentum of the minimizers/maximizers found
in Theorem 4.2. From the natural restriction (6), we have

G2 ≤ G4, or
G2

G4
≤ 1. (74)

On the portion µ = 0 of the boundary of Qi (λ ≥ 0 or λ < −1/4), Ψ = Cψ10, thus
the ratio of G2 and G4 on that part is

G2

G4
=

(∫

S2

(cos θ)2dx

)2

4π

∫

S2

(cos θ)4dx

=
5

9
≈ 0.555556. (75)

On the other hand, along the boundary λ = 0, the asymptotic profile of Ψ is given
by (63), thus when µ→ ∞,

G2

G4
→

(∫

S2

(cos θ)2/3dx

)2

4π

∫

S2

(cos θ)4/3dx

=
21

25
= 0.84. (76)

From Proposition 2, G2 → 0 and G4 → 0 as λ→ ∞ or µ→ ∞, so (G2, G4) = (0, 0)
is a limit point of G(Qi) for both i = 1 and 2. Notice that G(0, 0) = (a, 9a/5),
where a = Ω4|| cos θ||42, is a vertex of the region G(Q1); and G(−1/4, 0) → (∞,∞)
along the line G4 = (9/5)G2. Summarizing the discussion, we have

Proposition 5. Let Qi = G(Qi) be the image of Qi under the mapping G, (i =
1, 2).

1. Q1 is an unbounded closed region in the wedge

{(G2, G4) : G2 > 0, G4 > 0, 0 ≤ G2 ≤ G4} , (77)

Q1 ⊃ {G4 = 9G2/5,Ω
4|| cos θ||42 ≥ G2 > 0}, and the slope of the tangent line

of ∂Q1 at (0, 0) is 0.84.
2. Q2 is an unbounded closed region in the wedge

{
(G2, G4) : G2 > 0, G4 > 0,

5

9
G4 ≤ G2 ≤ G4

}
, (78)

Q2 ⊃ {G4 = 9G2/5, G2 > 0}, and the slope of the tangent line of ∂Q2 at (0, 0)
is 0.84.

Note that even though one of the boundary curves of Q1 is G4 = 9G2/5, we do
not know whether G2 ≥ 5G4/9 for all possible minimizers. But we believe that Q1

is also in the wedge defined in (78).
Finally we return to our original extremal problem (22):

Theorem 5.1. Let Qi be as defined in Proposition 5.

1. Suppose that (M2
2 , 4πM

2
4 ) ∈ Q1. Then (22) has a global minimizer Ψm.

2. Suppose that (M2
2 , 4πM

2
4 ) ∈ Q2. Then (22) has a global maximizer ΨM .

Proof. We assume that (M2
2 , 4πM

2
4 ) ∈ Q1. Then there exists a unique (λ∗, µ∗) =

G−1(M2
2 , 4πM

2
4 ) such that λ∗ > 0, µ∗ > 0. From Theorem 4.2, E(λ∗, µ∗, w) has

a unique critical point Ψm
λ∗,µ∗

, which is the global minimizer of E(λ∗, µ∗, w) in
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G2

G4 s = 1s = 9/5 s = 25/21

G2

G4 s = 1s = 9/5 s = 25/21

Figure 2. Admissible (enstrophy, fourth vorticity moment) re-
gions for minimizers (top) and maximizers (bottom). Graphs are
for illustration only, both shaded regions are unbounded, but the
one for maximizer is larger than the one for minimizer.

V0. Then Ψm
λ∗,µ∗

satisfies
∫

S2 [Ψ
m
λ∗,µ∗

]2dx = M1 and
∫

S2 [Ψ
m
λ∗,µ∗

]4dx = M2
2 . From

Lemma 3.2, Ψm
λ∗,µ∗

is also an extremal of (22).

We claim that Ψm
λ∗,µ∗

is the global minimizer of H(w) (defined in (17)). Sup-

pose not, then there exists Φ ∈ V such that H(Φ) < H(Ψm
λ∗,µ∗

). Since Γi(Φ) =

Γi(Ψ
m
λ∗,µ∗

) for i = 2, 4, then E(λ∗, µ∗,Φ) < E(λ∗, µ∗,Ψ
m
λ∗,µ∗

), which is a contradic-
tion. The proof of the other part is similar.

6. Conclusions. In [21], the first author found that for each fixed enstrophy level
M2 > 0, there are two extremals for the energy function H(w). When M2 is small,
the two extremals are, a global energy minimizer which is counter-rotating, and a
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global energy maximizer which is pro-rotating. But when M2 is large, while the
pro-rotating state is still the global energy maximizer, the counter-rotating state
becomes an energy saddle point.

In the following, we use G2 = M2
2 and G4 = 4πM2

4 for discussion. From the
analytical and qualitative results in Sections 4 and 5, if we fix enstrophy level G2

to be small, and decrease the fourth order moment quantity G4, then

1. When G4 is large (greater than (9/5)G2), there is no energy maximizers and
we conjecture that there is no energy minimizer as well;

2. When G4 = (9/5)G2, we recover the minimizer and maximizer found in [21];
3. When G4 is in a range which is less than (9/5)G2, we still have both the

minimizer and maximizer. But notice that when there is no restriction on G4,
the minimizer/maximizer we find is on G4 = (9/5)G2. Thus when G4 moves
away from the line G4 = (9/5)G2, the energy of the the minimizer increases,
and the energy of the maximizer decreases;

4. When G4 is further smaller (but still larger than the cutoff level G4 = G2

to make V0 nonempty), again it appears that there is no energy extremals as
suggested by the tangent line of ∂Qi at (0, 0) is 0.84.

Thus our new results confirm the previous ones in [21], and also provide new
information to the original problem with infinite Casimir conserved quantities. It
is natural that when more constraints are added, then the energy of the the min-
imizer increases, and the energy of the maximizer decreases, which happens when
(G2, G4) ∈ Qi. When G4 < (9/5)G2, the nonexistence of the extremal suggests that
minimizing/maximizing sequence exists, and the energy function will approach that
of the absolute minimizer/maximizer achieved at G4 = (9/5)G2, but these mini-
mizing/maximizing sequences are non-convergent on that enstrophy-fourth moment
surface. We predict that when more higher order moment constraints are added to
the setting of the variational problem, the wedge {(G2, G4) : G2 > 0, G4 > 0, 5

9G4 ≤
G2 ≤ G4} will be eventually filled by the values of maximizers, as suggested by the
calculations of G2/G4 in Section 5. Indeed, when more higher order moment con-
straints are added, the maximizer/minimizer with asymptotic form ψ1/p for some
large odd number p is possible for certain choices of moment values. Then similar
to (76),

G2

G4
→

(∫

S2

(cos θ)2/pdx

)2

4π

∫

S2

(cos θ)4/pdx

=
p2 + 4p

p2 + 4p+ 4
→ 1, p→ ∞. (79)

Such extremals will occupy the (G2, G4) values close to the line G2 = G4. There-
fore, this implies, when all Casimir constraints are imposed, for any (G2, G4) in
{(G2, G4) : G2 > 0, G4 > 0, (5/9)G4 ≤ G2 ≤ G4}, an energy maximizer exists, and
a minimizer only exists for small G2 and G4.

Finally we give an explanation of the existence of energy maximizer but not
energy minimizer on any fixed enstrophy surface S = {w ∈ L2(S2) : ||w||22 = M2}
for large M2, from the view of functional analysis (which has been proved in [21]
by using different proof.) Let {wn} be an energy minimizing sequence on S. Then
{wn} ⊂ B = {w ∈ L2(S2) : ||w||22 ≤ M2}. Since L2(S2) is reflexive, from [15]
Chapter 10 Theorem 7 (page 104), wn has a subsequence weakly convergent to w∞,
and w∞ ∈ B from Mazur Lemma ([15] Chapter 10 Theorem 6, page 103). Since G
is a compact operator, the weak convergence implies H(wn) → H(w∞) as n→ ∞.
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Thus the maximum is achieved at w∞ ∈ B, and from previous argument we always
have

∫
S2 ψ10w

∞dx > 0. Thus the maximum of H on B must be achieved on S since
H(kw∞) is increasing in k > 0. This shows that the maximizer always exists on S
for any M2 > 0, but it is clear that this argument does not work for minimizers.
Notice that same proof applies to fixed p-th moment since Lp(S2) a is reflexive
Banach space for ∞ > p > 1.
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