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Abstract A reaction-diffusion model with logistic growth and constant effort har-
vesting is considered. By minimizing an intrinsic biological energy function, we ob-
tain an optimal spatial harvesting strategy which will benefit the population the most.
The symmetry properties of the optimal strategy are also discussed, and related sym-
metry preserving and symmetry breaking phenomena are shown with several typical
examples of habitats.
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1 Introduction

Reaction-diffusion equations have been used extensively in modeling the spatiotem-
poral behavior of a species of organism [6, 18, 19, 22, 26]. The most widely used
model is to assume a logistic growth rate, and the density function u(x, t) of the
species satisfies

∂u

∂t
= D�u + au − bu2, x ∈ �, t > 0, (1.1)
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where a, b,D > 0 [5, 23, 25], and � is the habitat of the population. When the species
is a renewable natural resource and it is harvested by the human being, then the equa-
tion can be adjusted to

∂u

∂t
= D�u + au − bu2 − h(x,u), x ∈ �, t > 0, (1.2)

and h(x,u) is the harvesting density per unit time [4, 10, 20, 23].
For the harvesting term in the equation, one often assumes a constant harvesting

effort, and the harvesting rate is proportional to the population density and the effort:

h(x,u) = E(x)u, and E(x) ≥ 0, x ∈ ∂�. (1.3)

The harvesting effort E(x) may differ geographically. We assume that the total effort
is a constant: ∫

�

E(x)dx = β · |�|, (1.4)

for an average effort β > 0, and |�| is the area (or Lebesgue measure for � ⊂ Rn

with n ≥ 3) of the habitat. On the other hand, it is reasonable to assume that E(x) is
non-negative and bounded, i.e.

0 ≤ E(x) ≤ M, x ∈ �, (1.5)

where M ≥ β is the maximum allowable harvesting effort. For related discussions,
see [4, 10, 20].

When the boundary of the habitat is assumed to be hostile, then the population
density under constant effort harvesting is described by

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= ε2�u + u − u2 − E(x)u, x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x) ≥ 0, x ∈ �.

(1.6)

Here we have used dimensionless variables to simplify the equations, and also for
simplicity, we assume the logistic growth is homogeneous for the whole habitat. The
diffusion constant is defined as ε2 to indicate the diffusion scale ε. The existence and
uniqueness of equilibrium solutions to (1.6) have been studied in [5, 20, 23, 24] and
many others, and it is known that for ε > 0 is small, there exists a unique positive
stable equilibrium solution uε,E(x) for any fixed E(x) if some admissible conditions
on E are satisfied.

In this paper, we consider an optimization problem of finding the optimal E(x) to
minimize the energy function

Jε(u,E) = ε2

2

∫
�

|∇u|2dx − 1

2

∫
�

u2dx + 1

3

∫
�

u3dx + 1

2

∫
�

E(x)u2dx. (1.7)

To be more precise, we can show that the unique equilibrium solution uε,E minimizes
Jε(u,E) among all functions in an appropriately defined function space when E(x)
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is fixed, and we want to find an optimal E∗(x) satisfying (1.4) so that

Aε,� = Jε(uε,E∗ ,E∗) = inf
E

Jε(uε,E,E) = inf
E,u

Jε(u,E), (1.8)

is achieved, where the infimum is taken over all possible E(x) satisfying (1.4, 1.5)
and all possible density functions u(x).

Such questions have interesting biological implications. The energy function like
Jε is well-known as the Lyapunov functions in mathematics, and in physics, it rep-
resents the prototypical total system energy in the sense that (ε2/2)

∫
�

|∇u|2dx is a
scaled kinetic energy, and the other part is the system potential energy. In particular,
one can show that the energy of a solution of (1.6) decreases with respect to t and
the solution tends to a limit equilibrium solution. For all nonnegative initial distrib-
utions u0 (�≡ 0), this limit is a stable equilibrium solution. For a biological system,
this energy function can be regarded as a measurement of the wellbeing of the entire
species with respect to the exterior environment, and the decreasing of the energy and
evolution of the population distribution indicate the gradual adaption of the popula-
tion toward a better state for the wellbeing of the species. The energy minimizer is an
optimal distribution of the population for the given natural environment and possible
human interferences (like harvesting). From this view, choosing a better harvesting
pattern E(x) to lower the energy also increases the wellbeing of the species.

The spatial harvesting effort function E(x) is a human controllable strategy sub-
ject to the natural constraint (1.4). (In the following, we call E(x) the spatial harvest-
ing strategy.) When the natural laws of growth and diffusion make the energy settling
at the lowest possible level, it is the job of the controller of such strategy—the human
being, to provide optimal ones to decrease the biological energy function and improve
the living state of the harvested species, without sacrificing the benefit of the harvest-
ing (so that constraint (1.4) is satisfied.) One can also regard the energy function Jε

as an intrinsic quantity of conservation biology which measures the healthiness of the
species, and it may be crucial for the long term sustainability of the population.

Our main result (Theorem 2.4) is that the best strategy exists when minimizing the
energy function Jε among all admissible E and u, and the optimal strategy satisfies

E∗(x) =
{

0, x ∈ �0,

M, x ∈ �\�0,
(1.9)

where �0 is a subregion of �, and the area of �0 is |�0| = (M − β)|�|/M . Thus
the conclusion of our approach is that a no-harvesting zone (where E(x) = 0) should
be designed, and the area of the no-harvesting zone �0 should be as large as possible
under the constraints M and β . On the other hand, in the zone which allows harvest-
ing, the effort should be put to the maximum value. This provides new evidence of
validity of the no-fishing zone which has been in heavy debates among commercial
fisheries and regulators.

Our another result (Proposition 2.3) shows that if the diffusion constant ε is fixed,
but the size of the habitat is decreasing due to destruction, then the optimal strategy
also provides the smallest minimal patch size for the survival of the species, which
again is helpful for the conservation of the species. Proposition 2.3 is an adaption of
an earlier result in Cantrell and Cosner [5] (see Theorem 3.9), in which the optimized
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spatial growth rate function is a “best” environment for the species. The purpose of
our paper is to show that such best environment not only exists for linearized problem
as in [5] but also for nonlinear problem like (1.6).

We also show that while the size of the non-harvesting zone �0 is determined by
the optimization, the location and the geometry of the zone is an interesting math-
ematical question. First, �0 preserves Steiner symmetry (which will be defined in
Sect. 2.3), thus �0 usually locates in the central part of the habitat; secondly, while
the area of �0 is fixed, the optimal strategy favors smaller perimeter of �0 especially
when the diffusion constant is small (see details in Sect. 2.4). In particular, when the
habitat is exactly a ball, then �0 is a smaller concentric ball, and the harvesting will
occur on the boundary side.

An interesting phenomenon is that not all symmetries are preserved for the no-
harvesting zone �0. In Sect. 2.3, we show that symmetry breaking occurs for an an-
nulus with increasing inner radius and fixed width and also for a symmetric dumbbell-
shaped habitat. Both lead to some practical no-harvesting zone design principles, see
details in Sect. 2.3. Note that such symmetry breaking phenomena were first found
in [8, 9] for the eigenvalue problem of Schrödinger operator, see also related work
in [14, 15]. After this work was done, we learned about recent work of Lou and
Yanagida [17] for one-dimensional Neumann boundary value problem. On the other
hand, Du and Shi [11] studied a predator-prey system with a protect zone for the prey,
and some related optimization problems were proposed (see the concluding remarks
of [11]).

In a recent study, Neubert [20] considered the same reaction-diffusion equation
(1.6) in one-spatial dimension, but to find optimal E(x) to maximize the total yield:

Yε(u,E) =
∫

�

E(x)u(x)dx. (1.10)

The similarity between the two is that both approaches first choose the equilibrium
solution uε,E of (1.6) as the candidates of the next optimization problem, but in [20]
(1.10) is maximized, while we minimize (1.7). While the goals of the two approaches
are different, it is interesting to notice that the optimizer E(x) in [20] when ε is not
large (but larger than the critical patch size), is the same as ours. Thus combining
the result of [20], we conclude that if the habitat � = (0, l), when L0 ≤ l ≤ L1 for
some constants L0,L1, the strategy of setting no-harvesting zone in the center of �

will both minimize the intrinsic energy Jε and maximize the yield Yε—so we get two
birds with one stone.

However, the optimal strategy in [20] when l is large is a “chattering control” with
infinite sequences of reserves alternating with areas of intense fishing. As pointed in
[20], such strategy would be impossible to implement, and we can see that such strat-
egy also makes the intrinsic energy Jε very large, which contradicts the assumption
that the species prefers a lower energy level. We also point out that our results here
are for higher dimensional general habitats in which the domain geometry also plays
important role.

We will state our main mathematical results and explain more biological implica-
tions in four subsections of Sect. 2, and the proofs of the mathematical results will
be given in Sect. 3. In the following we use standard mathematical notations such
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as Lp spaces Lp(�), and Sobolev space H 1
0 (�). For the definitions of these spaces,

see Sect. 3.1. The habitat � is a bounded domain in Rn with Lipschitz continuous
boundary for n ≥ 1, and |�| is the n-dimensional Lebesgue measure of �.

2 Main Mathematical Results and Biological Implications

2.1 Basic Setup and Equilibrium Solutions

The population under a constant effort harvesting satisfies
⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= ε2�u + u − u2 − E(x)u, x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x) ≥ 0, x ∈ �,

(2.1)

where u(x, t) is the population density, ε2 > 0 is the diffusion constant, E(x) ∈
L∞(�) is the harvesting effort such that E(x) ≥ 0, and u0(x) ∈ C(�) is the initial
population distribution. From well-known theory of parabolic equations, there exists
a unique solution u(x, t) of (2.1), and u(x, t) > 0 for (x, t) ∈ � × (0,∞). Define
biological energy function

Jε(u,E) = ε2

2

∫
�

|∇u|2dx − 1

2

∫
�

u2dx + 1

3

∫
�

u3dx + 1

2

∫
�

E(x)u2dx, (2.2)

for u ∈ H 1
0 (�) and u ≥ 0. (To be more careful, we shall define the energy Jε(u,E) =

Jε(u+,E), where u+ = max{u,0}. But for the problem we consider here, the maxi-
mum principle holds, so we just avoid these technicalities here.) Then for a solution
u(x, t) of (2.1),

dJε(u(·, t))
dt

=
∫

�

[
−ε2�u − u + u2 + E(x)u

] ∂u

∂t
dx,

= −
∫

�

(
∂u

∂t

)2

dx ≤ 0,

(2.3)

for t ∈ (0,∞). Moreover, it can be shown that Jε(u(x, t),E) ≥ −C for a constant
C > 0, and by standard theories, there exists a function u∞(x) ∈ H 1

0 (�) such that

lim
t→∞||u(x, t) − u∞(x)||H 1

0 (�) = 0. (2.4)

The function u∞(x) is necessarily an equilibrium solution of (2.1), i.e. it satisfies

ε2�u + u − u2 − E(x)u = 0, x ∈ �, u(x) = 0, x ∈ ∂�. (2.5)

From (2.3) and (2.4), we also find that

Jε(u∞(·),E) = inf
t≥0

Jε(u(·, t),E). (2.6)

For the equilibrium solution equation, we have the following result:
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Proposition 2.1 Suppose that the set �E = {x ∈ � : E(x) < 1} is of positive mea-
sure.

1. There exists a positive number ε1 = ε1(�,E) such that (2.5) has only the trivial
solution u = 0 when ε ≥ ε1, and when 0 < ε < ε1, there exists a unique positive
solution uε,E(x) of (2.5), and for any x ∈ �, 0 < uε,E(x) < 1;

2. The set of positive solutions to (2.5) can be parameterized as S = {(ε, uε,E) : 0 <

ε < ε1}, limε→ε−
1

uε,E = 0, and ε �→ uε,E is differentiable;
3. For any 0 < ε < ε1, uε,E is globally asymptotically stable in the sense that, for

any u0(x) ∈ L2(�) and u0(x) ≥ 0, the solution u(x, t) of (2.1) satisfies (2.4) with
u∞ = uε,E ;

4. When ε → 0, then uε,E(x) → 1 − E(x) uniformly for x in any compact subset of
�E , and uε,E(x) → 0 uniformly for x in any compact subset of �\�E .

The results in Proposition 2.1 are well-known, and proof can be found in [5, Sect. 2]
or [25, Sect. 2]. So we omit the proof here. In the following when we fix ε > 0,
we will drop the subscript ε in uε,E when no confusion. Similarly, we will drop the
variable E in Jε(u,E) when no confusion. From (2.5), uE satisfies the following
integral identity:

ε2
∫

�

|∇u|2dx −
∫

�

u2dx +
∫

�

u3dx +
∫

�

E(x)u2dx = 0. (2.7)

From (2.7), we notice that

Jε(uE) = −1

6

∫
�

u3
E(x)dx < 0. (2.8)

The admissible set for the harvesting effort function E(x) is

Cβ,M =
{
E(x) ∈ L∞(�) : M ≥ E(x) ≥ 0,

∫
�

E(x)dx = β|�|
}
, (2.9)

where M is the maximum harvesting effort, and it is necessary that M ≥ β > 0. Next
we have a characterization of uE in term of the energy function.

Proposition 2.2 For fixed E(x) ∈ Cβ,M , if 0 < ε < ε1(�,E), then

Jε(uE) = inf
u∈H 1

0 (�)

Jε(u). (2.10)

Notice that ε1 depends on E, and for some large ε > 0, there is no any strategy
E(x) ∈ Cβ,M which can make the species survive, i.e. the only equilibrium solution
is u = 0. Hence we shall identify the largest ε for which a non-trivial spatial strategy
exists and the population will persist under such strategy.

Proposition 2.3 There exists ε2 = ε2(�,M,β) so that

ε2 = sup
E∈Cβ,M

ε1(�,E), (2.11)
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and for 0 < ε < ε2,

Aε,� ≡ inf
E∈Cβ,M

Jε(uE) = inf
E∈Cβ,M,u∈H 1

0 (�)

Jε(u) < 0. (2.12)

Moreover, ε2 can be determined by

ε2
2 = sup

φ∈H 1
0 (�),φ �≡0,E∈Cβ,M

∫
�
[1 − E(x)]φ2(x)dx∫

�
|∇φ(x)|2dx

, (2.13)

and the supremum is achieved by (φs(x),Es(x)) ∈ H 1
0 (�) × Cβ,M satisfying

ε2
2�φs + [1 − Es(x)]φs = 0, x ∈ �, φs(x) = 0, x ∈ ∂�, (2.14)

and

Es(x) = M[1 − χ�s (x)] =
{

0, x ∈ �s,

M, x �∈ �s,
(2.15)

for a subregion �s of �, and there exists t > 0 such that

�s = {x ∈ � : φEs (x) > t}. (2.16)

In Proposition 2.3, χ�s is the characteristic function of �s , defined by χ�s (x) = 1 if
x ∈ � and = 0 otherwise. From (2.9), one can conclude that

|�s | = M − β

M
|�|. (2.17)

For ε < ε2, even though for some E1 ∈ Cβ,M , ε > ε1(�,E1), but there exists
some E2 ∈ Cβ,M , such that ε < ε1(�,E2), then an optimal strategy does exist. It
is well-known that the maximum diffusion constant ε1(�,E) is related to the mini-
mal patch size of the habitat (see [6, 25, 26]). When the diffusion coefficient of the
habitat is a constant, but the habitat size is variable (more likely, shrinking), then the
parameter ε is proportional to D/L, where D is the diffusion coefficient, and L is
the habitat diameter (assuming that the geometry of the habitat nearly takes the same
shape when shrinking.) Thus [ε1(�,E)]−1 can be interpreted as the minimal patch
size for fixed harvesting pattern E. Notice that harvesting always increases the natural
minimal patch size (the natural one should be given by (2.13) with E(x) ≡ 0). But
Proposition 2.3 shows that there exists a best strategy Es ∈ Cβ,M which minimizes
the minimal patch size. That is of importance for the population, since more far away
from the minimal patch size, the smaller chance of extinction. When the habitat size
is larger than the critical one, Es may not necessarily still be the optimal strategy, but
in some case (like � is a ball), it still is (see the next subsection).

Proposition 2.3 essentially is same as Theorem 3.9 in [5], but we give a new proof
based on more efficient and general variational principle Lemma 3.2. In the remark
after Theorem 3.9 in [5], it is also indicated that the optimal control is a “bang-bang”
type, and it may inherit some symmetries from �. Here we indeed show this from
a variational approach, and in our main results next section, we also implement this
idea for the nonlinear problem (2.5).
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2.2 Existence of Optimal Spatial Harvesting Strategy

Our main existence of optimal strategy is

Theorem 2.4 Suppose that 0 < ε < ε2 (which is defined in Proposition 2.3), then for
any bounded domain �, and M,β > 0, there exists Eε,∗(x) ∈ Cβ,M such that

Aε,� = Jε(uEε,∗), (2.18)

where uEε,∗ is the unique solution of (2.5) associated with Eε,∗. Moreover, there
exists a subregion �0,ε of � such that

Eε,∗(x) = M[1 − χ�0,ε
(x)] =

{
0, x ∈ �0,ε,

M, x �∈ �0,ε,
(2.19)

and there exists t > 0 such that

�0,ε = {x ∈ � : uEε,∗(x) > t}. (2.20)

Again from (2.9), one can conclude that

|�0,ε| = M − β

M
|�|. (2.21)

Theorem 2.4 has profound biological implications. The subregion �0,ε is where
the harvesting effort is to be put as zero, thus it gives a optimal design for the no-
harvesting zone. Theorem 2.4 indicates that, to maximize the living state of the har-
vested species, the best harvesting strategy is to set up a no-harvesting zone, and
secondly, the no-harvesting zone should be as large as possible. And on the other
hand, in the fishing zone, the effort should be put as largest possible. However it only
shows the existence of such subregion �0,ε , and the location of �0,ε is not clear.
Also, in general, the subregion �0,ε is not unique even up to a zero measure set. One
example will be shown in Sect. 2.3 that the habitat � is symmetric but �0,ε is not,
thus the non-uniqueness holds.

Our second result is on the preservation of the Steiner symmetry. We recall that a
set G is Steiner symmetric with respect to a hyperplane P if for any x ∈ G, the line
segment connecting x and the reflected point x∗ with respect to P is contained in G.

Theorem 2.5 Let �0,ε be as defined in Theorem 2.4. If � is Steiner symmetric with
respect to a hyperplane P , then �0,ε is Steiner symmetric with respect to a hyper-
plane P .

In particular now we can determine the optimal harvesting strategy E∗(x) and the
optimal no-harvesting zone when � is a ball BR(0) = {x ∈ Rn : |x| < R} for R > 0.

Corollary 2.6

1. If � is Steiner symmetric with respect to each xi = 0 (1 ≤ i ≤ n), then �0,ε is
Steiner symmetric with respect to each xi = 0, and �0,ε is connected and star-
shaped.
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2. If � = BR(0), then the no-harvesting zone is a ball

�0,ε ≡ �0 = {x ∈ Rn : |x| < r}, (2.22)

where r can be determined by the constrains M , β and the spatial dimension n

(but independent of ε).

Notice that Corollary 2.6 also covers the case of n = 1 and � = (−1,1), and
�0 = (−r, r). Here r is independent of ε since the size of the no-harvesting zone
is determined by (2.21), which is free of ε. In this case �s in Proposition 2.3 is also
defined by (2.22).

2.3 Symmetry Breaking

In general, the spatial configuration of the no-harvesting zone �0,ε is not easy to
obtain. In particular, although Steiner symmetry is retained for the fishing zone, other
symmetries of � may not be preserved by the fishing zone. Here we present several
such examples.

One case is that the habitat is an “expanding annulus”:

�a = {x ∈ Rn : a < |x| < a + 1}. (2.23)

This can be viewed as a circular island I = Ba(0) surrounded by a fishery area of
one unit length wide, thus the parameter a is the ratio between the spatial scale of the
island and the spatial scale of the fishery zone.

Theorem 2.7 Suppose that n ≥ 2, and �a is defined as in (2.23). Fix the size of
the no-harvesting zone γ , M ≥ 1, then there exists ε3 = ε3(γ,M) > 0 such that when
0 < ε < ε3, there exists a large a0 > 0 such that for any a > a0 any optimal harvesting
strategy Ea for �a is not radially symmetric.

Notice that when the annulus is expanding, the volume of �a is also increasing.
Indeed,

|�a| = ωn

n
[(a + 1)n − an], (2.24)

where ωn is the surface area of the unit sphere in Rn. Thus when the formula (2.21)
still holds, the percentage of the no-harvesting zone is decreasing when a is increas-
ing, and

β = M

(
1 − γ

|�a|
)

, (2.25)

where γ is the fixed area of the no-harvesting zone. Recall that the optimal strategy
for one-spatial dimension habitat is to harvest near the two endpoints, and protect
the species in the middle. For annulus with smaller a, its radial counterpart may still
be the optimal strategy. But our result above shows, when the no-harvesting zone is
relatively small compared to the overall size of the annulus habitat, then the better
way is to just set up one or several no-harvesting zones of ball shape (see the proof
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of Theorem 2.7 for the mathematical arguments to support this claim.) One could
heuristically argue that in this case a radially symmetric protect zone has too large
perimeter compared to the width of the whole fishing area, thus the energy of radial
zone is too large to be optimal. As we will see in next subsection, the harvesting
zones with spherical shape are not coincidental, and the circular one is the best shape
when the size of no-harvesting zone is small or the diffusion constant is small.

Next we consider a “dumbbell”-shaped habitat, which is a region consisting of two
large separate spherical habitats and a thin channel connecting them. This simulates
a two spatial diffusive patches B1 and B2 with additional dispersal between them
through a thin channel H . To be more precise, let x = (x1, x

′) be the coordinate that
x′ = (x2, x3, . . . , xn), define

B1 = {x : |x − (−2R,0)| < R}, B2 = {x : |x − (2R,0)| < R},
H = {x = (x1, x

′) : |x′| < h, |x1| < 2R}, (2.26)

for small h > 0, and

�R,h = B1 ∪ H ∪ B2. (2.27)

Theorem 2.8 Suppose that n ≥ 2, and �R,h is defined as in (2.26) and (2.27). Fix
the size of the no-harvesting zone γ , M ≥ 1, then there exists ε4 = ε4(γ,M) > 0 for
all 0 < ε < ε4, there exists a large R0 > 0 such that for all R > R0, there is a small
h0 > 0 such that for any h < h0 any optimal harvesting strategy ER,h for �R,h is not
symmetric with respect to {x1 = 0}.

In particular, we show that setting up a single ball-shaped no-harvesting zone in one
of the patch is a better way than setting up two equal smaller size in each patch.
This will be very useful in designing the no-harvesting zone, since often the habitat
consists several favorite components for the species. With the constraint on the total
area of the protecting zones, shall we set up one large zone, or several smaller ones?
Theorem 2.8 suggests that in the case of large components connected by thin channel
and the maximum harvesting rate is high (M > 1), the first option is better for the
population. Note that when M > 1, the population is close to zero in the other patch
without no-harvesting zone, thus one can consider this approach is to “abandon” one
patch. But remember this is because of the limit on the total size of no-harvesting
zone, thus to not waste the other patch, one should lower the maximum harvesting
rate, or increase the size of the no-harvesting zone.

2.4 Asymptotic Limit of the Optimal Strategy

Equation (2.5) becomes a singular perturbation problem when ε → 0. The equilib-
rium solutions of singular perturbation problem with similar energy function but
double-well potential (Cahn-Hillard equation, or constrained Allen-Cahn equation)
have been studied extensively in the last two decades, see for example, [1, 3, 7, 13].
Although the forms of the equations are different, many results of these studies can
be carried over to this optimization problem. Here we will state some results with-
out proofs, and we will discuss the biological implications and their applications in
no-harvesting zone design.
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From Proposition 2.1, the equilibrium population distribution uE has the following
limit when ε → 0,

u∞(x) =
{

1, x ∈ �0,

0, x �∈ �0
if M ≥ 1,

(2.28)

u∞(x) =
{

1, x ∈ �0,

1 − M, x �∈ �0
if M < 1.

Thus for any subregion �0 satisfying the area constraint, the potential energy part in
Jε(uE) tends to a constant since the area of �0 has been determined by (2.21). Hence
the minimization of total energy Jε will very much depend on the minimization of
the kinetic energy

ε2

2

∫
�

|∇uE |2dx. (2.29)

From (2.28) the gradient is very small in the interior of either �0 and �\�0, but
it can be large on the interface between the two. Here we can define the level set
N = {x : uE(x) = 1/2} (when M ≥ 1), or N = {x : uE(x) = (2 − M)/2} (when
M < 1), to be the interface. Then the question of locating the optimal no-harvesting
zone becomes the question of finding the optimal interface, since except around the
interface, the values of uE(x) would be determined by (2.28). From the classical re-
sults on isoperimetric problem, the optimal shape to minimize the kinetic energy and
still maintain the integral constrain (2.21) is a sphere enclosing the constrained vol-
ume. Finally one need to optimize the center of the sphere in minimizing the total
energy, that is a more delicate question. But at least in some special cases, it has been
shown that the most central point of � (the maximum point of d(x, ∂�), the distance
function to the boundary of �) is the best location. For example, in Corollary 2.6, it is
shown that when the habitat is symmetric with respect to each xi -axis, then the center
of the no-harvesting zone is necessarily at the origin point. For a different variational
problem, it was shown in [21] that the maximum point of the least energy solution is
close to the maximum point of the distance function. In summary, when the diffusion
constant ε is small, then the no-harvesting zone should be close to a sphere, which
locates in the most central part of the habitat.

Another singular limit can be taken when M → ∞ (but fix β and ε). In this case,
the limit of (2.5) becomes

{
ε2�u + u − u2 = 0, x ∈ �\�0,

u(x) = 0, x ∈ �0 ∪ ∂�,
(2.30)

while �0 is an optimal no-harvesting zone which satisfies (2.21). Therefore the min-
imizing of Jε(u,E) for (u,E) ∈ H 1

0 (�) × Cβ,M is reduced to minimizing

J̃ε(u,�0) = 1

2

∫
�0

|∇u|2dx − 1

2

∫
�0

u2dx + 1

3

∫
�0

u3dx, (2.31)

for u ∈ H 1
0 (�0) and subregion �0 satisfying (2.21). The minimizer of J̃ε is also

achieved at a sphere in �. A similar optimization problem is considered in [14].
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2.5 Discussions

The model (1.2) is a simplification of the more complicated ones. As pointed out
in [20], life stage structure, spatial heterogeneity, current advection and others can
make the situation much more complicated, but qualitative nature of the optimal so-
lution should be similar to that of (1.2) and (1.6). We have found that the optimal no-
harvesting zone is always near the center of the habitat, that is partly due to the zero
boundary condition (hostile exterior environment.) For other boundary conditions,
the location and the geometry of the optimal no-harvesting zone might be different.
Spatial heterogeneity also can play an important role in the selection of optimal no-
harvesting zone. For some marine fish, it is known that the breeding beds are only
small specific areas in the whole ocean, and these areas are usually near the bound-
ary of the whole habitat (see the example of Atlantic bluefin tuna [2]). In the future
work, we will investigate the effect of heterogeneous birth/death rates and crowding
function, as well as the effect of long distance migration of the marine fish.

We also discuss the symmetry of the no-harvesting zones. In reality, mathematical
symmetry of the domain is rarely found for the habitat of real population. How-
ever our arguments show that in general, one larger no-harvesting zone is better than
several smaller ones, and the perimeter of the no-harvesting zone should be chosen
as small as possible. These principles would be valuable when designing the no-
harvesting zones.

3 Proofs of the Mathematical Results

3.1 Notations

In the following, � is a bounded smooth domain in Rn with n ≥ 1. Lp(�) is the
space of real-valued measurable functions f : � → R such that

∫
�

|f |pdx < ∞ for
p > 0, and the norm of the space is

||f ||p =
(∫

�

|f (x)|pdx

)1/p

. (3.1)

L∞(�) is the space of real-valued measurable functions f : � → R such that f (x)

is bounded except a possible zero measure set, and

||f ||∞ = sup
|O|=0

{sup |f (x)| : x ∈ �\O}. (3.2)

The Sobolev space W
1,p

0 (�) is the space of Lp functions such that their weak (first
order) derivatives also belong to Lp(�), and their boundary values are zero. In this
paper we only need the space W

1,2
0 (�) = H 1

0 (�), and the norm of H 1
0 (�) is

||f ||2
H 1

0 (�)
= ||f ||22 + ‖|∇f |‖2

2. (3.3)
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3.2 Lemmas from Previous Work

We recall the following two lemmas from [15]:

Lemma 3.1 (Lemma 1 of [15]) Let � be a bounded domain in Rn. Suppose that a
sequence {fj }∞j=1 ⊂ L∞(�) satisfies

0 ≤ fj (x) ≤ N (a.e. x ∈ �),

∫
�

fj (x)dx = α (3.4)

for some positive constants N and α. Then there exists a subsequence {fjk}∞k=1 and
f ∈ L∞(�) such that fjk converges to f weakly in L2(�) and

0 ≤ f (x) ≤ N (a.e. x ∈ �),

∫
�

f (x)dx = α. (3.5)

Lemma 3.2 (Lemma 2 of [15]) Suppose that u ∈ L1(�) and satisfies u(x) ≥ 0 al-
most everywhere in �. Then for a given positive constant N and α there exists a
maximizer η∗ to the following maximizing problem:

sup

{∫
�

η(x)u(x)dx : 0 ≤ η(x) ≤ N,

∫
�

η(x)dx = α

}
. (3.6)

Moreover there exists t ≥ 0 such that any maximizer η∗ can be written by η∗(x) =
MχD for some subset D of � satisfying

{x ∈ � : u(x) > t} ⊂ D ⊂ {x ∈ � : u(x) ≥ t}. (3.7)

In fact the constant t can be determined by t = inf{s : |{u(x) > s}| < α} and
M|D| = α.

Note that Lemma 3.2 is a variant of Theorem 1.14 (Bathtub Principle) in [16], and
the proofs of both lemmas can be found in [15]. The following result on the Steiner
symmetry is Theorem 3.6 of [12].

Lemma 3.3 Suppose that � is Steiner symmetric with respect to the hyperplane
x1 = 0. Let u ∈ C1(�) ∩ C0(�) satisfying u(x) > 0 in � and suppose that

∫
�

∇u · ∇φdx =
∫

�

[
f1(u) + f2(u)

]
φdx (3.8)

for every φ ∈ H 1
0 (�). Here f1(t) is locally Lipschitz continuous and f2(t) is nonde-

creasing and is zero on an interval [0, h] for some h > 0. Then we have

u(−x1, x
′) = u(x1, x

′), (x1, x
′) ∈ �, (3.9)

and

∂u

∂x1
(x1, x

′) < 0, (x1, x
′) ∈ {(x1, x

′) ∈ � : x1 > 0}. (3.10)
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3.3 Proof of Proposition 2.2

Proof When 0 < ε < ε1, it is well-known that uε,E is a local minimizer of Jε , and
u = 0 is a saddle critical point. So we only need to show that the energy functional
Jε is bounded from below, then the existence of the global minimizer follows from
standard direct method of calculus of variations, and since uE is the unique non-
negative critical point, then the global minimum must achieve at uE .

To show Jε is bounded from below, define �1 = {x : u(x) ≤ 3/2}. For any u ≥ 0,
since E(x) ≥ 0, then

Jε(u) ≥ 1

6

∫
�

u2(2u − 3)dx ≥ 1

6

∫
�1

u2(2u − 3)dx

≥ 1

6

(
3

2

)2

(−3)|�| = −9

8
|�|. (3.11)

�

3.4 Proof of Proposition 2.3

Proof It is well-known that for fixed E(x) ∈ Cβ,M , ε1(�,E) can be characterized by

ε2
1 = sup

φ∈H 1
0 (�),φ �≡0

∫
�
[1 − E(x)]φ2(x)dx∫

�
|∇φ(x)|2dx

, (3.12)

and the maximizer φE satisfies

ε2
1�φE + [1 − E(x)]φE = 0, x ∈ �, φE(x) = 0, x ∈ ∂�. (3.13)

Now we maximize among E ∈ Cβ,M . The supremum exists since
∫

�

[1 − E(x)]φ2(x)dx ≤ |M − 1|
∫

�

φ2(x)dx ≤ λ−1
1 (�)|M − 1|

∫
�

|∇φ(x)|2dx,

(3.14)
from the Poincaré inequality. We take a minimizing sequence Ej ∈ Cβ,M , and as-
suming

∫
�

|∇φEj
(x)|2dx = 1 such that

∫
�
[1 − Ej(x)]φ2

Ej
(x)dx → ε2

2. Since {φEj
}

is bounded in H 1
0 (�), then there is a subsequence of {φEj

} (for simplicity, still de-
noted by {φEj

}) which converges to φ weakly in H 1
0 (�), strongly in Lp(�) for

p < 2n/(n − 2), weakly in L2n/(n−2)(�), and φEj
→ φ almost everywhere in �.

From Lemma 3.1, we can choose a further subsequence (still denoted by {φEj
}) such

that Ej → Es weakly in L2(�) for some Es ∈ L∞(�) satisfying

0 ≤ Es(x) ≤ M (a.e. x ∈ �),

∫
�

Es(x)dx = β|�|. (3.15)

Then ∫
�

[1 − Es(x)]φ2(x)dx = ε2
2, (3.16)
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and it is necessary that φ = φEs (solution of (3.12)) otherwise
∫
�
[1−Es(x)]φ2

Es
(x)dx

> ε2
2.
Finally we rewrite

∫
�
[1 − Es(x)]φ2

Es
(x)dx into

∫
�

[M − Es(x)]φ2
Es

(x)dx +
∫

�

(1 − M)φ2
Es

(x)dx, (3.17)

and we maximize the integral
∫
�
[M −E(x)]φ2

Es
(x)dx for E ∈ Cβ,M . The maximizer

must be Es otherwise we have a contradiction again. From Lemma 3.2, the maximizer
Es = M(1 − χ�s ) for some subregion �s of �, and

{x ∈ � : φEs (x) > t} ⊂ �s ⊂ {x ∈ � : φEs (x) ≥ t}. (3.18)

We claim that �s = {x ∈ � : φEs (x) > t} up to a difference of zero measure set.
Suppose not, there exists a closest subset A of �s such that |A| > 0, φEs (x) = t for
any x ∈ A. Then there exists x0 ∈ A such that ∇φEs (x0) = �φEs (x0) = 0, and from
the equation, φEs (x0) = 0, which is a contradiction since t > 0. Thus the claim is
proved, and this completes the proof of Proposition 2.3. �

3.5 Proof of Theorem 2.4

Proof Since 0 < ε < ε2, there exists E ∈ Cβ,M such that (2.5) has a positive solution
uE = uε,E . From 0 < uE(x) < 1 and (2.8), we have

Jε(uE) = −1

6

∫
�

u3
E(x)dx ≥ −1

6
|�|. (3.19)

Thus Aε,� ≥ −(1/6)|�|. We take a minimizing sequence Ej ∈ Cβ,M such that
Jε(uEj

) → Aε,�. From 0 < uE(x) < 1 and (2.8), we conclude that {uEj
} is bounded

in H 1
0 (�) and Lp(�) for any p > 0. Thus there is a subsequence of {uEj

} (for sim-
plicity, still denoted by {uEj

}) which converges to u weakly in H 1
0 (�), strongly in

Lp(�) for p < (2n)/(n − 2), weakly in L2n/(n−2)(�), and uEj
→ u almost every-

where in �. From Lemma 3.1, we can choose a further subsequence (still denoted by
{uEj

}) such that Ej → E∗ weakly in L2(�) for some E∗ ∈ L∞(�) satisfying

0 ≤ E∗(x) ≤ M (a.e. x ∈ �),

∫
�

E∗(x)dx = β|�|. (3.20)

Moreover, from the weak convergence of {uEj
} and {Ej }, we have

∫
�

(ε2∇u · ∇φdx + uφ − u2φ − E∗(x)uφ)dx = 0, (3.21)

for any φ ∈ H 1
0 (�). Thus u is a weak solution of (2.5) with E(x) = E∗(x), and

from the elliptic regularity theorems and maximum principle, u = uE∗ ∈ W
2,p

loc (�) ∩
C

1,γ

0 (�) ∩ C(�) for p > 0 and γ ∈ (0,1), and u(x) > 0 for x ∈ �. From the weakly
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lower semi-continuity of the Dirichlet integral and dominant convergence theorem,

Jε(uE∗) = ε2

2

∫
�

|∇uE∗ |2dx − 1

2

∫
�

u2
E∗dx + 1

3

∫
�

u3
E∗dx

+ 1

2

∫
�

E∗(x)u2
E∗dx ≤ Aε,�. (3.22)

We rewrite Jε(uE∗) into

Jε(uE∗) = ε2

2

∫
�

|∇uE∗ |2dx − 1

2

∫
�

(1 − M)u2
E∗dx + 1

3

∫
�

u3
E∗dx

− 1

2

∫
�

[M − E∗(x)]u2
E∗dx.

Then the function M ≥ M − E∗(x) ≥ 0 for x ∈ �, and M − E∗(x) ∈ L∞(�). From
Lemma 3.2, the maximizing problem:

sup

{∫
�

η(x)u2
E∗dx : 0 ≤ η(x) ≤ M,

∫
�

η(x)dx = (M − β)|�|
}

, (3.23)

has a maximizer η which is in form of Mχ�0,ε
for some subregion �0,ε of �. Then

M − E∗(x) must be identical to η(x), otherwise

ε2

2

∫
�

|∇uE∗ |2dx − 1

2

∫
�

u2
E∗dx + 1

3

∫
�

u3
E∗dx + 1

2

∫
�

[M − η(x)]u2
E∗dx < Aε,�,

which contradicts with (2.12). Moreover from Lemma 3.2, there exists t > 0 such
that

{x ∈ � : uE∗(x) > t} ⊂ �0,ε ⊂ {x ∈ � : uE∗(x) ≥ t}. (3.24)

We claim that �0,ε = {x ∈ � : uE∗(x) > t} up to a difference of zero measure set.
Suppose not, there exists a closest subset A of �0,ε such that |A| > 0, uE∗(x) = t for
any x ∈ A. Then there exists x0 ∈ A such that ∇uE∗(x0) = �uE∗(x0) = 0, and from
the equation, uE∗(x0) − u2

E∗(x0) = 0, which is a contradiction since 0 < uE∗(x) < 1
for any x ∈ �. Thus

�0,ε = {x ∈ � : uE∗(x) > t}. (3.25)

�

3.6 Proof of Theorem 2.5

Proof Suppose that � is Steiner symmetric with respect to the hyperplane x1 = 0.
Let (E∗, uE∗) be the solution of optimization problem in Theorem 2.4. Then

−ε2�uE∗ = (1 − M)uE∗ − u2
E∗ + Mχ�0,ε

uE∗ . (3.26)

Let f1(u) = (1 −M)u−u2 and let f2(u) = Mχ�0,ε
u = MH(t −u)u, where H(x) is

the Heaviside function such that H(x) = 0 when x ≤ 0, and H(x) = 1 when x > 0.
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Then we apply Lemma 3.3 to conclude that

uE∗(−x1, x
′) = uE∗(x1, x

′), (x1, x
′) ∈ �, (3.27)

and
∂uE∗
∂x1

(x1, x
′) < 0, (x1, x

′) ∈ {(x1, x
′) ∈ � : x1 > 0}. (3.28)

In particular �0,ε is Steiner symmetric with respect to a hyperplane x1 = 0. �

3.7 Proof of Theorem 2.7

Proof We choose k mutually disjoint balls Bj (xj,a, r0), (j = 1, . . . , k), so that r0 <

1/2, Bj (xj,a, r0) ⊂ �a , and |Bj (xj,a, r0)| = rn
0 ωn/n = γ /k. Define

D0 = �a\
k⋃

j=1

Bj (xj,a, r0). (3.29)

Then E0(x) = MχD0(x) ∈ Cβ,M .
We first prove that ε2(�a,M,β(M,γ )) (defined in Proposition 2.3) is bounded

from below for all a ≥ a1 for some a1 > 0. Let a1 be a number such that �a could
contain k mutually disjoint balls with radius r0. For Dc

0 = ⋃k
j=1 Bj (xj,a, r0), there

exists ε1(D
c
0,0) defined as in (3.12), and there exists an associated principal eigen-

function φ1 ∈ H 1
0 (Dc

0) ⊂ H 1
0 (�a). Then

ε2
2(�a,M,β(M,γ )) = sup

φ∈H 1
0 (�),φ �≡0,E∈Cβ,M

∫
�
[1 − E(x)]φ2(x)dx∫

�
|∇φ(x)|2dx

≥
∫
Dc

0
φ2

1(x)dx∫
Dc

0
|∇φ1(x)|2dx

= ε2
1(D

c
0,0) > 0. (3.30)

Thus the lower bound of ε2(�a,M,β(M,γ )) is independent of a since ε1(D
c
0,0) is

independent of a.
Now we fix ε < ε1(D

c
0,0). Let v(x) be the unique solution of

ε2�v + v − v2 = 0, x ∈ Dc
0, v(x) = 0, x ∈ ∂Dc

0, (3.31)

and let uE0 be the unique solution of (2.5) with E0(x) = MχD0(x) ∈ Cβ,M . From the
comparison principle, we have

uE0(x) > v(x), x ∈ Dc
0. (3.32)

Hence

Jε(uE0) = −1

6

∫
�a

u3
E0

(x)dx ≤ −1

6

∫
Dc

0

v3(x)dx < −δ0, (3.33)

for a constant δ0 independent of a > a1.
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In the remaining part of the proof, we will prove that if the optimal strategy
Ea(x) and associated �0,a are radially symmetric for a > a1, then Jε,a(uE∗) → 0
as a → ∞. Therefore a contradiction is reached with (3.33), and it proves that there
exists a0 > a1 such that the optimal strategy Ea(x) and associated �0,a are not radi-
ally symmetric for a > a0.

Suppose that the optimal strategy Ea(x) and associated �0,a are radially symmet-
ric. We express �0,a in a polar coordinate system:

�0,a = {(r,ω) ∈ (a, a + 1) × Sn−1 : r ∈ D1,ω ∈ Sn−1}, (3.34)

for a subset D1 of (a, a +1). Since |�0,a| = γ , then |D1| ≤ Ca1−n for some constant
C > 0. Since u = uEa is also radially symmetric, it satisfies

{
ε2(rn−1u′)′ + rn−1u − rn−1u2 − Mrn−1(1 − χD1(r))u = 0, a < r < a + 1,

u(a) = u(a + 1) = 0.

(3.35)
For any r ∈ (a, a + 1), we have

an−1u′(a) − rn−1u′(r) +
∫ r

a

sn−1u2(s)ds

=
∫ r

a

sn−1[(1 − M)u(s) + MχD1(s)u(s)]ds, (3.36)

and

rn−1u′(r) − (a + 1)n−1u′(a + 1) +
∫ a+1

r

sn−1u2(s)ds

=
∫ a+1

r

sn−1[(1 − M)u(s) + MχD1(s)u(s)]ds, (3.37)

For r satisfying u′(r) ≤ 0, we use (3.36), 0 < u(s) < 1 and M ≥ 1 to conclude

rn−1|u′(r)| ≤ M

∫ r

a

sn−1χD1(s)ds, (3.38)

and for r satisfying u′(r) ≥ 0, we use (3.37), and similarly we have

rn−1|u′(r)| ≤ M

∫ a+1

r

sn−1χD1(s)ds. (3.39)

Hence

an−1|u′(r)| ≤ sup
a≤r≤a+1

∣∣∣rn−1u′(r)
∣∣∣ ≤ M

∫ a+1

a

sn−1χD1(s)ds

≤ M(a + 1)n−1|D1| ≤ CM
(a + 1)n−1

an−1
, (3.40)
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and for any r ∈ [a, a + 1], we have

|u′(r)| ≤ C1a
1−n, and |u(r)| ≤ C2a

1−n. (3.41)

From (2.8) and (3.41), since n ≥ 2, then

∣∣Jε,a

∣∣ =
∣∣∣∣−1

6

∫
�a

u3(x)dx

∣∣∣∣ ≤ C3
(a + 1)n

a3n−3
→ 0 (a → ∞), (3.42)

which completes the proof. �

3.8 Proof of Theorem 2.8

First we show that for large R and small h, there is a uniform bound for ε2(�R,h,M,

β(M,γ )). Indeed such a bound is determined by γ . Suppose that R is large enough
so that a ball with measure γ can be inscribed in BR . Then

ε2
2(�R,h,M,β(M,γ )) ≥ ε2

1(Bρ,0) > 0. (3.43)

So similar to the proof of Theorem 2.7, a lower bound for ε2(�R,h,M,β(M,γ )) is
independent of R and h since ε1(Bρ,0) is. Thus ε4 in the theorem can be found. In
the following we will fix ε < ε4.

For large R and a fixed γ > 0, define

Aγ,BR
≡ Aε,γ,BR

= inf
E∈Cβ1,M,R

Jε(uE), (3.44)

where

Cβ1,M,R =
{
E(x) ∈ L∞(BR) : M ≥ E(x) ≥ 0,

∫
�

E(x)dx = β1|�|
}
, (3.45)

and β1 is defined as

β1 = M

(
1 − γ

|BR|
)

. (3.46)

The proof of Theorem 2.7 is mainly based on

Proposition 3.4 There exists R0 > 0 such that for any R > R0,

Aγ,BR
< 2Aγ/2,BR

. (3.47)

Since Aγ,BR
is achieved when the no-harvesting zone �0 is radial, we define

A
ρ
R (= Aγ,BR

) = Jε(u
ρ
R), (3.48)

where u
ρ
R (ρ ≤ R) is the radial solution of

ε2�u + u − u2 − M(1 − χBρ )u = 0, x ∈ BR, u = 0, x ∈ ∂BR. (3.49)

We recall some estimates for A
ρ
R and u

ρ
R using ideas from [15]: (Part (1) and (2)

are proved in Lemma 6 of [15], and Part (3) is proved in Lemma 9 of [15])
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Lemma 3.5

1. If �1 ⊂ �2, then Aε,�1 ≥ Aε,�2 .
2. If ρ1 ≤ ρ2, then A

ρ1
R ≥ A

ρ2
R .

3. Assuming M ≥ 1, then there exists such that

0 < u
ρ
R(x) ≤ C

|x|2 , for x ∈ BR\Bρ. (3.50)

Proof of Proposition 3.4 We prove (3.47) by showing (assuming |Bρ | = γ /2)

lim
R→∞Aγ,BR

= lim
R→∞A

21/nρ
R < 2 lim

R→∞A
ρ
R = 2 lim

R→∞Aγ/2,BR
. (3.51)

First for any R > ρ,

ε2

2

∫
BR

|∇u
ρ
R|2dx + 1

3

∫
BR

(
u

ρ
R

)3
dx + M − 1

2

∫
BR

(
u

ρ
R

)2
dx

= A
ρ
R + M

2

∫
Bρ

(
u

ρ
R

)2
dx ≤ Aρ

ρ + M

2
|Bρ | < ∞, (3.52)

Thus if we extend u
ρ
R to Rn by zero-extension, then for any R > ρ,

||∇u
ρ
R||L2(Rn) + ||uρ

R||L3(Rn) ≤ C. (3.53)

Then there exists a subsequence of {uρ
R}, say {uρ

Rj
} converges weakly in L3(Rn) ∩

H 1
loc(R

n) to a limit u∞, and u∞ satisfies

ε2�u + u − u2 − Mu + Mχ|Bρ u = 0, x ∈ Rn. (3.54)

Note that for R1 < R2, we have u
ρ
R1

(x) < u
ρ
R2

(x), thus u∞(x) > u
ρ
R(x) > 0 for any

x ∈ Rn. Also from Lemma 3.5 part 3,

0 < u∞(x) ≤ C

|x|2 , for x ∈ Rn\Bρ. (3.55)

Hence

J
ρ
ε,∞(u∞) ≡ ε2

2

∫
Rn

|∇u∞|2dx + 1

3

∫
Rn

u3∞dx

+ M − 1

2

∫
Rn

u2∞dx − M

2

∫
Bρ

u2∞dx

≤ lim
R→∞A

ρ
R. (3.56)

Define u∞(x) = u∞(2−1/nx). Then

J
21/nρ
ε,∞ (u∞) = ε2

(
2−1/n − 1

)∫
Rn

|∇u∞|2 + 2J
ρ
ε,∞(u∞) < 2J

ρ
ε,∞(u∞), (3.57)
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and (3.56) and (3.57) together implies

J
21/nρ
ε,∞ (u∞) < 2 lim

R→∞A
ρ
R. (3.58)

On the other hand, since 0 < u∞ < min(1,C22/n|x|−2) for x ∈ Rn, then vL(x) ≡
[u∞ −L−1]+ = 0 when |x| ≥ 21/n(CL)1/2 = RL. In particular vL ∈ H 1

0 (BRL
). From

the definition of A
ρ
R , we have

A
21/nρ
RL

≤ J
21/nρ
ε,∞ (vL). (3.59)

From the monotonicity of A
ρ
R ,

lim
R→∞A

21/nρ
R ≤ lim

L→∞A
21/nρ
RL

≤ lim sup
L→∞

J
21/nρ
ε,∞ (vL). (3.60)

It is easy to check that

J
21/nρ
ε,∞ (vL) → ε2

2

∫
Rn

|∇u∞|2dx + 1

3

∫
Rn

u3∞dx

+ M − 1

2

∫
Rn

u2∞dx − M

2

∫
B21/nρ

u2∞dx

≡ J
21/nρ
ε,∞ (u∞). (3.61)

From (3.58) and (3.61), we complete the proof of (3.51). �

Now we complete the proof of Theorem 2.8.

Proof of Theorem 2.8 From Proposition 3.4, there exists R0 > 0 such that (3.47)
holds. We fix R > R0, and then

2Aγ/2,BR
− Aγ,BR

= δ(R) > 0. (3.62)

If the no-harvesting zone �0 for �R,h is symmetric with respect to {x1 = 0}, then
γ1 = |�0 ∩B1| = |�0 ∩B2| = γ2, and 2γ1 ≤ γ . As h → 0, 2γ1 = γ + o(hn−1). From
Lemma 3.5 part 1,

Aγ,B1 ≥ Aγ,�R,h
≥ Aγ/2,B1 + Aγ/2,B2 − C1h

k = 2Aγ/2,B1 − C1h
k, (3.63)

for h is small and some positive constants C1, k. (For details on the estimates of small
h, see [15, pp. 271–273].) For small h > 0, (3.62) and (3.63) leads to a contradiction.
Therefore �0 cannot be symmetric with respect to {x1 = 0}. �
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