
Fifth Mississippi State Conference on Differential Equations and Computational Simulations,
Electronic Journal of Differential Equations, Conference 10, 2003, pp 257–265.
http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

Exact multiplicity of positive solutions to a

superlinear problem ∗

Junping Shi

Abstract

We generalize previous uniqueness results on a semilinear elliptic equa-
tion with zero Dirichlet boundary condition and superlinear, subcritical
nonlinearity. Our proof is based on a bifurcation approach and a Pohozaev
type integral identity, which greatly simplifies the previous arguments.

1 Introduction

We consider the exact multiplicity of the solutions to the semilinear elliptic
equation

∆u + λf(u) = 0 in Bn,

u > 0 in Bn,

u = 0 on ∂Bn,

(1.1)

where Bn is the unit ball in Rn with n ≥ 3, and λ is a positive parameter.
The uniqueness and exact multiplicity of the positive solutions to (1.1) have
been extensively studied in the past two decades, and in particular a systematic
approach has been developed in [12] and [13]. (More references can be found
therein.)

In this paper we assume that f satisfies

(D1) f ∈ C1(R+), f(0) = 0, f(u) > 0, f ′(u) > 0 for u > 0;

(D2) There exists p, q > 0 such that for all u > 0,

1 ≤ q ≤ Kf (u) ≤ p <
n + 2
n− 2

, where Kf (u) =
uf ′(u)
f(u)

; (1.2)

(D3) Let

Af (u) = (p− 1)
[
nF (u)− n− 2

2
f(u)u

]
+ [f ′(u)u− pf(u)]u, (1.3)

where F (u) =
∫ u

0
f(t)dt. Then Af (u) ≥ 0 for u ≥ 0.
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From (D2), uf ′(u) ≥ f(u) for all u > 0, thus the function f(u)/u is increasing
for u > 0. We define

λ0 =
λ1

f ′(0)
, and λ∞ =

λ1

f ′(∞)
, (1.4)

where f ′(∞) = limu→∞ f(u)/u and λ1 is the principal eigenvalue of −∆ in
H1

0 (Bn). When f ′(0) = 0, we understand that λ0 = ∞ and when f ′(∞) = ∞,
λ∞ = 0. Then our main result is as follows.

Theorem 1.1 Suppose that f satisfies (D1), (D2), and (D3). Then (1.1) has
no solution for 0 < λ ≤ λ∞ and λ ≥ λ0, and has exactly one solution for
λ∞ < λ < λ0. Moreover all solutions lie on a single smooth solution curve in
(λ, u) space, which starts from (λ0, 0) and continues to the left up to (λ∞,∞),
and there is no any turning point on the curve. (see Figures. 1 and 2.)

In particular, for the special nonlinearity f(u) = up+uq, Theorem 1.1 implies
that

Corollary 1.2 Let f(u) = up + uq, and p > q.

1. If q = 1 and p < n+2
n−2 , then λ0 = λ1 and (1.1) has no solution for

0 < λ ≤ λ∞ and λ ≥ λ1, and has exactly one solution for λ∗ < λ < λ1;
(see Figure 1)

2. If q > 1, p < n+2
n−2 and

n(p− 1)
2(q + 1)

≤ 1, (1.5)

then (1.1) has exactly one solution for 0 < λ < ∞. (see Figure 2)

Our result is a generalization of previous results by Kwong and Li [11],
Srikanth [16], Yadava [17], Zhang [18] where (1) of Corollary 1.2 was proved by
different methods, and Yadava [17], Zhang [19] where (2) of Corollary 1.2 was
proved. All these previous proofs seem to be complicated and lengthy, and our
proof is much simpler than all of them. On the other hand, Erbe and Tang [6]
prove the results in Corollary 1.2 even without (1.5), but their result can not
imply Theorem 1.1, and the methods are quite different.

Our method also works for the case of f(u) = uq+up with p = (n+2)/(n−2),
see Section 3 for details. In this case, Brezis and Nirenberg [1] first showed the
existence of a solution.

We use a bifurcation approach similar to that in [12] and [13], and some
techniques in [13] are also used here. But the difference is that instead of
showing that the degenerate solution is neutrally stable (Morse index is 0), we
show that the Morse index of the degenerate solution is very high (≥ 2), thus
turning points can not occur in a branch of solutions (which have Morse index 1)
obtained from the Mountain Pass Lemma. Here the function Af (u) introduced
in (D3) provides a Pohozaev type identity, which is the key of the proof. We
introduce some preliminaries in Section 2, and the main results are proved in
Section 3.
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→
λ

↑u

Fig. 1: Bifurcation diagram
for f ′(0) > 0

→
λ

↑u

Fig. 2: Bifurcation diagram
for f ′(0) = 0

2 Preliminaries

A framework of using the bifurcation method to prove the exact multiplicity of
solutions of (1.1) was established in Ouyang and Shi [12], [13]. (see also [9],
[10], [8].) Here we briefly recall the approach in [13] without the proof since all
proofs can be found in [13]. One remarkable result regarding (1.1) was proved by
Gidas, Ni and Nirenberg [7] in 1979. They showed that if f is locally Lipschitz
continuous in [0,∞), then all positive solutions of (1.1) are radially symmetric.
This result sets the foundation of our analysis of positive solutions to (1.1). We
summarize some basic facts on (1.1).

Lemma 2.1 1. If f is locally Lipschitz continuous in [0,∞), then all positive
solutions of (1.1) are radially symmetric, and satisfy

(rn−1u′)′ + λrn−1f(u) = 0, r ∈ (0, 1),
u′(0) = u(1) = 0;

(2.1)

2. If u is a positive solution to (1.1), and w is a solution of the linearized
problem (if it exists):

∆w + λf ′(u)w = 0 in Bn,

w = 0 on ∂Bn.
(2.2)

then w is also radially symmetric and satisfies

(rn−1w′)′ + λrn−1f ′(u)w = 0, r ∈ (0, 1),
w′(0) = w(1) = 0;

(2.3)

3. For any d > 0, there is at most one λd > 0 such that (1.1) has a
positive solution u(·) with λ = λd and u(0) = d. Let T = {d > 0 :
(1.1) has a positive solution with u(0) = d}, then T is open; λ(d) = λd is
a well-defined continuous function from T to R+.



260 Exact multiplicity of a superlinear problem EJDE/Conf/10

Because of (3), we call R+ × R+ = {(λ, d)|λ > 0, d > 0} the phase space, and
Σ = {(λ(d), d) : d ∈ T} the bifurcation diagram. A solution (λ, u) of (1.1) or
(2.1) is a degenerate solution if (2.2) or (2.3) has a non-trivial solution. At a
degenerate solution (λ(d), u(d)), λ′(d) = 0, and it is referred as a turning point
of Σ if λ′′(0) 6= 0. We define the Morse index M(u) of a solution (λ, u) to be
the number of negative eigenvalues of the following eigenvalue problem

(rn−1φ′)′ + λf ′(u)φ = −µφ, r ∈ (0, 1),
φ′(0) = φ(1) = 0.

(2.4)

It is well-known that the eigenvalues µ1, µ2, . . . of (2.4) are all simple, and the
eigenfunction φi corresponding to µi has exactly i− 1 simple zeros in (0, 1) for
i ∈ N. We also call a solution (λ, u) stable if µ1(u) > 0, otherwise it is unstable.
One of our main tools is the Sturm comparison lemma, which we include for
the sake of completeness.

Lemma 2.2 Let Lu(t) = [(p(t)u′(t)]′ + q(t)u(t), where p(t) and q(t) are con-
tinuous in [a, b] and p(t) ≥ 0, t ∈ [a, b]. Suppose Lw(t) = 0, w 6≡ 0.

1. If there exists v ∈ C2[a, b] such that Lv(t) · v(t) ≤ (6≡)0, then w has at
most one zero in [a, b]. If in addition, w′(a) = 0 or p(a) = 0, then w does
not have any zero in [a, b].

2. If there exists v ∈ C2[a, b] such that Lv(t) ·v(t) ≥ (6≡)0, and v(a) = v(b) =
0, then w has at least one zero in (a, b). If w′(a) = 0 or p(a) = 0, then w
has at least one zero in [a, b] even if v(a) 6= 0.

The proof is standard, and we refer to [12]. In the following, we will always
use the notation Lw(r) = (rn−1w′)′+λrn−1f ′(u)w, where u is a solution to (2.1).
We will say that we apply the integral procedure to two equations: Lu = g1(r)
and Lv = g2(r), which means we multiply the first equation by v and multiply
the second equation by u, integrate both over [0, 1] and subtract, so we obtain∫ 1

0
(vLu − uLv)dr +

∫ 1

0
(vg1 − ug2)dr = 0. The first term can be simplified via

the integration by parts and boundary conditions of u and v. The following are
some calculation which will be used in the proofs.

Lemma 2.3 Let u and w be the solutions of (2.1) and (2.3) respectively, and
let F (u) =

∫ u

0
f(t)dt. Then

Lu = λrn−1[f ′(u)u− f(u)], (2.5)
Lw = 0, (2.6)

L(rur) = −2λrn−1f(u), (2.7)∫ 1

0

rn−1f(u)wdr =
∫ 1

0

rn−1f ′(u)uwdr =
1
2λ

ur(1)wr(1), (2.8)∫ 1

0

rn−1
[
nF (u)− n− 2

2
f(u)u

]
dr =

1
2λ

u2
r(1), (2.9)∫ 1

0

rn−1[2nF (u)− nf(u)u]dr −
∫ 1

0

rn−1[fu(u)u− f(u)]rur(r)dr = 0. (2.10)
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Proof (2.5)-(2.7) are by direct calculations. The first part of (2.8) is obtained
by applying integral procedure to (2.5) and (2.6), and the second equality in
(2.8) is obtained by applying the integral procedure to (2.6) and (2.7). (see also
[12] for a more general identity.) (2.9) is the well-known Pohozaev’s identity,
and it is obtained by integrating rurLu. Finally, (2.10) is obtained by applying
the integral procedure to (2.5) and (2.7), and combining with (2.9). �

3 Proof of Main Results

Note that (D1) and (D2) imply that for u ≥ 0,

f ′(u)u− pf(u) ≤ 0 and f ′(u)u− qf(u) ≥ 0. (3.1)

Lemma 3.1 Suppose that f satisfies (D1) and (D2), and u is a degenerate
solution of (2.1). Let w be a solution of (2.3). Then w must change sign in
(0, 1).

Proof By (2.8), we have
∫ 1

0
rn−1[f ′(u)u − f(u)]wdr = 0. Since q ≥ 1 and

(3.1), then w must change sign in (0, 1). �
The following lemma is the key to our method.

Lemma 3.2 Suppose that f satisfies (D1), (D2) and (D3), and u is a degen-
erate solution of (2.1). Let w be a solution of (2.3). Then w has at least two
zeros in (0, 1).

Proof We use a test function v(r) = w(r) − u(r), where w is a solution
of (2.3). It is easy to see that Lv = −Lu = −λrn−1[f ′(u)u − f(u)] ≤ 0.
Note that the solutions of (2.3) is a one parameter family which can be pa-
rameterized by wr(1), and we will specify wr(1) later. By (3.1) and u >

0, we have
∫ 1

0
rn−1[f ′(u)u − pf(u)]udr < 0. On the other hand, by (2.8),∫ 1

0
rn−1[f ′(u)u − pf(u)]wdr = (2λ)−1(1 − p)ur(1)wr(1). Since f(u) > 0, then

ur(1) < 0 and wr(1) 6= 0. therefore we can choose wr(1) such that∫ 1

0

rn−1[f ′(u)u− pf(u)]udr =
∫ 1

0

rn−1[f ′(u)u− pf(u)]wdr. (3.2)

And by this choice, wr(1) < 0. Therefore, using (2.9), we obtain

1− p

2λ
ur(1)vr(1)

=
1− p

2λ
ur(1)wr(1)− 1− p

2λ
u2

r(1)

=
∫ 1

0

rn−1[f ′(u)u− pf(u)]wdr + (p− 1)
∫ 1

0

rn−1
[
nF (u)− n− 2

2
f(u)u

]
dr

=
∫ 1

0

rn−1Af (u)dr > 0.
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Thus vr(1) > 0. By (3.2),
∫ 1

0
rn−1[f ′(u)u−pf(u)]vdr = 0, and f ′(u)u−pf(u) ≤

0 for u ≥ 0. Hence v must change sign in (0, 1).
Let r1 be the first zero of v left of 1. Then vr(1) > 0 implies v(r) < 0

in (r1, 1). Since Lv ≤ 0 in (0, 1), then by Lemma 2.2, w has at least one
zero in (r1, 1). Let r2(> r1) be the first zero of w left of 1. Then wr(1) < 0
implies w(r) > 0 in (r2, 1), and w(r) < 0 in (r2 − δ, r2) for a small δ > 0. But
w(r1) = v(r1) + u(r1) = u(r1) > 0, so w has another zero in (r1, r2). Therefore
w has at least two zeros in (0, 1). �

Corollary 3.3 Suppose that f satisfies (D1), (D2) and (D3), and u is a de-
generate solution of (2.1). Then the Morse index M(u) ≥ 2, and 0 = µi(u) for
some i ≥ 3.

Proof Since w has at least two zeros in (0, 1), then 0 = µi(u) for some i ≥ 3.
�

Note that in the proof of Lemma 3.2, the condition p < (n + 2)/(n − 2) is
not needed. This fact is useful when discussing the case of critical exponent.

Proof of Theorem 1.1 We first prove the case when f ′(0) > 0. In this case,
λ0 = λ1/f ′(0) is a bifurcation point where a bifurcation from the trivial solutions
occurs. From a theorem of Crandall and Rabinowitz [4] (or see Theorem 3.1
(2) in [13]), the local structure of the solution set of (1.1) near (λ, u) = (λ0, 0)
consists of two parts: Σ0 = {(λ, 0) : λ > 0} and Σ1 = {(λ(s), u(s)) : |s| ≤ δ},
where λ(0) = λ0, u(s) = sφ1 + o(|s|), and φ1 is the positive eigenfunction
corresponding to λ1. Moreover, from Proposition 3.4 (1) in [13], the bifurcation
is subcritical, so λ′(s) ≤ 0 for s ∈ [0, δ]. On the other hand, by Theorem
1.16 in [5], µ1(s) ≤ 0 where µ1(s) is the principal eigenvalue of (2.4) with
u = u(s). If µ1(s) = 0 for some s ∈ (0, δ), then u(s) is a degenerate solution
of (1.1), that contradicts with Corollary 3.3. Thus µ1(s) < 0 and µ2(s) > 0
for s ∈ (0, δ) with some small δ > 0 by the continuity of the eigenvalues with
respect to s. Thus u(s) is a non-degenerate solution with Morse index 1, and
in that case we can apply the implicit function theorem to extend Σ1 further.
Suppose s0 = sup{s > 0 : µ1(s) < 0 and µ2(s) > 0}. If s0 < ∞, then at
s = s0, u(s) is still well-defined, which is the solution of initial value problem
(rn−1u′)′ + λ(s0)rn−1f(u) = 0, u′(0) = 0 and u(0) = s0. So either µ1(s0) = 0
or µ2(s0) = 0 by the continuity, and the Morse index of u(s0) is either 0 or 1,
which again reaches a contradiction with Corollary 3.3. Therefore s0 = ∞, and
λ′(s) < 0 for all s > 0. When f ′(∞) < ∞, then lims→∞ λ(s) = λ∞. When
f ′(∞) = ∞, then lims→∞ λ(s) = 0. (see [15] for the proofs).

Next we prove the case of f ′(0) = 0. In this case, the proof is similar as
long as we can show that for some (λ, s) there exists a solution (1.1) such that
u(s, 0) = s, µ1(s) < 0 and µ2(s) > 0. This can be obtained by the well-
known Mountain Pass Lemma. We verify that Theorem 2.15 in Rabinowitz
[14] can be applied here. (For the convenience of the readers, we include the
statement of the theorem after the proof.) Let p(x, ξ) = f(ξ), and we would
relate conditions (D1-D3) to (p1-p4) in Theorem 3.4. Obviously, (D1) implies
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(p1) and we can assume (p3) since we only consider the case of f ′(0) = 0. Also
if p < (n + 2)/(n− 2) in (D2), then (p2) is true, since[f(u)

up

]′
=

f ′(u)u− pf(u)
up+1

≤ 0, (3.3)

for all u ≥ 0. Finally, we notice that in (D2), if q > 1, then (p4) is also satisfied.
So if q > 1, from the result of Rabinowitz (see Theorem 3.4 below), for each
λ > 0, (1.1) has a positive solution u. If q = 1, we notice that in the proof of
the result of Rabinowitz, (p4) is only used in proving that there is a function u
such that I(u) =

∫
Bn [(1/2)|∇u|2−λP (u)]dx ≤ 0, but that can also be achieved

if we let λ be sufficiently large when q = 1. So in the case of q = 1, (1.1) has a
positive solution u for sufficiently large λ. (Indeed (1.1) may not have a solution
if f ′(∞) < ∞).

Thus in any case of f ′(0) = 0, we obtain a solution (λ, u) of (1.1) by the
Mountain Pass Lemma. On the other hand, from Theorem 1.6 and Corollary 3.1
in Chapter II of Chang [3], the Morse index of (λ, u) is 1 if it is non-degenerate,
and is 0 if it is degenerate. But from Corollary 3.3, the latter case can not
happen, so (λ, u) must satisfy µ1(s) < 0 and µ2(s) > 0. Thus the continuation
arguments in the proof of the case f ′(0) > 0 can also be carried over to here.
Finally, from Proposition 6.6 in [13], since p < (n+2)/(n−2), the domain of the
function λ(s) should be all (0,∞), and lims→0+ λ(s) = ∞. Similar to the case
of f ′(0) > 0, when f ′(∞) < ∞, then lims→∞ λ(s) = λ∞. When f ′(∞) = ∞,
then lims→∞ λ(s) = 0. (see [15] for the proofs). �

The following is Theorem 2.15 and Corollary 2.23 in Rabinowitz [14].
Let Ω be a bounded smooth domain in Rn. Consider the equation

∆u + λp(x, u) = 0 in Ω,

u = 0 on ∂Ω.
(3.4)

Assume that

(p1) p(x, ξ) is locally Lipschitz continuous in Ω× R,

(p2) there exists a1, a2 ≥ 0, such that |p(x, ξ)| ≤ a1 + a2|ξ|s, where 0 ≤ s <
(n + 2)/(n− 2) if n > 2,

(p3) p(x, ξ) = o(|ξ|) as ξ → 0, and

(p4) there exists constants µ > 2 and r ≥ 0 such that for |ξ| ≥ r, 0 < µP (x, ξ) ≤
ξp(x, ξ).

Theorem 3.4 Under assumptions (p1)–(p4), equation (3.4) possesses a posi-
tive classical solution.

Finally we discuss the critical exponent case. In fact, Lemma 3.2 is even true
when p > (n + 2)/(n − 2), but in that case the existence of the solution is not
clear in general. When p = (n+2)/(n− 2) in (D2), and f(u) = up +uq, (D3) is
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also satisfied if (1.5) is also satisfied. So again if we can show the existence of a
solution with Morse index 1, then the uniqueness part is implied by Lemma 3.2
and the continuity argument in the proof of Theorem 1.1. In the case of q = 1,
this can be done by the bifurcation result which we used in the proof of Theorem
1.1, but lims→∞ λ(s) may not be 0 as shown in [1]. In the case of q > 1, (1.5)
can only be satisfied for n ≥ 4, and in that case, it is proved by Brezis and
Nirenberg that (1.1) always has a positive solution via a modified Mountain
Pass Lemma, so we can still prove that the Morse index of the solution is 1 in
that case. So summarizing these discussion, we have

Theorem 3.5 Consider

∆u + λ(up + uq) = 0 in Bn,

u > 0 in Bn,

u = 0 on ∂Bn,

(3.5)

where p = (n + 2)/(n− 2). Then

1. If q = 1, then (3.5) has no solution for 0 < λ ≤ λ∗ and λ ≥ λ0, and
has exactly one solution for λ∗ < λ < λ0, where λ∗ = 0 when n ≥ 4 and
λ∗ = λ1/4 when n = 3;

2. If q > 1, q satisfies (1.5) and n ≥ 4, then (3.5) has no solution for λ ≥ λ0,
and has exactly one solution for 0 < λ < λ0.
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