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Abstract

We use a bifurcation approach to prove an abstract version of anti-maximum

principle. The proof is different from previous approaches.

1 Introduction

Let Ω ⊂ Rn be a bounded smooth domain (∂Ω is of class C2). Let L denote the differential
operator:

(1.1) Lu = −
n∑

i,j=1

aij
∂2u

∂xi∂xj
+

n∑

i=1

ai
∂u

∂xi
+ au,

where aij ∈ C(Ω), aij = aji, and

n∑

i,j=1

aij(x)ξ
iξj > 0 for x ∈ Ω and ξ = (ξi) ∈ Rn\{0}, and

ai, a ∈ L∞(Ω). We consider a Dirichlet boundary value problem:

(1.2) Lu− λmu = f, x ∈ Ω, u = 0, x ∈ ∂Ω,

where m ∈ L∞(Ω).

Let p > n, and let X = {u ∈ W 2,p(Ω) : u = 0 on ∂Ω}, and let Y = Lp(Ω). Let the operator
A : X → Y be defined by Au = Lu. Then it is well-known ([7]) that A has a unique principal
eigenvalue λ1(A), which is simple and Au = λ1(A)mu has a strict positive eigenfunction ϕ1 such
that

(1.3) ϕ1(x) > 0, x ∈ Ω,
∂ϕ1

∂n
(x) < 0, x ∈ ∂Ω.
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An anti-maximum principle for (1.2) was proved by Clément and Peletier [3] and Hess [6],
which can be stated along with classical maximum principle as follows:

Theorem 1.1. Let A be the elliptic operator defined above and let λ1(A) be its principal eigenvalue.
Suppose that f ∈ Lp(Ω), p > n, such that f > 0, and suppose u satisfies the equation

(1.4) Au− λmu = f in Lp(Ω).

Then there exists δf > 0, which depends on f , such that if λ1(A) < λ < λ1(A) + δf ,

(1.5) u(x) < 0, x ∈ Ω,
∂u

∂n
(x) > 0, x ∈ ∂Ω;

and if λ < λ1(A),

(1.6) u(x) > 0, x ∈ Ω,
∂u

∂n
(x) < 0, x ∈ ∂Ω.

Here the result for λ1(A) < λ < λ1(A)+δf is called anti-maximum principle, and the result for
λ < λ1(A) is an extended maximum principle. Several extensions and refinements of anti-maximum
principles have been proved, see for examples, [1, 2, 4, 13]. In particular, an abstract form of anti-
maximum principle was proved by Takáč [13], where he proved it for a strongly positive operator
on a cone in a ordered Banach space. His proof is based on a strongly spectral projection and
Krein-Rutman Theorem for strongly positive operators.

In this paper we give a new proof of an abstract anti-maximum principle with a bifurcation
approach, in which we apply a secondary bifurcation theorem by Crandall and Rabinowitz [5].
The original proofs in [3] and [6] used a Lyapunov-Schmidt reduction, which is also used in the
bifurcation theorem in [5]. Thus our proof still has the same essence as the original proof, but
with a viewpoint of bifurcation theory. In particular we show the existence of a smooth curve of
solutions bifurcating from the trivial solutions, which somehow explains the continuous change of
the solutions from positive to negative when it crosses the principal eigenvalue. A similar approach
can also be found in Arcoya and Gámez [1] where they used bifurcation from infinity to prove
the anti-maximum principle. In fact, here we will prove an abstract version of anti-maximum
principle in [2] and [1] for which f > 0 is weaken to

∫
Ω fϕ1dx > 0. For simplicity, we will use the

classical Krein-Rutman theorem to prove the positivity of the solutions. But our approach works
for any version of Krein-Rutman theorem proved in many other papers, and our main focus is the
bifurcation structure of the problem.

We state and prove our main result in Section 2. We will use R(T ) for the range space, and
N(T ) for the null space of a linear operator T .

2 Main Results and Proof

We first set up the abstract framework of the problem, and we will also recall the classical Krein-
Rutman theorem and a secondary bifurcation theorem by Crandall and Rabinowitz [5].

Suppose that Y is an ordered Banach space, i.e. there is a cone KY ⊂ Y (a nonempty convex
closed subset such that KY ∩ (−KY ) = {0}) and a partial order “≤” such that x ≤ y if and only
if x − y ∈ KY . Let X ⊂ Y be a Banach space. Then X inherit the partial order from Y , and



KX = KY ∩X is also a cone in X. We assume that the interior
o

KX of KX is nonempty. We say
that x > 0 if x ∈ KY .

We assume that A : X → Y is a linear operator such that T ≡ A−1 : Y → Y is a linear

compact operator which is strongly positive, i.e. for any x ∈ KY , Tx ∈
o

KY (which is nonempty

since its subset
o

KX is not.) Then the following Krein-Rutman theorem holds (see [9] or [14]):

Theorem 2.1. Let Y be a real Banach space with an order cone KY with nonempty interior. Then
a linear, compact, and strongly positive operator T : Y → Y has the following properties:

1. T has exactly one eigenvector x with x > 0 and ||x|| = 1. The corresponding eigenvalue is
r(T ) (the spectral radius of T ) and it is algebraically simple;

2. For all λ ∈ C in the spectrum of T with λ 6= r(T ), it follows that |λ| < r(T );

3. The dual operator T ∗ has r(T ) as an algebraically simple eigenvalue with a strictly positive
eigenvector x∗.

To study the anti-maximum principle, we consider the following equation:

(2.1) Au− λu = [λ− λ1(A)]2f,

where A is defined above, λ1(A) = [r(T )]−1 is the principal eigenvalue of A, and f ∈ Y .

To study (2.1) we recall a theorem of secondary bifurcation by Crandall and Rabinowitz ([5]
Theorem 1):

Theorem 2.2. Let W and Y be Banach spaces, Ω an open subset of W and G : Ω → Y be
twice differentiable. Let w : [−1, 1] → Ω be a simple continuously differentiable arc in Ω such that
G(w(t)) = 0 for |t| ≤ 1. Suppose

1. w′(0) 6= 0,

2. dim N(G′(w(0))) = 2, codim R(G′(w(0))) = 1,

3. N(G′(w(0))) = span{w′(0), v} for some v 6∈ span{w′(0)};

4. G′′(w(0))(w′(0), v) 6∈ R(G′(w(0))).

Then w(0) is a bifurcation point of G(w) = 0 with respect to C = {w(t) : t ∈ [−1, 1]} and in some
neighborhood of w(0) the totality of solutions of G(w) = 0 form two continuous curves intersecting
only at w(0).

Theorem 2.2 can be proved by the following more well-known theorem also due to [5] (Theorem
1.7 in [5]):

Theorem 2.3. Let X and Y be real Banach spaces, λ0 ∈ R and let F be a continuously differen-
tiable mapping of an open neighborhood V ⊂ R ×X of (λ0, 0) into Y . Suppose that

1. F (λ, 0) = 0 for λ ∈ R,

2. The partial derivative Fλu exists and is continuous,



3. dim N(Fu(λ0, 0))=codim R(Fu(λ0, 0)) = 1,

4. Fλu(λ0, 0)w0 6∈ R(Fu(λ0, 0)), where w0 ∈ X spans N(Fu(λ0, 0)).

Let Z be any complement of span{w0} in X. Then there exist an open interval I = (−ǫ, ǫ) and
C1 functions λ : I →R, ψ : I → Z, such that λ(0) = λ0, ψ(0) = 0, and, if u(s) = sw0 + sψ(s)
for s ∈ I, then F (λ(s), u(s)) = 0. Moreover, F−1({0}) near (λ0, 0) consists precisely of the curves
u = 0 and (λ(s), u(s)), s ∈ I.

Our main result is the following:

Theorem 2.4. Let Y be an ordered Banach space with an order cone KY , and let X ⊂ Y be a
Banach space with an order cone KX = KY ∩X having nonempty interior. Suppose that A : X → Y
is a linear operator such that A−1 : Y → Y is a linear compact operator which is strongly positive.
Let λ1(A) = [r(A−1)]−1 be the principal eigenvalue of A, and let ϕ1 and ϕ∗

1 be the normalized
principal eigenfuntions of A−1 and (A−1)∗. Then, for equation

(2.2) Au− λu = f,

1. If λ < λ1(A) and f ∈ KY (f 6= 0), then u ∈
o

KY ;

2. If f ∈ Y and 〈ϕ∗

1, f〉 > 0, then there exists δf > 0 such that when λ1(A) < λ < λ1(A) + δf ,

−u ∈
o

KY , where 〈·, ·〉 is the duality between Y ∗ and Y .

Corollary 2.5. Suppose that the conditions in Theorem 2.4 are satisfied. If f ∈ KY (f 6= 0), then

when λ1(A) < λ < λ1(A) + δf , −u ∈
o

KY .

Proof of Theorem 2.4. Let W = R×X. Define G : W → Y by G(λ, u) = Au−λu− [λ−λ1(A)]2f .
Then G(w) = 0 has a family of solutions w(t) = (λ1(A), tϕ1) for t ∈ R, where ϕ1 > 0 is the positive
eigenvector of A−1ϕ1 = r(A−1)ϕ1 = [λ1(A)]−1ϕ1 such that ||ϕ1||Y = 1. We verify the conditions
in Theorem 2.2. In the following we use λ1 = λ1(A). Obviously G is differentiable as it is linear
in u and quadratic in λ. First w′(0) = (0, ϕ1) 6= (0, 0). The derivatives of G are as follows: for
(s, v), (r, z) ∈W ,

G′(λ, u)[(s, v)] = −su− 2s(λ− λ1)f +Av − λv,

G′′(λ, u)[(s, v), (r, z)] = −2srf − sz − rv.
(2.3)

Suppose that (s, v) ∈ N(G′(w(0))), then Av − λ1v = 0, and s ∈ R, thus N(G′(w(0))) =
span{(1, 0), (0, ϕ1)} = span{(1, 0), w′(0)}. Suppose that y ∈ R(G′(w′(0))), then there exists
(s, v) ∈W such that Av − λ1v = y, thus we have

(2.4) 〈ϕ∗

1, Av〉 − λ1〈ϕ
∗

1, v〉 = 〈ϕ∗

1, y〉.

By using (A−1)∗ϕ∗

1 = λ−1
1 ϕ∗

1, we obtain 〈ϕ∗

1, y〉 = 0. On the other hand, by the Fredholm the-
ory of compact operators, the equation (I − λ1A

−1)v = A−1y is solvable if 〈ϕ∗

1, y〉 = 0. Hence
R(G′(w′(0))) = {y ∈ Y : 〈ϕ∗

1, y〉 = 0} which is codimension one. Finally, G′′(w(0))[(1, 0), w′(0)] =
−ϕ1 6∈ R(G′(w′(0))) since 〈ϕ∗

1,−ϕ1〉 6= 0 since they are both positive. Therefore by Theorem 2.2,
the solution set of G(w) = 0 near w(0) = (λ1, 0) consists of two intersecting curves.

Let W = span{w′(0)}⊕Z, where Z = R×Z1, and Z1 is a compliment of span{ϕ1} in X. We
define F : R×Z → Y by F (t, (µ, v)) = G(w(t) + (µ, v)). Since Ψ : R×Z →W is an isomorphism



near (0, (0, 0)), then the study of G(w) = 0 near (λ1, 0) is equivalent to F (t, (µ, v)) = 0. We can
apply Theorem 2.3 to F defined above, and the set of nontrivial solutions of F = 0 is t = φ(s),
(µ, v) = s(1, 0) + sψ(s), where φ : (−δ, δ) → R and ψ : (−δ, δ) → Z are continuous, and φ(0) = 0,
ψ(0) = (0, 0). Indeed the partial derivative of F respect to the second argument can be written as

(2.5) F(µ,v)(0, (0, 0))[(η, z)] = Az − λ1z,

where η ∈ R and z ∈ Z1. Thus N(F(µ,v)(0, (0, 0))) = span{(1, 0)}. This implies the nontrivial
solutions of G(w) = 0 can be written as w = (λ(s), u(s)) = w(φ(s)) + s(1, 0) + sψ(s) = (λ1 + s +
sψ1(s), φ(s)ϕ1 + sψ1(s)), where ψ(s) = (ψ1(s), ψ2(s)), and s ∈ (−δ, δ). We calculate φ′(0). For
φ(s) in Theorem 2.3, if Fuu is also continuous, then (see [11] page 507)

(2.6) φ′(0) = −
〈ϕ∗

1, F(µ,v)(µ,v)(0, (0, 0))[(1, 0), (1, 0)]〉

2〈ϕ∗

1, Ft(µ,v)(0, (0, 0))[(1, 0)]〉
.

For F defined here, F(µ,v)(µ,v)(0, (0, 0))[(1, 0), (1, 0)] = −2f , Ft(µ,v)(0, (0, 0))[(1, 0)] = −ϕ1, then
from (2.6), we have

(2.7) φ′(0) = −
〈ϕ∗

1, f〉

〈ϕ∗

1, ϕ1〉
.

If 〈ϕ∗

1, f〉 > 0, then φ′(0) < 0 and we can assume that for a δ1 ∈ (0, δ), sφ(s) < 0 for |s| ≤ δ1.
Therefore for s ∈ (0, δ), λ(s) = λ1 + s + sψ1(s) > λ1, and u(s) = φ(s)ϕ1 + sψ2(s) < 0. Similarly
for s ∈ (−δ, 0), λ(s) < λ1 and u(s) > 0. This completes the proof for part 2 (anti-maximum
principle.) The part 1 is well-known since u satisfies (I − λA−1)u = A−1f > 0, and u is positive,
then u = (I − λA−1)−1A−1f is also positive (see [14]).

Remark 2.6. 1. The classical Krein-Rutman theorem requires that the cone has nonempty inte-
rior, which is not satisfied for the Lp setting in the introduction. But one can easily replace
Theorem 2.1 by the version of Krein-Rutman theorem proved in [2] or [13], and the bifurcation
proof above remains valid without any change.

2. A global bifurcation theorem by Rabinowitz [10] can also be applied to the equation (2.1).
Thus the solution curve (λ(s), u(s)) obtained in Theorem 2.4 is indeed a part of an unbounded
branch. But since it is a linear equation, This branch is a curve for at least λ < λ2(A), where
[λ2(A)]−1 = sup{k ∈ C : k ∈ spt(A−1)}, and spt(A−1) is the spectrum of A−1. However the
branch for λ2(A) > λ > λ1(A) may not be all positive, and it will depend on the function f .

3. In [8], Korman shows that if f(x) is an even front-loaded function (for example, functions
f such that f ′(x) ≥ 0 on (0, π/2)) on [0, π], then the anti-maximum principle (for one-
dimensional Dirichlet problem u′′ + λu = f) holds for this f and all λ ∈ (λ1, λ2). In general,
one does not expect the anti-maximum principle holds for λ > λ2, and a simple counterex-
ample is f(x) ≡ 1. Recently, the author [12] extends the result of Korman to λ ∈ (λ1, λ2) for
a more general class of f .
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