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Abstract
Understanding of spatial and temporal behaviour of interacting species or
reactants in ecological or chemical systems has become a central issue, and
rigorously determining the formation of patterns in models from various
mechanisms is of particular interest to applied mathematicians. In this paper, we
study a bimolecular autocatalytic reaction–diffusion model with saturation law
and are mainly concerned with the corresponding steady-state problem subject
to the homogeneous Neumann boundary condition. In particular, we derive
some results for the existence and non-existence of non-constant stationary
solutions when the diffusion rate of a certain reactant is large or small. The
existence of non-constant stationary solutions implies the possibility of pattern
formation in this system. Our theoretical analysis shows that the diffusion rate
of this reactant and the size of the reactor play decisive roles in leading to the
formation of stationary patterns.

Mathematics Subject Classification: 35J55, 35K57, 92C15, 92C40

1. Introduction

Natural systems exhibit an amazing diversity of structures in both living and non-living
mechanisms, and thereby, in-depth understanding of spatial and temporal behaviour of
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interacting species or reactants in ecological and chemical dynamics has become a central
issue. For this purpose, numerous coupled partial differential equations have been proposed
by biologists, chemists and applied mathematicians to model problems arising from various
disciplines such as population dynamics, genetics and chemical reactions. In these situations,
one of the most interesting and natural questions for a model concerned with multi-species
interactions is whether the involved species can persist or even stabilize at a co-existence
steady state. In the case where the species are homogeneously distributed, this would be
indicated by a constant positive solution of an ordinary differential equation system. In
the spatially inhomogeneous case, the existence of non-constant time-independent positive
solutions, also called stationary patterns, is an indication of the richness of the corresponding
partial differential equation dynamics.

In the past decades, the existence of stationary patterns induced by diffusion has attracted
the extensive attention of a great number of biologists and mathematicians, and lots of
fascinating and important phenomena have been observed. The notion of pattern formation
can be dated back to the original work of Turing in 1952. In his seminal paper [27], Turing
proposed that diffusion can be regarded as the driving force of the spontaneous emergence of
spatiotemporal structures in a variety of non-equilibrium situations. More importantly, recent
study shows that stationary patterns have counterparts in natural systems which would provide
a plausible way to model the mechanisms of biological growth and chemical reaction. To verify
the influence of diffusion on this aspect, much work has been devoted to the investigation of the
existence of stationary patterns in chemical and biological dynamics theoretically as well as
numerically. Examples of such kind include the Lengyel–Epstein reaction–diffusion system
of the CIMA reaction [12, 13, 17, 29] and the Gray–Scott model of autocatalytic chemical
reaction [8, 11, 23, 26, 30].

In this work, we deal with a bimolecular autocatalytic reaction–diffusion model with
saturation law and attempt to present some qualitative analysis for the corresponding stationary
problem. First of all, let us give a brief description regarding the derivation of the system. The
reaction process of the model is given by

A
k1−→ Y,

X + Y
k2−→ 2X (autocatalysis),

X
S(k3, k4)−→ P (saturation law),

in which A, X, Y and P are chemical reactants and products, and the system is considered
open to in-and-out-flow of A and P . In addition, k1, k2, k3 and k4 represent the reaction rates
and S(k3, k4) accounts for the Langmuir–Hinshelwood law in heterogeneous catalysis and
adsorption, the Michaelis–Menten law in enzyme-controlled processes and the Holling law
in ecology (see, e.g., [2, 10]). It is assumed that all three steps of the reaction process are
irreversible and the concentrations of A and P are independent of time and spatial variables,
that is, the concentration of these two chemicals is kept uniform throughout the reactor.
Disregarding convective phenomena and considering isothermal processes only, the above
scheme can be described by the nonlinear partial differential equations


∂[X]

∂t
− D[X]�[X] = k2[X][Y ] − k3[X]

1 + k4[X]
,

∂[Y ]

∂t
− D[Y ]�[Y ] = k1[A] − k2[X][Y ],

where � = ∑n
i=1(∂

2/∂x2
i ) is the Laplace operator, showing the spatial dependence of the

reaction, [A], [X] and [Y ] are the concentrations of A, X and Y , respectively, and D[X] and
D[Y ] denote the diffusion coefficients which are assumed to be positive constants.
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To simplify the reaction–diffusion system, we introduce the following quantities:

U = k2

k3
[X], V = k3[Y ]

k1[A]
, t̄ = k3t,

λ′ = k1k2

k3
[A], k = k3k4

k2
, d1 = D[X]

k3
, d2 = D[Y ]

k3
.

As no confusion is to be expected, we drop the upper bar on t̄ , and thus the reduced system
becomes in dimensionless form

Ut − d1�U = λ′UV − U

1 + kU
in � × (0, ∞),

Vt − d2�V = 1 − UV in � × (0, ∞).

Here, the reactor � ⊂ Rn (n � 1) is a bounded domain with smooth boundary ∂�, U and V

represent the concentrations of the two reactants, respectively. The constants d1, d2, λ′ and k

are assumed to be positive.
The main interest of this work is in the stationary patterns generated by the above reaction–

diffusion system. This leads us to investigate the associated steady-state problem, which
satisfies the following coupled elliptic system:


−d1�U = λ′UV − U

1 + kU
in �,

−d2�V = 1 − UV in �,

∂νU = ∂νV = 0 on ∂�,

(1.1)

where ν is the outward unit normal vector on ∂� and ∂ν = ∂/∂ν, and we impose a homogeneous
Neumann type boundary condition, which implies that (1.1) is a closed system and has no flux
across the boundary ∂�.

As in [6], we may suppose that d1 = 1 with a scaling of the domain � and make a further
change of variable to (1.1):

u = (λ′)−1U, v = d2V, λ = d−1
2 λ′ and µ = kλ′,

then (1.1) is transformed to the problem


−�u = λuv − u

1 + µu
in �,

−�v = 1 − λuv in �,

∂νu = ∂νv = 0 on ∂�.

(1.2)

For more details about the chemical background of this model, we refer the interested reader
to [2, 6, 10, 25].

For simplicity in later discussion, we set w = λv and so (1.2) takes the form of


−�u = uw − u

1 + µu
in �,

−�w = λ(1 − uw) in �,

∂νu = ∂νw = 0 on ∂�.

(1.3)

According to the realistic meanings of u and w, only non-negative solutions to (1.3) are of
physical interest.

Since our purpose of this work is to derive some results about the existence and non-
existence of non-constant positive solutions to (1.1) (equivalently (1.2)), according to the
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previous variable changes, it suffices to deal with (1.3). In addition, we easily observe that
(1.3) has a unique constant positive solution

(u, w) = (1/(1 − µ), 1 − µ)

if and only if µ ∈ (0, 1). For the sake of simplicity, throughout this paper, we denote this
trivial positive solution by (u∗, w∗).

System (1.1) (or (1.2)) and its corresponding reaction–diffusion dynamics have been
studied by several researchers. For example, in [2, 10], in the case that the spatial dimension
is one and the homogeneous Neumann boundary condition or the non-homogeneous Dirichlet
boundary condition is imposed so that the systems possess a constant positive solution, the
authors mainly focused their attention on the effect of large diffusion coefficients and obtained
the existence of non-trivial steady-state positive solutions and the asymptotic behaviour of
the time-dependent solutions by the use of bifurcation theory and asymptotic expansion
approaches. In [25], Ruan discussed the case where the spatial dimension is not necessarily
one, and the boundary condition includes the homogeneous Dirichlet type and the Robin type
(not including the homogeneous Neumann type) so that the model has no constant steady-state
solutions. The author employed the degree theory and bifurcation theory developed by [1, 4]
and [3], respectively, to determine the existence and stability of positive steady-state solutions,
and also analysed the asymptotic behaviour of time-dependent solutions. In a more recent
work [6], when the parameter µ or λ is large, Du investigated (1.2) with the homogeneous
Dirichlet boundary condition and obtained a quite satisfactory understanding of the number
and stability of the positive solutions by establishing rather delicate a priori estimates for
positive solutions and applying the regular and singular perturbation theory.

The main results in this paper include both the existence and non-existence for non-constant
positive solutions. Our mathematical approach is based on the a priori estimates, topological
degree theory and asymptotic analysis of the solution’s behaviour. Roughly speaking, we
prove that for any fixed µ ∈ (0, 1), (1.3) has no non-constant positive solution if either λ is
small and the size of the reactor � is ‘small’, or λ is sufficiently large; on the other hand, with
additional other hypotheses, (1.3) admits at least one non-constant positive solution if λ is
small and the size of the reactor is ‘properly large’ (which is explained below). The existence
of non-constant positive solutions indicates the formation of stationary patterns.

Here the size of the reactor is indicated by the first positive Neumann eigenvalue µ1(�)

of the Laplace operator. It is well known that the eigenvalue problem

−�φ = ζφ in �, ∂νφ = 0 on ∂�,

admits a sequence of eigenvalues 0 = µ0(�) < µ1(�) < µ2(�) < · · ·. Defining a rescaling
of �: �d = {y : dy ∈ �}, then it is easy to see that µ1(�d) = d2µ1(�). In that sense one can
say that if the first positive eigenvalue of a domain is large, then the size of the domain is small
since |�d | = d−n|�|. Hence when the shape of the reactor is fixed (for example, spherical,
in many common cases of chemical reactions), then the size of the domain is completely
determined by the principal eigenvalue µ1(�). However, a recent result of Ni and Wang [18]
shows that, in contrast to wide beliefs, it is not true in general that ‘smaller domains have
larger first positive eigenvalue’ for the Neumann boundary problem in dimension n � 2. They
showed that for certain �1 ⊃ �2, but µ1(�1) > µ1(�2). Thus the ‘size of the domain’ here
should be only understood under a rescaling without changing the domain’s geometry when
the domain is at least two dimensional. In the practical chemical reactions with spherical
reactors, the size of the domain is completely determined by the radius of the reactors. The
non-existence result holds for some small domains with the size of the domain also given in
the sense of rescaling and in terms of eigenvalues µi(�), and this situation is more delicate
as the existence result holds true only for some large domains but not all of them. Taking the
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one-dimensional case as an example, our result shows that if � = (0, L), then the existence
result holds when L belongs to the union of a sequence of non-overlapping intervals which
tend to infinity. See theorem 3.4 and remark 3.2 for a more precise description on a domain
being ‘properly large’.

On the other hand, our non-existence/existence results are also given under conditions on
the parameters λ and µ. From our previous changes of variables,

λ = k1k2[A]

D[Y ]
and µ = k1k4[A].

Since µ is fixed and all reaction rates ki depend only on the nature of the chemical reactions,
λ large (or small) implies that the diffusion coefficient D[Y ] is small or large.

Finally we point out that the mathematical approaches adopted in the papers [2,6,10,25]
seem not to work in our case of homogeneous Neumann boundary condition and all spatial
dimensions. In addition, although one can easily see that the solution to the corresponding
reaction–diffusion system of (1.2) or (1.3) with continuous and non-negative initial data
globally exists, we are unable to obtain more precise qualitative results about the asymptotical
behaviour of the global solution. A deeper understanding of this aspect seems to be a very
difficult and interesting mathematical problem and is expected to receive further investigation.

The remaining content of this paper is arranged as follows. In section 2, we collect some
basic theorems for elliptic equations and then establish a priori upper and lower bounds for
non-negative solutions to (1.3). In section 3, we study the non-existence and existence for
non-constant solutions with respect to the parameter λ mainly through the topological degree
argument.

2. A priori estimates for non-negative solutions to (1.3)

In this section, we first recall some general results for elliptic equations, which will become
fundamental in obtaining a priori upper and lower bounds for non-negative solutions to (1.3).
These results can be found in [14] (also see, e.g., [20]), but are still stated here for the reader’s
convenience.

Before going further, we give the simple fact that (1.3) (equivalently (1.2)) has no non-
negative solution if µ � 1. Indeed, assume that (u, w) is a non-negative solution to (1.3), then
integrating the equations in (1.3) and adding the results, we find that∫

�

1 + (µ − 1)u

1 + µu
dx = 0, (2.1)

which leads to a contradiction if µ � 1. In virtue of this fact, from now on, unless specified
otherwise, it is always assumed that µ ∈ (0, 1).

First we cite a local result for weak super solution of linear elliptic equations from [14]
(also see, for example, [7, theorem 8.18]).

Lemma 2.1. Let � be a bounded Lipschitz domain in Rn. Let � be a non-negative constant
and suppose that z ∈ W 1,2(�) is a non-negative weak solution of the inequalities

0 � −�z + �z in �, ∂νz � 0 on ∂�.

Then, for any q ∈ [1, n/(n − 2)), there exists a positive constant C0, depending only on q, �

and �, such that

‖z‖q � C0 inf
�

z.

Next is a Harnack inequality for weak solutions, whose strong form was obtained in [15].
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Lemma 2.2. Let � be a bounded Lipschitz domain in Rn, and let c(x) ∈ Lq(�) for some
q > n/2. If z ∈ W 1,2(�) is a non-negative weak solution of the boundary value problem

�z + c(x)z = 0 in �, ∂νz = 0 on ∂�,

then there is a constant C1, determined only by ‖c‖q, q and � such that

sup
�

z � C1 inf
�

z.

Finally, we cite a maximum principle for weak solutions due to [14], which is an analogue
of proposition 2.2 in [16].

Lemma 2.3. Let � be a bounded Lipschitz domain in Rn, and let g ∈ C(�̄×R). If z ∈ W 1,2(�)

is a weak solution of the inequalities

�z + g(x, z) � 0 in �, ∂νz � 0 on ∂�,

and if there is a constant K such that g(x, z) < 0 for z > K , then,

z � K a.e. in �.

For convenience we also state a counterpart of lemma 2.3 as follows.

Lemma 2.4. Let � be a bounded Lipschitz domain in Rn, and let g ∈ C(�̄ × R).
If z ∈ W 1,2(�) is a weak solution of the inequalities

�z + g(x, z) � 0 in �, ∂νz � 0 on ∂�,

and if there is a constant K such that g(x, z) > 0 for z < K , then,

z � K a.e. in �.

Based on the above preparation, we are ready to derive a priori upper and lower bounds
for all non-negative solutions to (1.3). More precisely, we have

Theorem 2.1. For any given µ∗ ∈ (0, 1), there exist two positive constants C and C with
C < C depending only on µ∗ and �, such that any non-negative W 1,2(�) solution (u, w) to
(1.3) satisfies

C � u(x), w(x) � C, f or any x ∈ �̄,

provided that 0 < µ � µ∗.

Proof. Our argument is similar to that in the proof of theorem 3.1 in [14]. First of all, using
(2.1), we note that

|�| =
∫

�

u

1 + µu
dx �

∫
�

u dx. (2.2)

Moreover, it is easy to see that 0 � −�u + u in �, and hence lemmas 2.1 and (2.2) yield

|�| �
∫

�

u dx � C0 inf
�

u, (2.3)

where C0 takes the value corresponding to q = 1 in lemma 2.1 and so depends only on �. It
follows from (2.3) that u � C in �.

Since

�w + λ(1 − Cw) � �w + λ(1 − uw) = 0,

we see that w � 1/C due to lemma 2.3.
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As a consequence, together with lemma 2.2, the equation for u implies that there is a
positive constant C1 depending only on �, such that

sup
�

u � C1 inf
�

u. (2.4)

To estimate the upper bound of u, we adopt a contradiction argument. Suppose that there exists
a non-negative solution sequence {(ui, wi)}∞i=1 to (1.3) such that ‖ui‖∞ → ∞ as i → ∞.
Then, (2.4) implies ui → ∞ uniformly on �̄. Thanks to (2.2) and µ � µ∗ < 1, we also have

|�|
µ∗ ←

∫
�

ui

1 + µ∗ui

dx �
∫

�

ui

1 + µui

dx = |�|.

An obvious contradiction. Hence, we can find the desired C > 0 such that u � C.
Therefore, similarly to the above analysis, lemma 2.4 deduces 1/C � w in �. The proof is
complete. �

3. Existence and non-existence of non-constant positive solutions to (1.3)

This section is devoted to the non-existence and existence of non-constant positive solutions
to (1.3). The main approach is the Leray–Schauder degree theory for compact operators in
Banach spaces. Note that we have assumed that � is smooth. Thus, from theorem 2.1, the
standard regularity theory for elliptic equations and embedding theorems (see, e.g., [7]), we
can conclude that any weak W 1,2(�) solution (u, w) to (1.3) must be a classical one, that is,
(u, w) satisfies (1.3) in [C2(�) ∩ C1(�̄)]2.

Recall that

0 = µ0 < µ1 < µ2 < · · ·
are the eigenvalues of the Laplace operator −� on � with homogeneous Neumann boundary
condition, and denote E(µi) to be the eigenspace corresponding to µi in W 1,2(�). Let

X = [W 1,2(�)]2,

and {φij : j = 1, . . . , dim E(µi)} be an orthonormal basis of E(µi), and
Xij = {cφij : c ∈ R2}. Then,

X =
∞⊕
i=0

Xi and Xi =
dim E(µi)⊕

j=1

Xij .

3.1. Non-existence of non-constant positive solutions

In this subsection, we establish some results of non-existence of non-constant positive solutions
in the following two cases: either both λ and the size of the reactor � are small or λ is large.
From the remarks in the introduction, the size of � is characterized by the first positive
eigenvalue µ1.

First of all, using the integration estimates, we prove the following result:

Theorem 3.1. Let µ1 > 1, then for any given µ∗ ∈ (0, 1), there exists a small ε0 > 0
depending only on µ∗ and �, such that (1.3) has no non-constant positive solution provided
that µ � µ∗ and λ � ε0.
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Proof. Let (u, w) be a positive solution of (1.3), and for any function g, denote
ĝ = |�|−1

∫
�

g dx. Then∫
�

(u − û) dx =
∫

�

(w − ŵ) dx = 0.

Multiplying the first equation in (1.3) by (u − û), we get∫
�

|∇(u − û)|2 dx =
∫

�

(
uw − u

1 + µu

)
(u − û) dx

=
∫

�

(
uw − uŵ + uŵ − ûŵ +

û

1 + µû
− u

1 + µu

)
(u − û) dx

=
∫

�

{
u(u − û)(w − ŵ) + ŵ(u − û)2 − 1

(1 + µû)(1 + µu)
(u − û)2

}
dx

�
∫

�

{u|u − û||w − ŵ| + ŵ(u − û)2} dx. (3.1)

In a similar manner, combined with theorem 2.1, we multiply the second equation in (1.3) by
(w − ŵ) to have∫

�

|∇(w − ŵ)|2 dx = λ

∫
�

(1 − uw)(w − ŵ) dx

= λ

∫
�

(ûŵ − uw)(w − ŵ) dx

= −λ

∫
�

û(w − ŵ)2 dx − λ

∫
�

w(u − û)(w − ŵ) dx

� −Cλ

∫
�

(w − ŵ)2 dx + Cλ

∫
�

|u − û||w − ŵ| dx, (3.2)

where C and C are given in theorem 2.1 and both of them are independent of λ.
Thus, with (3.2) and the well-known Poincaré inequality:

µ1

∫
�

(g − ĝ)2 dx �
∫

�

|∇(g − ĝ)|2 dx,

we find that

(µ1 + Cλ)

∫
�

(w − ŵ)2 dx � Cλ

∫
�

|u − û||w − ŵ| dx

� Cλ

( ∫
�

(u − û)2 dx

)1/2( ∫
�

(w − ŵ)2 dx

)1/2

.

If w ≡ ŵ which is a positive constant, then it follows from the second equation in (1.3)
that u must also be a positive constant. And so, (u, w) = (u∗, w∗).

We now assume that w ≡ ŵ. Thus, the above inequality directly leads to

(µ1 + Cλ)2
∫

�

(w − ŵ)2 dx � (C)2λ2
∫

�

(u − û)2 dx. (3.3)

In this case, we first need to claim: for arbitrary small δ > 0, there exists a small ε0 > 0
depending only on δ, µ∗ and � such that if λ < ε0, then

ŵ < 1 + δ. (3.4)

To emphasize the dependence of solutions on λ, we use (uλ, wλ) instead of (u, w) here.
Let {λi} be a sequence such that λi → 0+ as i → ∞, and let (uλi

, wλi
) be a sequence



Stationary patterns of a reaction–diffusion model 1479

of solutions of (1.3). By applying the standard regularity theory for elliptic equations and
imbedding theorems to the second equation in (1.3), together with theorem 2.1, we see that
there is a subsequence of {λi} (still denoted by {λi}) such that wλi

→ w̃ in C2(�̄) as i → ∞,
where w̃ is a positive constant, and hence ŵλi

→ w̃. Furthermore, by theorem 2.1 again and
the first equation in (1.3), we can find a further subsequence of {uλi

}, still denoted by itself,
such that uλi

→ ũ in C2(�̄) as i → ∞, and ũ is a positive solution of

− �z = z[(w̃ − 1) + µw̃z]

1 + µz
in �, ∂νz = 0 on ∂�. (3.5)

Then, we integrate (3.5) over � to obtain∫
�

z[(w̃ − 1) + µw̃z]

1 + µz
dx = 0,

which obviously implies w̃ < 1 and thus ŵλi
< 1 + δ for all large i. Therefore the claim (3.4)

is true for all small λ.
By virtue of theorem 2.1, (3.1), (3.3), (3.4) and the Poincaré inequality again, for any

given small δ > 0 we have

µ1

∫
�

(u − û)2 dx �
[

(C)2λ

µ1 + Cλ
+ 1 + δ

] ∫
�

(u − û)2 dx, (3.6)

for λ � ε0. Thanks to (3.6), by taking δ = (µ1 − 1)/2 and ε0 to be smaller if necessary, it is
clear that u ≡ û when 1 < µ1 and λ � ε0 are satisfied, which in turn indicates w ≡ ŵ by (3.3).

To sum up, the above analysis concludes that in any case, (u, w) = (û, ŵ) if 1 < µ1 and
λ � ε0 where ε0 > 0 is chosen as above. Hence, it is necessary that (u, w) = (u∗, w∗) and
theorem 3.1 follows. �

In the interpretation of domain size by the first positive eigenvalue in the introduction, for
any domain �, we can always choose d large so that µ1(�d) > 1 so our theorem 3.2 holds for
such small domain �d .

In order to prove the non-existence of non-constant positive solutions in the case of large λ,
we need to make some necessary preparations. To begin with, we shall analyse the asymptotical
stability of the unique positive constant solution (u∗, w∗) for the corresponding reaction–
diffusion dynamics of (1.3):


ut − �u = uw − u

1 + µu
in � × (0, ∞),

wt − �w = λ(1 − uw) in � × (0, ∞),

∂νu = ∂νw = 0 on ∂� × (0, ∞),

(3.7)

with the admissible non-negative and continuous initial data u(x, 0) and w(x, 0) on �̄.
The linearized problem of (3.7) at (u∗, w∗) satisfies


ut − �u = µ(1 − µ)u + (1 − µ)−1w in � × (0, ∞),

wt − �w = −λ(1 − µ)u − λ(1 − µ)−1w in � × (0, ∞),

∂νu = ∂νw = 0 on ∂� × (0, ∞).

Lemma 3.1. Assume that λ > µ(1 − µ)2, then the constant solution (u∗, w∗) is uniformly
asymptotically stable as the steady state of the reaction–diffusion system (3.7).

Proof. Denote

L =
(

� + µ(1 − µ) (1 − µ)−1

−λ(1 − µ) � − λ(1 − µ)−1

)
.
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For each i, i = 0, 1, 2, . . . , Xi is invariant under the operator L, and ξ is an eigenvalue of
L on Xi if and only if ξ is an eigenvalue of the matrix

Ai =
(

−µi + µ(1 − µ) (1 − µ)−1

−λ(1 − µ) −µi − λ(1 − µ)−1

)
.

The direct calculation shows

det Ai = µ2
i + [λ(1 − µ)−1 − µ(1 − µ)]µi + λ(1 − µ)

and

Tr Ai = −2µi − λ(1 − µ)−1 + µ(1 − µ),

where det Ai and Tr Ai are, respectively, the determinant and trace of Ai . Under our assumption,
it is easy to check that det Ai > 0 and Tr Ai < 0 for any i � 0. Therefore, the two eigenvalues
ξ+
i and ξ−

i have negative real parts. Moreover, for any i � 0, the following hold:

(i) If (Tr Ai )
2 − 4det Ai � 0, then

Re ξ±
i = 1

2 Tr Ai � 1
2 [−λ(1 − µ)−1 + µ(1 − µ)] < 0;

(ii) If (Tr Ai )
2 − 4det Ai > 0, then

Re ξ−
i = 1

2 {Tr Ai −
√

(Tr Ai )2 − 4det Ai } � 1
2 Tr Ai � 1

2 [−λ(1 − µ)−1 + µ(1 − µ)] < 0,

Re ξ+
i = 1

2
{Tr Ai +

√
(Tr Ai )2 − 4det Ai } = 2det Ai

Tr Ai −
√

(Tr Ai )2 − 4det Ai

� det Ai

Tr Ai

< −δ,

for some positive δ which is independent of i.
This shows that there exists a positive constant δ, which is independent of i, such that

Re ξ±
i < −δ, ∀i � 0.

Consequently, the spectrum of L lies in {ξ : Re ξ < −δ} (since the spectrum of L only consists
of eigenvalues). By theorem 5.1.1 of [9, p 98] the conclusion follows and thus the proof is
complete. �

In what follows, we present two other simple but useful conclusions, whose proofs are
given in [24] and [22], respectively.

Lemma 3.2. Assume that λ > 0 is a constant and b(x) is a continuous positive function on
�̄. Then, the following problem:

−�z = λ(1 − b−1(x)z) in �, ∂νz = 0 on ∂�,

has a unique positive solution zλ, and zλ → b(x) uniformly on �̄ as λ → ∞.

Lemma 3.3. Assume that f (z) is a continuous real function in [0, ∞) and for some positive
constant a, f (z) > 0 in (0, a) and f (z) < 0 in (a, ∞). Then the following problem:

−�z = zf (z) in �, ∂νz = 0 on ∂�

has a unique positive classical solution z(x) = a.

Using lemmas 3.2 and 3.3, together with theorem 2.1 and lemma 3.2 of [22], we can
provide the asymptotic behaviour of positive solutions to (1.3) as λ → ∞:

Lemma 3.4. Assume that (uλ, wλ) is a positive solution to (1.3), then (uλ, wλ) → (u∗, w∗)
uniformly on �̄ as λ → ∞.



Stationary patterns of a reaction–diffusion model 1481

Proof. Assume that (uλ, wλ) is a positive solution of (1.3) and let λ → ∞. With the help of
theorem 2.1, by the first equation of (1.3), the standard theory follows that there is a sequence
{uλi

}∞i=1 of uλ satisfying uλi
→ u in C1(�̄) with u > 0 on �̄ as i → ∞.

For arbitrary small ε > 0, consider the following two auxiliary problems:

− �w = λi(1 − (u − ε)w) in �, ∂νw = 0 on ∂� (3.8)

and

− �w = λi(1 − (u + ε)w) in �, ∂νw = 0 on ∂�. (3.9)

As wλi
solves

−�wλi
= λi(1 − uλi

wλi
) in �, ∂νwλi

= 0 on ∂�,

simple comparison arguments yield that for any large i,

wλi
< wλi

< wλi
,

where wλi
and wλi

are, respectively, the unique positive solution to (3.8) and (3.9).
On the other hand, we can conclude from lemma 3.2 that

wλi
→ 1/(u + ε) and wλi

→ 1/(u − ε), uniformly on �̄.

Therefore, in view of the arbitrariness of ε, we have wλi
→ 1/u uniformly on �̄. By the

equation for uλi
again, thanks to lemma 3.3, it is easily seen that

uλi
→ 1/(1 − µ) and wλi

→ 1 − µ uniformly on �̄, as i → ∞.

Clearly, our analysis also verifies that (uλ, wλ) → (u∗, w∗) uniformly on �̄ as λ → ∞. The
proof is thus ended. �

We observe that all of the conclusions obtained before hold for µ = 0. Therefore, from
now on, our discussion includes the case of µ = 0. To establish the non-existence result
for non-constant positive solutions to (1.3) for any fixed µ ∈ [0, 1) and large λ, our strategy
consists of two steps: we first prove this claim holds in the case of µ = 0 and large λ via
integration estimates; based on this result we then use the topological degree theory to finish
the whole proof.

As the first step, we now prove that system (1.3) admits no non-constant positive solution
when µ = 0 and λ is large enough. That is, the following holds:

Theorem 3.2. Let µ = 0, then there exists a large �0 > 0 depending only on �, such that
(1.3) has no non-constant positive solution provided that λ � �0.

Proof. To the end, we shall adopt an indirect argument. Suppose that there exists a
sequence {λi} with λi → ∞ as i → ∞ and the corresponding non-constant positive solution
(ui, wi) to (1.3) for λ = λi , such that our claim is false. Then, lemma 3.4 shows that
(ui, wi) → (u∗, w∗) = (1, 1) uniformly on �̄ as i → ∞.

Now, we can define

hi = ui − 1, ki = wi − 1,

and

h̃i = hi

‖hi‖∞ + ‖ki‖∞
, k̃i = ki

‖hi‖∞ + ‖ki‖∞
.

Thus, it is not hard to find that (h̃i , k̃i) satisfies

− �h̃i = uik̃i in �, ∂νh̃i = 0 on ∂� (3.10)
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and

− �k̃i = −λih̃i − λiui k̃i in �, ∂νk̃i = 0 on ∂�. (3.11)

Noting that the right side of (3.10) isL∞ bounded by theorem 2.1 and‖h̃i‖∞, ‖k̃i‖∞ � 1, it
follows from the Lp estimates and the Sobolev embedding theorems that there is a subsequence
of h̃i , labelled by itself again, such that h̃i → h̃ in C1(�̄). In addition, ‖k̃i‖∞ � 1 guarantees
there exists a subsequence of k̃i , still denoted by itself, such that k̃i → k̃ weakly in L2(�) with
k̃ ∈ L∞(�).

Since (ui, vi) → (1, 1) uniformly on �̄ as i → ∞, passing to the limit in (3.10), we have

− �h̃ = k̃ in �, ∂νh̃ = 0 on ∂�, (3.12)

Then, multiplying the above equation by h̃ and integrating, we yield from the above
equation that

0 �
∫

�

|∇h̃|2 dx =
∫

�

h̃k̃ dx.

Combined with (3.11), this easily follows that∫
�

k̃2
i dx → 0 and

∫
�

h̃k̃ dx = 0. (3.13)

The first limit of (3.13) implies k̃i → 0 in L2(�) and so k̃ = 0 a.e. in �. Moreover, by
choosing a further subsequence if necessary, we have k̃i → 0 a.e. in �, which, in turn, deduces
‖h̃‖∞ = 1. Thanks to (3.12), it is necessary that

h̃ = 1 or h̃ = −1.

On the other hand, multiplying (3.10) and (3.11) by k̃i and h̃i , respectively, integrating
over �, and then subtracting the results, we find

− (λi)
−1

∫
�

uik̃
2
i dx =

∫
�

h̃2
i dx +

∫
�

uih̃i k̃i dx. (3.14)

As i → ∞, by (3.13) again, the left side of (3.14) converges to zero whereas the right side
converges to |�|. Hence, we reach a contradiction, and this finishes our proof. �

We next present and prove that (1.3) has no non-constant positive solution for any
µ ∈ (0, 1) if λ is sufficiently large.

Theorem 3.3. For any fixed µ∗ ∈ (0, 1), there exists a large � > 0, which depends only on
µ∗ and �, such that (1.3) has no non-constant positive solution provided that µ � µ∗ and
� � λ.

Proof. To achieve this aim, we need to reformulate system (1.3) in the framework that the
Leray–Schauder degree theory can be easily applied.

Let us denote

� = {(u, w) ∈ C(�̄) × C(�̄) : C < u, w < C},
where C and C are given by theorem 2.1. Thus, for such C and C, (1.3) has no positive solution
(u, w) ∈ ∂�. We also define the operator

B(λ, µ, u, w) = (−� + I)−1

(
u + uw − u

1 + µu
, w + λ(1 − uw)

)
,

where (−� + I)−1 stands for the inverse operator of −� + I subject to Neumann boundary
condition over ∂�.
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It is well known that B is a compact operator from [λ, λ̄] × [µ, µ̄] × � to C(�̄) × C(�̄),
where λ, λ̄ ∈ (0, ∞) and µ, µ̄ ∈ [0, µ∗]. Furthermore, (u, w) ∈ � solves (1.2) if and only if
(u, w) satisfies

(u, w) = B(λ, µ, u, w).

In addition,

(u, w) = B(λ, µ, u, w), ∀λ ∈ (0, ∞), µ ∈ [0, µ∗] and (u, w) ∈ ∂�.

As a result, the topological degree deg (I − B(λ, µ, ·), �, 0) is well defined, which is also
independent of λ ∈ (0, ∞) and µ ∈ [0, µ∗].

We recall that theorem 3.2 shows that (�0, 0, 1, 1) is the unique fixed point of B(�0, 0, ·)
in �, and thus

deg (I − B(�0, 0, ·), �, 0) = index (I − B(�0, 0, ·), (1, 1)).

In addition, lemma 3.1 claims that (1, 1) is non-degenerate (namely, zero is not the eigenvalue of
the linearized problem of (3.7) at (1, 1)) and is also linearly stable as the unique constant steady-
state positive solution of (3.7) with µ = 0. Hence, by the well-known Leray–Schauder degree
formula (see, e.g., theorem 2.8.1 in [19] or proposition 3.1 in the forthcoming subsection),
we get

deg (I − B(�0, 0, ·), �, 0) = index (I − B(�0, 0, ·), (1, 1)) = 1.

Therefore, it follows that

deg (I − B(λ, µ, ·), �, 0) = deg (I − B(�0, 0, ·), �, 0) = 1,

for any λ ∈ (0, ∞) and µ ∈ [0, µ∗].
According to the proof of lemma 3.1, combined with lemma 3.4, it is easy to see that

there exists a large � > 0 such that every possible positive solution (uλ, wλ) of (1.3) is
non-degenerate and linearly stable provided that λ � �. Hence, the fixed point index of
B(λ, µ, uλ, wλ) is well defined and is equal to 1 if λ � �. Furthermore, for such fixed λ and
µ, by the compactness of B(λ, µ, ·), we can show that there are at most finitely many such
fixed points in �, denoted by {(ui, wi)}1. Then, from the property of the Leray–Schauder
degree, it follows that

1 = deg (I − B(λ, µ, ·), �, 0) = �
1 index (I − B(λ, µ, ·), (ui, wi)) = .

This indicates the uniqueness of positive solutions of (1.3) for λ � � and it must be (u∗, w∗).
Our proof is complete. �

Remark 3.1. It should be noted that one can apply the analysis in this subsection to the
following well-known Sel’kov model:


−θ�u = λ(1 − uvp) in �,

−�v = λ(uvp − v) in �,

∂νu = ∂νv = 0 on ∂�,

(3.15)

where θ, λ and p are positive constants. Recently, many works have been devoted to the
mathematical analysis of this model; please refer to [5, 14, 20, 28] for the details of the
discussion. Note that, when λ = p = 1, (3.15) becomes problem (1.3) with µ = 0. By
theorem 2.1 in [28], the unique constant solution (1, 1) is uniformly asymptotically stable if
p < 2 and λ(p − 1) � µ1. In addition, as stated in remark 4.2 of [20], for any fixed p and
λ, every positive solution to (3.15) converges to (1, 1) uniformly on �̄ as θ → 0. As a result,
using these results and the a priori estimates in [14], we can prove that (3.15) has no constant
positive solution if p < 2, λ(p − 1) � µ1 and θ is small enough. This partially solves the
open problem left in remark 4.2 of [20].
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3.2. Existence of non-constant positive solutions

In view of the non-existence result for small parameter λ and small reactor � or arbitrary
large λ in the previous subsection, it is particularly interesting to know whether (1.3) possesses
non-homogeneous positive solutions when the parameter λ takes on small values and the size
of the reactor is properly chosen. In this subsection, we shall give an affirmative answer to this
question. The result of existence implies that there exists a certain range of parameters such
that the two reactants in (1.3) are spatially non-homogeneously distributed. Together with
theorem 3.3, our conclusion also demonstrates that the parameter λ and the size of the reactor
really play critical roles in leading to the generation of non-uniform steady states (namely,
stationary patterns) in (1.3) or (1.2).

For our later purpose, let us define

Y = {(u, w) ∈ [C2(�̄)]2 : ∂νu = ∂νv = 0 on ∂�},
let � be as in section 3.1, and also denote

u = (u, w), u∗ = (u∗, w∗), Y+ = {u ∈ Y : u, w > 0 on �̄}
and

G(u) =
(

uw − u(1 + µu)−1

λ(1 − uw)

)
, A =

(
µ(1 − µ) (1 − µ)−1

−λ(1 − µ) −λ(1 − µ)−1

)
.

Thus, DuG(u∗) = A, and (1.3) can be written as

− �u = G(u) in �, ∂νu = 0 on ∂�. (3.16)

Then u is a positive solution of (3.16) if and only if

F(u) ≡ u − (−� + I)−1{G(u) + u} = 0 in Y+.

Note that F(·) is a compact perturbation of the identity operator, and so the Leray–Schauder
degree deg(F(·), �, 0) is well defined because of F(u) = 0 on ∂�. Furthermore, we
observe that

DuF(u∗) = I − (−� + I)−1(A + I),

and recall that if DuF(u∗) is invertible, the index of F at u∗ is defined as

index (F(·), u∗) = (−1)γ ,

where γ is the number of negative eigenvalues of DuF(u∗) [19, theorem 2.8.1].
Let X and Xi be defined as before. Since the eigenvalues of DuF(u∗) and their algebraic

multiplicities are the same regardless of whether it is considered as an operator in X or in Y, it
is convenient to use the decomposition made in section 3.1 in our discussion of the eigenvalues
of DuF(u∗). A straightforward calculation shows that, for each integer i � 0, Xi is invariant
under DuF(u∗), and ξ is an eigenvalue of DuF(u∗) on Xi if and only if it is an eigenvalue of
the matrix

1

1 + µi

(µiI − A).

Thus, DuF(u∗) is invertible if and only if, for all i � 0, the matrix µiI − A is non-singular.
Denote

H(σ ) = det(σ I − A),

we also have that, if H(µi) = 0, the number of negative eigenvalues of DuF(u∗) on Xi is odd
if and only if H(µi) < 0.

Let m(µi) be the algebraic multiplicity of µi . By the same arguments as in [17, 21, 28],
we can assert the following:
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Proposition 3.1. Suppose that, for all i � 0, the matrix µi I − A is non-singular. Then

index(F(·), u∗) = (−1)γ , where γ =
∑

i�0, H(µi )<0

m(µi).

Now, we analyse the sign of H(σ ). Simple computations give that if

ϒ ≡ λ2(1 − µ)−2 + µ2(1 − µ)2 − 2λ(2 − µ) > 0,

the equation H(σ ) = 0 has exactly two different positive roots µ∗(λ) and µ∗(λ), which are,
respectively, expressed as

µ∗(λ) = 1
2 {µ(1 − µ) − λ(1 − µ)−1 −

√
ϒ},

µ∗(λ) = 1
2 {µ(1 − µ) − λ(1 − µ)−1 +

√
ϒ}.

In fact, we observe that µ∗(λ) and µ∗(λ) are the two eigenvalues of A. Moreover, H(σ ) < 0
if and only if σ ∈ (µ∗(λ), µ∗(λ)).

We can state the main result of this subsection as follows.

Theorem 3.4. Assume that ϒ > 0 and let µ∗(λ) < µ∗(λ) be the two positive eigenvalues
of A. If

µ∗(λ) ∈ (µi, µi+1) and µ∗(λ) ∈ (µj , µj+1) for some 0 � i < j,

and
∑j

k=i+1 m(µk) is odd, then (1.3) has at least one non-constant positive solution.

Proof. Let � be given in theorem 3.3 such that (1.3) has no non-constant positive solution and
u∗ is linearly stable. For 0 � t � 1, we define

G(u; t) =


 (−� + I)−1

(
u + uw − u

1 + µu

)
(−� + I)−1(w + ((1 − t)� + tλ)(1 − uw))


 .

It is clear that finding the positive solution of (1.3) becomes equivalent to solving the equation

u − G(u; 1) = 0 in Y+.

As the argument in the proof of theorem 3.3, by the homotopy invariance of degree,
we have

deg(I − G(u; 0), �, 0) = deg(I − G(u; 1), �, 0). (3.17)

Moreover, due to the choice of �, we also get

deg(I − G(u; 0), �, 0) = index(I − G(u; 0), u∗) = 1. (3.18)

In contrast, we assume that (1.3) has no non-constant positive solution. It follows from
proposition 3.1 and the previous arguments that

deg(I − G(u; 1), �, 0) = index(I − G(u; 1), u∗) = (−1)
∑j

k=i+1 m(µk) = −1. (3.19)

Obviously, (3.17)–(3.19) arrive at a contradiction, and this implies that our theorem 3.4 holds
and the proof is complete. �
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Remark 3.2. In theorem 3.4, if we let λ → 0+, then µ∗(λ) → 0 and µ∗(λ) → µ(1 − µ).
Consequently, theorem 3.4 shows that (1.3) admits at least one non-constant positive solution
if λ is small enough and µ(1 − µ) ∈ (µi, µi+1) for some i � 1 and

∑i
k=1 m(µk) is odd.

In particular, if the number of spatial dimension is one (that is, � is a finite interval (0, L)),
the multiplicity of each µi (i � 0) is one. Therefore, in this case, we can easily capture
the non-constant positive solution to (1.3) only if λ is sufficiently small and the length L

of the domain � belongs to a sequence of non-overlapping intervals which tend to infinity.
For higher spatial dimensions, one can use parameter d of �d defined in the introduction to
replace L in the discussion above, and again for most spatial domains �, the condition that
µ(1 − µ) ∈ (µi, µi+1) for some i � 1 and

∑i
k=1 m(µk) is odd holds for �d when the value

d−1 belongs to a sequence of non-overlapping intervals which tend to infinity.

Remark 3.3. We also mention that the range of the parameter λ guaranteeing the existence
or non-existence of non-trivial positive solutions (namely, non-constant positive solutions) to
(1.3) with the homogeneous Neumann boundary condition is sharply different from that where
the homogeneous Dirichlet or Robin boundary condition is imposed on (1.3). In the latter
case, [6,25] proved that (1.3) has no (non-trivial) positive solution if λ is small while it admits
positive solutions only if λ is larger than a critical value.

Finally, similarly to the analysis in [20], we can also establish the asymptotic behaviour
of non-constant positive solutions to (1.3) as λ → 0+. To be more precise, we can claim

Theorem 3.5. Assume that µ(1 − µ) = µj for any j � 1. Then, for any sequence of
non-constant positive solution (uλ, wλ) to (1.3), there is a subsequence (uλi

, wλi
) of (uλ, wλ)

satisfying that (uλi
, wλi

) converges to (ũ, w̃) on C2(�̄) × C2(�̄) as λi → 0+, where ũ is a
non-constant positive solution of

− �ũ = |�|
( ∫

�

ũ dx

)−1

ũ − ũ

1 + µũ
in �, ∂νũ = 0 on ∂�, (3.20)

and w̃ is uniquely determined by

w̃ = |�|
( ∫

�

ũ dx

)−1

.

Therefore, if µ(1−µ) ∈ (µj , µj+1) for some fixed j � 1 and
∑j

k=1 m(µk) is odd, the non-local
elliptic problem (3.20) admits at least one non-constant positive solution.

Proof. For the reader’s convenience, we give the details of the proof here. Obviously, it
suffices to verify the first part of theorem 3.5 since remark 3.2 and this conclude the second
part of theorem 3.5. To this end, we shall proceed with a contradiction argument.

Suppose that the conclusion of the first part of theorem 3.5 is false. Then, using
theorem 2.1, the standard Lp and Schauder’s estimates and the embedding theorems, there
exists a sequence {λi} with λi → 0+ as i → ∞ and the corresponding non-constant positive
solution (ui, wi) to (1.3) for λ = λi , such that there is a subsequence of (ui, wi), still denoted
by itself, satisfying (ui, wi) → (u∗, w∗) on C2(�̄) × C2(�̄) as i → ∞.

As in the proof of theorem 3.3, we let

hi = ui − u∗, ki = wi − w∗

and

h̃i = hi

‖hi‖∞ + ‖ki‖∞
, k̃i = ki

‖hi‖∞ + ‖ki‖∞
.
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As a result, h̃i and k̃i satisfy


−�h̃i = uik̃i + w∗h̃i − 1

(1 + µu∗)(1 + µu)
h̃i in �,

−�k̃i = −λiui k̃i − λiw
∗h̃i in �,

∂νh̃i = ∂νk̃i = 0 on ∂�.

(3.21)

Applying the standard theory, we can assume that (h̃i , k̃i) → (h̃, k̃) in C1(�̄) × C1(�̄) as
i → ∞. By passing to the limit in (3.21), we find that

−�h̃ = µ(1 − µ)h̃ + k̃/(1 − µ), −�k̃ = 0 in �, ∂νh̃ = ∂νk̃ = 0 on ∂�.

Hence, k̃ is a constant and so our hypothesis µ(1 − µ) = µj for any j � 1 deduces

h̃ = −k̃/µ(1 − µ)2. (3.22)

Furthermore, ‖h̃i‖∞ + ‖k̃i‖∞ = 1 for each i � 1 gives

(1 + |1/µ(1 − µ)2|)|k̃| = 1. (3.23)

On the other hand, multiplying the second equation in (3.21) by wi and integrating over �,
and then letting i → ∞, we obtain

(1 − µ)2h̃ + k̃ = 0,

which, together with (3.22), implies h̃ = k̃ = 0, and thus this contradicts (3.23), and we
complete the proof. �

Remark 3.4. If (3.20) possesses a unique non-constant positive solution, then the result in
the first part of theorem 3.5 holds for the whole solution sequence (uλ, wλ). Unfortunately,
we cannot determine the multiplicity of non-constant positive solutions to (3.20).
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