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1. Introduction

We consider a semilinear elliptic equation

0u + �f(u) = 0 in �;

u= 0 on @�; (1.1)

where � is a bounded smooth domain in Rn; n¿ 1, and � is a positive parameter.
Throughout the paper, we assume that f satis5es

(f1) f∈C1(R;R); f(0) = 0; f′(u)¿ 0 for u∈R;

(f2) lim
u→∞

f(u)
u

=f+ ¿ 0; lim
u→−∞

f(u)
u

=f− ¿ 0:

For the de5niteness, we assume f+¿f−, and when f+ =f−, we use f± to rep-
resent it. We will consider f being either superlinear or sublinear. f is said to be
superlinear if f(u)=u is decreasing in (0;∞) and is increasing in (−∞; 0); and f is
said to be sublinear if f(u)=u is increasing in (0;∞) and is decreasing in (−∞; 0):

The semilinear equation (1.1) with f satisfying (f1), (f2) has been studied exten-
sively since early 1970s. Several di9erent approaches, like variational methods (Morse
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theory), Leray–Schauder degree theory, Lyapunov–Schmidt reduction method, 5xed-
point index theory, have been successfully applied to show the existence of one solution
or multiple solutions to (1.1) under various additional assumptions. In these works,
usually a nonparameterized version of (1.1) is studied

0u + f(u) = 0 in �;

u= 0 on @�: (1.2)

For the results in the study of this problem we refer the readers to [1–3,5–11,13,18,19,
21,22,29] and the references therein.

In this paper, and also in an earlier paper [31], we use a bifurcation approach
combining with Leray–Schauder degree theory to study (1.1) which contains a positive
parameter �. Also contrast to most previous works, we focus on the exact number of
all nontrivial solutions for � in certain parameter range. This is also the reason we
need to add the condition of superlinearity or sublinearity, and it is usually not needed
if we only consider the existence. To state our results, we introduce some notations.
We denote by �k the kth eigenvalue of

0
 + �
= 0 in �;


= 0 on @�: (1.3)

In this paper, we assume all �ks are simple eigenvalues. If f is superlinear, we de5ne

�0
k =

�k

f′(0)
; �∞k;+ =

�k

f+
; �∞k;− =

�k

f−
; and �M

k =
�k

supu∈R
f′(u): (1.4)

For superlinear f, we have f′(u)¿f(u)=u for u∈R. Therefore, for k ∈N; f satisfy-
ing (f1), (f2) and being superlinear, �M

k 6 �∞k;+6 �∞k;− ¡�0
k . If in addition f satis5es

uf′′(u)¿ 0 and f+ =f−, then �M
k = �∞k;+ = �∞k;−. In the case of f+ =f−, we use

�∞k = �k=f±. For k ∈N, we de5ne two open intervals Ik = (�∞k;+; �
0
k), and Ĩk = (�M

k ; �0
k).

We de5ne the Morse index M (u) of a solution u to (1.1) to be the number of negative
eigenvalues of the following problem:

0
 + �f′(u)
= − �
 in �;


= 0 on @�: (1.5)

If u is a solution to (1.1), and 0 is not an eigenvalue of (1.5), then u is a nondegenerate
solution, otherwise it is degenerate.

When f+ =f−, our main results can be summarized as follows (Here we assume
that f satis5es (f1), (f2) and f is superlinear, and for simplicity, we assume that
�M
k = �∞k;±, thus Ik = Ĩk . The more general results will be found in the later part of the

paper.):
(A) If � �∈ ⋃

j∈N Ij, then (1.1) has only the trivial solution u= 0;
(B) If �∈ Ik \

⋃
j �=k Ij, then (1.1) has exactly two nontrivial solutions which are non-

degenerate and with Morse index M (u) = k;
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(C) If �∈ (Ik ∩ Ik+1) \
⋃

j �=k;k+1 Ij, then there exists �¿ 0 such that (1.1) has exactly
four nontrivial solutions for �∈ (�∞k+1; �

∞
k+1 + �) ∪ (�0

k − �; �0
k) (which is: near the

boundary of Ik∩Ik+1), and all of them are nondegenerate with two of them having
Morse index M (u) = k, the other two M (u) = k + 1.

Part (A) and a special case of Part (B) was also proved in [31]. In fact, in [31], we
prove that, if for k ∈N; Ik is separated from all other Ijs (j �= k), then (1.1) has exactly
two nontrivial solutions for �∈ Ik and these nontrivial solutions lie
on two smooth curves �±

k = {(�; u±k (�; ·)): �∈ Ik}; �+
k and �−

k join at (�0
k ; 0), and

lim�→(�∞k )+ ||u±k (�; ·)||L2(�) =∞: Part (B) is also a generalization of a result by Castro
and Lazer [11] and Ambrosetti and Mancini [2]. Both their results are for the nonpa-
rameter equation (1.2). In this paper we give a simple proof based on our bifurcation
approach and eigenvalue comparison argument.

Part (B) gives the exact number of the solutions of (1.1) for � belonging to only
one of Ijs but not in the overlap of more than one Ijs. A general question is: how
many solutions does (1.1) have for � belonging to the overlap of exactly k intervals
Ijs? Or what is the lower bound of the number of the solutions? A conjecture by
Castro and Lazer [11] in our context is: (1.1) has at least 2k nontrivial solutions if �
belongs to the overlap of exactly k Ijs. If f is an odd function, this can be proved using
Lusternik–Schnirelman theory (see [11] Theorem C). Parts (B) and (C) show that 2k
can be the exact number of the nontrivial solutions for k = 1; 2. However, even for
k = 2, the upper bound of the number of the nontrivial solution is not necessarily 2k.
In fact, using the domain perturbation theory in Dancer [16], we show that (Proposition
4.2) for �∈ (I1 ∩ I2) \

⋃
k¿3 Ik , (1.1) can have as many as 8 nontrivial solutions for

�∈ (�∞2 + �; �0
1 − �) (which is: in the interior part of I1 ∩ I2), where �¿ 0 is a small

positive constant. That also shows the result in (C) in some sense is optimal. But, in
Section 7, we also show that when �= (0; �) (the spatial dimension is 1), then (1.1)
has exactly 2k solutions if � belongs to exactly k Ij’s. (See Theorem 7.1.)

In the context of the bifurcation problem, the conjecture above can be in another
form: whether the solution curve bifurcating from (�0

k ; 0) and the one from (�∞k ;∞)
are connected? If this is true, then certainly the conjecture above will be true. A lot
of e9ect has been devoted to improve the lower bound of the number of the solutions,
see for examples [6,5,9,10,18,19] where the existence of three or four nontrivial solu-
tions is shown under various conditions for � in the overlap of Ik ’s. Usually, one of
overlapping Ik ’s is I1 and two of such solutions are of one sign. When all Ik ’s are
not necessarily I1 (or equivalently, f crosses higher eigenvalues,) Amann and Zehn-
der [3] proved there exists at least one solution if � is in an overlap, and recently
Li and Willem [22] proved there exist at least two solutions under some additional
conditions.

We also consider the solution set of (1.1) or (1.2) when f+ �=f−. In this case, f is
called a jumping nonlinearity, and the FuOcPQk spectrum of � is important in determining
the number of the solutions of (1.1) or (1.2). Consider

0
 + a
+ − b
− = 0 in �;


= 0 on @�: (1.6)
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Fig. 1. FuOcPQk spectrum in Qk .

Then the set �= {(a; b)∈R2: (1.6) has a nontrivial solution} is called Fu7c89k spectrum
on �. When �k−1; �k ; �k+1 are all simple eigenvalues, the structure of the � in the
square Qk = (�k−1; �k+1) × (�k−1; �k+1) is known: (see [21,27,29]) there exists two
decreasing curves �1 = �k;1(a) and �2 = �k;2(a) passing through (�k ; �k) such that Qk ∩
�=�1 ∪ �2. Moreover, these two curves divide Qk into three parts: above the curves
(I1), below the curves (I2) and between the curves (I3). (See Fig. 1.)

Our results for jumping nonlinearities are best represented in the form of (1.2) in
the following classi5cation.

Theorem 1.1. Let f satisfy (f1); (f2); and let f be superlinear. Suppose

�k−1 ¡f′(0)¡�k; sup
u∈R

f′(u)¡�k+1; and (f+; f−)∈Qk:

Then (1:2)

has no nontrivial solution if (f+; f−)∈ I2 ∪ �2;
has exactly one nontrivial solution if (f+; f−)∈ I3 ∪ �1;

and has exactly two nontrivial solutions if (f+; f−)∈ I1:

Theorem 1.1 can be viewed as an extension and summary of previous results by
Ambrosetti and Mancini [2], Castro and Lazer [11] and CPac [8]. If �= (0; �) and
n= 1, this result (in fact all the results in this paper) can be extended to the best
possible result: a complete classi5cation of solution set for f satisfying (f1), (f2) and
f being superlinear or sublinear. (See Theorems 7.1 and 7:7.)

The methods in this paper can also be applied to some other semilinear elliptic
equations. Two such examples are

0u + �u− f(u) = 0 in �;

u= 0 on @�; (1.7)
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where f satis5es (f1), (f2), f is either sublinear or superlinear, and

0u + �u− h(x)|u|p−1u= 0 in �;

u= 0 on @�; (1.8)

where p¿ 1 and h(x) is a nonnegative smooth function with m({x∈�: h(x) = 0}) �= 0.
The bifurcation approach has been applied to these problems in Shi and Wang [31],
Castro et al. [12] and Ouyang [24]. (See also the references therein.) Also, in our
results, the nonlinearity f(u) can be a more general form f(x; u) which depends on
the space variable x, and the Laplacian � can be replaced by a general self-adjoint
second order elliptic operator. In most of the paper, we only work on superlinear f,
but all results can be obtained for sublinear f without any diRculty.

We organize our paper in the following way. In Section 2, we give some prelimi-
naries. In Section 3, we prove a more general version of Parts (B) and (C). In Section
4, we study the solution curves bifurcating from the 5rst two eigenvalues. The case of
jumping nonlinearity will be treated in Section 5. In Section 6, we convert our results
for (1.1) to the nonparameterized version (1.2). We study the special case of n= 1 and
�= (0; �) in Section 7. In the paper, we denote by ||u||2 the L2 norm for u∈L2(�),
and by m(�) the Lebesgue measure of �. Also C stands for a generic positive constant.

2. Preliminaries

Let W (x)∈L∞(�). Consider an eigenvalue problem:

0
 + W (x)
= − �i(W )
 in �;


= 0 on @�: (2.1)

It is well-known that, for i= 1; 2; : : : ;

�i(W ) = Mini Maxi

∫
�(|∇z|2 −W (x)z2) dx∫

� z2 dx
; (2.2)

where Maxi is over all z(�= 0)∈Ti, and Mini is over all linear subspaces Ti of H 1
0 (�)

of dimension i. For W1; W2 ∈L∞(�) satisfying W2(x)¿W1(x) almost everywhere,
�i(W2)6 �i(W1). If in addition m({W2 ¿W1})¿ 0, then �i(W2)¡�i(W1).

Let f satisfy (f1), (f2) and let f be superlinear. Then for u∈R \ {0}, we have

f′(0)¡
f(u)
u

¡f′(u)6 sup
u∈R

f′(u);

f(u)
u

¡f+ if u¿ 0; and
f(u)
u

¡f− if u¡ 0:

Consequently, if u(·) is a non-trivial solution of (1.1), then

�j(�f′(0))¿�j(�f(u)=u)¿�j(�f′(u))¿ �j

(
� sup

u∈R
f′(u)

)
;

�j(�f(u)=u) ¿ min{�j(�f+); �j(�f−)}: (2.3)
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As in the introduction, we assume that f+¿f−, and we de5ne Ik = (�∞k;+; �
0
k), and

Ĩk = (�M
k ; �0

k). Obviously Ik ⊂ Ĩk . The following lemma provides the basic spectral
information of a nontrivial solution.

Lemma 2.1. Suppose that f satis=es (f1); (f2) and f is superlinear.
(1) If � �∈ ⋃

j∈N Ij; then (1:1) has no non-trivial solution.

(2) If �∈ Ij \
⋃

k �=j Ĩk ; and u is a non-trivial solution to (1:1); then M (u) = j and u is
nondegenerate.

(3) If �∈ (
⋂

k6i6j Ii) \ (
⋃

i¡k; i¿j Ĩi); and u is a nontrivial solution to (1:1); then
k6M (u)6 j.

Proof. (1) If u is a nontrivial solution of (1.1), then 0 = �j(�f(u)=u) for some j¿ 1.
By (2.3), �j(�f′(0))¿�j(�f(u)=u) = 0¿�j(�f+), thus �∈ Ij.

(2) If �∈ Ij, and � �∈ Ĩk for any other k �= j, then for any k ¡ j; �k(�f′(0)) and
�k(�supu∈R f′(u)) are both nonpositive, and by (2.3), �k(�f′(u))¡ 0 and �k(�f(u)=u)
¡ 0. Similarly, for k ¿ j; �k(�f′(u))¿ 0 and �k(�f(u)=u)¿ 0. On the other hand, 0 =
�l(�f(u)=u) for some l¿ 1. Hence l= j, and by (2.3) �j(�f′(u))¡ 0. Therefore
M (u) = j and 0 �= �k(�f′(u)) for any k ∈N. The proof of (3) is similar to that of
(2).

The bifurcation from in5nity plays an important role in our bifurcation analysis. We
say that �∗ is a point where a bifurcation from in=nity occurs for (1.1) if there exists
a sequence �k → �∗ as k → ∞ such that uk is a solution of (1.1) with �= �k and
||uk ||2 → ∞. Therefore, all the solutions are a priori bounded in L2(�) norm if � is
away from the points where bifurcation from in5nity occur. (See [30] for more on
other results on bifurcation from in5nity.)

Lemma 2.2. Suppose that f satis=es (f1) and (f2); and �∗ is a point where a
bifurcation from in=nity occurs. Then the pair (a; b) = (�∗f+; �∗f−)∈�.

Proof. We de5ne 
k(x) = ||uk ||−1
2 uk(x), then 
k satis5es

0
k + �k f(uk)
uk


k = 0: (2.4)

We multiply (2.4) by 
k and integrate over �, then we obtain

∫
�
|∇
k |2 dx − �k

∫
�

f(uk)
uk


2
k dx= 0: (2.5)

Since f(u)=u is bounded by (f2), then ||
k ||H 1
0 (�) is uniformly bounded. Thus there

exists 
∈H 1
0 (�) such that {
k} has a subsequence (which we still denote by {
k})

converging to 
 strongly in L2(�), and weakly in H 1
0 (�). Let �+ = {x∈�: 
(x)¿ 0}

and �− = {x∈�: 
(x)¡ 0}. Then uk(x) = ||uk ||2
k(x) → ±∞ as k → ∞ for
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x∈�+ ∪ �−, thus

f(uk(x))
uk(x)

→ f+; x∈�+; and
f(uk(x))
uk(x)

→ f−; x∈�−; (2.6)

by Lebesgue Control Convergence Theorem.
Let  ∈C1

0 (�). We multiply (2.4) by  and integrate over �, then we obtain (here
�0 =� \ (�+ ∪ �−))∫

�
∇
k · ∇ dx − �k

∫
�+

f(uk)
uk


k dx

−�k
∫
�−

f(uk)
uk


k dx − �k
∫
�0

f(uk)
uk


k dx= 0: (2.7)

By the weak convergence of 
k and (2.6), we obtain∫
�
∇
 · ∇ dx −

∫
�
(�∗f+
+ − �∗f−
−) dx= 0; (2.8)

and we conclude that 
 is a weak solution of (1.6) with (a; b) = (�∗f+; �∗f−).

In Section 5, we will use a result by Ruf [28] to show that if |f+ − f−| is small
enough and all eigenvalues �ks are simple, then there exists two �∈ [�k=f+; �k =f−]
such that (�f+; �f−)∈�, and these two points are both points where a bifurcation
from in5nity occurs. This is a generalization of bifurcation from a simple eigenvalue
and from in5nity when f+ =f− by Crandall and Rabinowitz [14,26]. In general, it is
not known for (�f+; �f−)∈�, whether � is a point where a bifurcation from in5nity
occurs if it is not a “simple FuOcPQk eigenvalue”.

We close this section by a result about the turning directions of the bifurcation
curves:

Lemma 2.3. Suppose that f satis=es (f1); (f2); f+ =f− and f is superlinear.
(1) If �∗ = �0

j is a point where a bifurcation from the trivial solutions occurs for
(1:1) (see Theorem 1:7 in [14]); and (�(s); u(s)); |s|¡2; is the solution curve of
(1:1) bifurcating from (�; u) = (�0

j ; 0); then �(s)¡�∗ for 0¡ |s|¡2.
(2) If �∗ = �∞j is a point where a bifurcation from in=nity occurs for (1:1) (see

Theorem 1:6 and Corollary 1:8 in [26]); and (�(s); u(s)); |s|¿2; is the solution
curve of (1:1) bifurcating from (�; u) = (�∞j ;∞); then �(s)¿�∗ for |s|¿2:

Proof. We 5rst prove (1). Let �k(s) = �k(�(s)f′(u(s))) and let �k(s) = �k(�(s)f(u(s))=
u(s)) for k ∈N. Then by Lemma 2.1, �k(s)¡�k(s) for |s| suRciently small. On the
other hand, 0 = �k(s) for some k. Since �j(0) = 0 and �k(s) is continuous with respect
to s, then �j(s) = 0 for ¡ |s|¡2. Thus �j(s)¿ 0 and M (u(s)) = j − 1. Now we can
apply Theorem 1:16 in [15], and obtain sign(�′(s)) = sign(s) for 0¡ |s|¡2. In par-
ticular, �(s)¿�∗ for 0¡ |s|¡2. The proof of (2) is similar, but we have to use a
version of Theorem 1:16 in [15] for the bifurcation from in5nity, which is not found
in well-known references. For completeness, we provide such a result in Appendix A.
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3. Exact multiplicity when eigenvalues are separated

Our 5rst main result is

Theorem 3.1. Suppose that f satis=es (f1); (f2); f+ =f−; and f is superlinear. Then
(1:1) has only the trivial solution if � �∈ ⋃

k¿1 Ik ; and has exactly two nontriv-
ial solutions u±k (�; ·) if �∈ Ik \ ⋃

j �=k Ĩ j. Moreover; u±k (�; ·) are nondegenerate and
M (u±k (�; ·)) = k.

Proof. By Lemma 2.1, (1.1) has only the trivial solution if � �∈ ⋃
k¿1 Ik . From Lemma

2.1, if u is a nontrivial solution of (1.1) for �∈ Ik \
⋃

j �=k Ĩ j, then u is nondegenerate
and its Morse index M (u) = k. On the other hand, for such �, the Morse index of the
trivial solution is M (0) = k − 1.

To prove that there are exactly two nontrivial solutions, we use a Leray–Schauder
degree argument. Let X =L2(�). It is well-known that (1.1) is equivalent to 5(u) = u−
�LF(u) = 0; u∈X , where L= (−�)−1 : X → H 2(�) ∩ H 1

0 (�) is a compact operator
and F is the Nemiskii operator associated with f. For any nondegenerate nontrivial
solution u of (1.1) with M (u) = k, there exists a neighborhood Nu of u in X such
that deg(5;Nu; 0) = (−1)k . Similarly, deg(5;N0; 0) = (−1)k−1, where N0 is a small
neighborhood of 0 in X .

Next we show that deg(5;B(R; 0); 0) = (−1)k , where B(R; 0) = {x∈X : ||x||26R};
R¿ 0 is a constant depending only on � and �∈ (�∞k ; �∞k+1). De5ne a homotopy map-
ping: H (t; u) = (1 − t)5u + t[u − �f+Lu]. We notice that for �∈ (�∞k ; �∞k+1); u −
�f+Lu= 0 holds only when u= 0 and deg(I−�f+L; B(R; 0); 0) = (−1)k for any R¿ 0.
So it remains to prove H (t; u) �= 0 where 06 t6 1 and u∈ @B(R; 0) for some R¿ 0.
Suppose this is not true, then by taking a subsequence, we obtain a sequence (tk ; uk),
such that tk → t∗; ||uk ||2 → ∞ and uk=||uk ||2 → u∗ (weakly in H 1

0 (�) and strongly
in L2(�)) as k → ∞. Then similar to the proof of Lemma 2.2, (t∗; u∗) satis5es
0u∗ +(1− t∗)�f+u∗ + t∗�f+u∗ = 0 and u∗ = 0 on @�, which is a contradiction to the
choice of �. Therefore, deg(5;B(R; 0); 0) =deg(u − �f+Lu; B(R; 0); 0) = (−1)k . Then
the additivity of Leray–Schauder degree implies (1.1) has at exactly two (nontrivial)
solutions in B(R; 0) \ N0 for �∈ Ik \

⋃
j �=k Ĩ j.

Now we do a bifurcation analysis to the solutions which we obtain in Theorem 3.1.
For the simplicity, we assume that f+ =f− = supu∈R f′(u) and Ik = Ĩ k = (�∞k ; �0

k). If
there exists �∈ Ik \

⋃
j �=k Ij, then Ik−1∩ Ik+1 = ∅, and there are four possible alignments

of Ijs (j = k − 1; k; k + 1):
(1) Ik−1 ∩ Ik = Ik ∩ Ik+1 = ∅; �0

k−16 �∞k ¡�0
k 6 �∞k+1;

(2) Ik−1 ∩ Ik �= ∅; Ik ∩ Ik+1 = ∅; �∞k ¡�0
k−1 ¡�0

k 6 �∞k+1;
(3) Ik−1 ∩ Ik = ∅; Ik ∩ Ik+1 �= ∅; �0

k−16 �∞k ¡�∞k+1 ¡�0
k ;

(4) Ik−1 ∩ Ik �= ∅; Ik ∩ Ik+1 �= ∅; �∞k ¡�0
k−1 ¡�∞k+1 ¡�0

k .
If �∈ (a; b), where a= max{�0

k−1; �
∞
k } and b= min{�0

k ; �
∞
k+1}, then the hypotheses in

Theorem 3.1 are satis5ed and (1.1) has exactly two nontrivial solutions. In Case (1),
(a; b) = Ik , so Ik is separated from other Ijs, and we obtain a “whole” branch of solu-
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Fig. 2. (A) (a; b) = (�∞k ; �0
k); (B) (a; b) = (�0

k−1; �
0
k); (C) (a; b) = (�∞k ; �∞k+1); (D) (a; b) = (�0

k−1; �
∞
k+1).

tions, which is the case discussed in [31] (see Fig. 2A); in Case (2), (a; b) = (�0
k−1; �

0
k),

there is a bifurcation from the trivial solutions at �= �0
k , and as � → (�0

k−1)
+, the solu-

tions are bounded (see Fig. 2B); in Case (3), (a; b) = (�∞k ; �∞k+1), there is a bifurcation
from in5nity occurring at �= �∞k , and as � → (�∞k+1)

−, the norm of the solutions is
bounded from below (see Fig. 2C); and in Case 4, (a; b) = (�0

k−1; �
∞
k+1), there is no

bifurcation in either end of (a; b) and all solutions satisfy m6 ||u||6M for some
m;M ¿ 0 (see Fig. 2D).

Next we show that in Cases (2), (3) and (4), the loose ends of the bifurcation
curves can be extended a little bit, and we obtain exactly four solutions in the extended
parts:

Theorem 3.2. Suppose that the conditions in Theorem 3:1 are satis=ed. In addition
we assume f+ =f− = supu∈R f′(u); Ĩ k−1 ∩ Ĩ k+1 = ∅, and the bounded interval (a; b)
is de=ned as in above. Then there exists �¿ 0 such that
(1) if a= �0

k−1, then for �∈ (�0
k−1−�; �0

k−1), (1.1) has exactly four nontrivial solutions;
(2) if b= �∞k+1, then for �∈ (�∞k+1; �

∞
k+1+�), (1.1) has exactly four nontrivial solutions.

Proof. Suppose that a= �0
k−1. For �∈ [a; a + �1); �∈ Ik \

⋃
j �=k Ij. Thus (1.1) has ex-

actly two nontrivial solutions u1(�); u2(�) for �∈ [a; a + �1) by Theorem 3.1. Since
ui(a) (i= 1; 2) is nondegenerate, then by the implicit function theorem, there exists
�2 ¿ 0 such that (1.1) has exactly one solution ui(�) near ui(a) for �∈ (a− �2; a). On
the other hand, (a; 0) is a point where a bifurcation from the trivial solutions occurs, so
there exists �3 ¿ 0, such that for �∈ (a− �3; a), (1.1) has another two solutions u3(�)
and u4(�) near (a; 0) for �∈ (a − �3; a). Note that by Lemma 2.3, the bifurcation at
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(a; 0) is subcritical. Then for �4 = min(�2; �3), (1.1) has at least four nontrivial solutions
ui(�) for �∈ (a− �4; a).

We claim that there exists �5 ∈ (0; �4) such that for �∈ (a− �5; a), (1.1) has exactly
these four nontrivial solutions. Suppose it is not true, then there exist a sequence
�k → a−, such that (1.1) has another solution, say u5(�k). If lim�k→a− ||u5(�)||2 =∞,
then �= a is a bifurcation point where a bifurcation from in5nity occurs. By Lemma
2.2, a= �∞j , which is impossible by our assumptions. If lim�→a− ||u5(�k)||2 ¡∞, by
taking a subsequence, we can assume that lim�→a− ||u5(�k)||2 =K¿ 0. Since f(u)=u
is bounded for all u∈R, then by (2.5), ||u5(�k)||H 1

0 (�) is uniformly bounded for all
�ks. Therefore, there exists v∈H 1

0 (�) such that u5(�k) has a subsequence converging
to v strongly in L2(�), and weakly in H 1

0 (�). Moreover, ||v||2 =K and v is a weak
solution to (1.1), with �= a. However, for �= a, (1.1) has exactly three solutions u1(a);
u2(a) and 0. So v is the same as one of these three solutions, and u5(�) must be
identical to one of ui(�) (i= 1; 2; 3; 4), that reaches a contradiction. The proof of (2)
is similar.

4. On the solutions bifurcating from $rst two eigenvalues

For superlinear or sublinear f, we have some better results on the 5rst two solu-
tion curves bifurcated from �0

1 and �0
2. Here for simplicity, we assume f+ =f−. The

following result is essentially known, and we use our bifurcation approach to give a
simple proof for the superlinear part. The result for superlinear f was proved by Castro
et al. [10], and the result for sublinear f is well-known, see for example [1].

Theorem 4.1. Let f satisfy (f1); (f2); f+ =f−.
(1) Suppose that f is superlinear. For �∈ (I1 ∩ I2) \

⋃
i¿2 Ĩ i, (1.1) has exact two

solutions u1(�); u2(�) which change sign, M (ui(�)) = 2, and ui(�) changes sign
exactly once (i= 1; 2);

(2) Suppose that f is sublinear. For �∈ I1 = (�0
1; �

∞
1 ), (1.1) has exact two solutions

u1(�); u2(�) which are of one sign, one positive, one negative, and M (ui(�)) = 0.

Proof. (1) First we recall a result by Bahri and Lions [4]: if f is superlinear, u is a
nontrivial solution of (1.1), and N (u) is the number of nodal domains of u in � (a
nodal domain is a connected component of {x∈�: u(x) �= 0}), then N (u)6M (u). If
�∈ (I1 ∩ I2) \

⋃
i¿2 Ĩ i, then by Lemma 2.1, M (u) = 1 or 2 for any nontrivial solution

u. If u is a sign-changing solution, then N (u)¿ 2, thus M (u) =N (u) = 2 for any
sign-changing solution u whenever �∈ (I1 ∩ I2) \

⋃
i¿2 Ĩ i.

By [26], �= �∞2 is a point where a bifurcation from in5nity occurs, and there are
two solution curves u1(�); u2(�), for �∈ (�∞2 ; �∞2 + �) which bifurcate to the right of
�∞2 . Since ui(�)=||ui(�)||2 → 
2, the eigenfunction corresponding to �2, as � → (�∞2 )−,
then ui(�) (i= 1; 2) are both sign changing solutions, thus M (ui(�)) =N (ui(�)) = 2. In
particular, ui(�) are nondegenerate as long as �∈ (I1 ∩ I2) \

⋃
i¿2 Ĩ i, so the solution

curves {ui(�): �∈ (�∞2 ; �∞2 +�)} can be extended to at least �= �M
3 without any turning

point. On the other hand, by a similar argument as in the proof of Theorem 3.2, there
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is no any other sign-changing solution for �∈ (I1 ∩ I2) \
⋃

i¿2 Ĩ i. The proof for (2) is
well-known, see [1].

For superlinear f, and �∈ I1, it is well known that (1.1) has one positive solution
and one negative solution by Mountain Pass Lemma. So for �∈ (I1∩I2)\

⋃
i¿2 Ĩ i, there

are at least four nontrivial solutions, and by Theorem 3.2, four is the exact number for
�∈ (�∞2 ; �∞2 + �) (and �∈ (�0

1 − �; �0
2) if Ĩ 3 is disjoint from I1 ∩ I2). It is tempting to

think whether four will be the exact number for all �∈ (I1 ∩ I2) \
⋃

i¿2 Ĩ i. However,
we construct an example to show this is not true in general.

Proposition 4.2. There is �¿ 0, a bounded domain � and a smooth superlinear
function f which satis=es (f1); (f2) such that (I1 ∪ I2) ∩ (

⋃
j¿2 Ĩ j) = ∅, and for

�∈ (�∞2 + �; �0
1 − �), (1.1) has exactly eight nontrivial solutions. In these eight so-

lutions, three are positive, three are negative, the other two changes sign exactly
once, four of them have Morse index M (u) = 1 and the other four have Morse index
M (u) = 2.

Proof. Our construction follows Dancer [16]. Let B=B1 ∪ B2, where B1 and B2 are
two disjoint open balls in Rn with radius R1 and R2 (R1 ¿R2). Let E be a compact set
in Rn with measure zero such that UB∪E is connected. We assume that {�m} (m¿ 1)
is a sequence of connected bounded domains such that: (i) given any compact subset
K of B; �n ⊃ K for large n and (ii) given any open set O containing UB∪ E; �m ⊂ O
for large m. Thus �m is a domain close to B with a shape of unequal-sized dumb-bell.

We denote the eigenvalues of −� on H 1
0 (B1) and H 1

0 (B2) by �k(B1) and �k(B2).
The function f is chosen such that (f1), (f2) are satis5ed, f is superlinear, f+ =f−
and

�∞1 (B1)¡�∞1 (B2)¡�0
1(B1)¡�0

1(B2)¡�∞2 (B1);

where �∞k (Bi); �0
k(Bi) are de5ned as in (1.4) for k ¿ 0 and i= 1; 2. The inequality

can be satis5ed if we follow such a procedure: 5rst 5x R1, then choose f such that
�0

1(B1)¡�∞2 (B1), and 5nally choose R2 such that R2 is slightly smaller than R1.
Since �0

1(B1)¡�∞2 (B1) and �0
1(B2)¡�∞2 (B2), then by Theorem 3.1 (or Theorem 1:3

in [31]), there is a solution curve �i (with two branches) bifurcating from (�0
1(Bi); 0),

continuing to the left, and eventually blowing up at (�∞1 (Bi);∞), for (1.1) with
�=Bi; i= 1; 2. All other solutions of (1.1) for �=Bi; i= 1; 2 are separated from
these two curves by the strip {(�; u): �0

1(B2)¡�¡�∞2 (B1); u∈L2(�)}. Moreover, each
�i has two branches �±

i , the solutions on �+
i are positive and the solutions on �−

i
are negative. Therefore, for �∈ (�∞1 (B2); �0

1(B1)), (1.1) with �=B1 has exactly two
nontrivial solutions: u+

1 (�) and u−1 (�); (1.1) with �=B2 has exactly two nontrivial
solutions: u+

2 (�) and u−2 (�). Since u= 0 is also a solution to both equations, then (1.1)
with �=B has exactly eight solutions which are not entirely vanishing in B.

By Theorem 1 in [16], for m suRciently large, for any nondegenerate solution u0

of (1.1) with �=B, (1.1) with �=�m has a solution um close to u0. Moreover,
if the solutions of (1.1) have an a priori bound, then the number of the solutions
of (1.1) with �=�n is the same as that of �=B for large m. So if we choose
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�∈ (�∞1 (B2) + �; �0
1(B1) − �), then a uniform a priori bound can be found since we

excluse the bifurcation points. Therefore, for m large enough, with �=�m, (1.1)
has exactly eight nontrivial solutions. By Theorem 4.1 (1), only two of them are
sign-changing, which can only be the solutions which are close to u+

1 (�) + u−2 (�) and
u−1 (�) + u+

2 (�). The three solutions which has a positive component have to be posi-
tive, and the three which has a negative component have to be negative (this is true
here by Theorem 4.1, but a more general proof can be found in Theorem 2 in [16]).
The Morse indices of these solutions can also be easily computed since the spectral
properties for �=�m are inherited from that of �=B by Theorem 1 in [16].

We conjecture that if �1 and �2 are both simple eigenvalues, then the number of the
nontrivial solutions of (1.1) is always between 4 and 8 for �∈ (I1 ∩ I2) \ (

⋃
i¿2 Ĩ i) if

f satis5es (f1), (f2) and f is superlinear.
For sublinear f, we can construct a similar example. Here, for �∈ (I1∩ I2)\

⋃
i¿2 Ĩ i,

we have one positive solution, one negative solution, both stable (M (u) = 0); two
stable sign-changing solutions (M (u) = 0) and four unstable sign-changing solutions
(M (u) = 1). It is interesting that, in this case, (1.1) possesses some sign-changing
solutions which are stable, and they are the local minimizers of the energy functional.
It was conjectured by Ni [23] that a stable solution of (1.1) with any f must be of
one sign if � is convex, and here we provide an example for the necessity of the
convexity since �m is dumbbell-shaped.

5. Bifurcation from a simple split eigenvalue

In this section, we assume f+ ¿f−. Recall that Ik = (�∞k;+; �
0
k), and Ĩ k = (�M

k ; �0
k).

Our main result is

Theorem 5.1. Suppose that f satis=es (f1); (f2); f is superlinear, and Ik∩
(⋃

j �=k Ĩ j
)

= ∅. Then there exists �¿ 0 such that for f+=f− ∈ (1; 1 + �), there exist �k;+; �k;− ∈
[�∞k;+; �

∞
k;−] such that (1.1) has only the trivial solution if �∈ (�M

k ; �k;+], has exactly
one nontrivial solution if �∈ (�k;+; �k;−] and has exactly two nontrivial solutions if
�∈ (�k;−; �0

k), all these solutions have Morse index M (u) = k. Moreover, all nontrivial
solutions of (1.1) with �∈ Ik lie on two smooth curves �+

k = {(�; u+
i (�; ·)): �∈ (�k;+; �0

k)}
and �−

k = {(�; u−i (�; ·)): �∈ (�k;−; �0
k)}, which join at (�0

k ; 0), and (Fig. 3)

lim
�→(�k;±)+

||u±k (�; ·)||L2(�) =∞: (5.1)

The most parts of the proof are the same as that of Theorem 1.1 in [31]. We brieVy
sketch the proof here: �0

k is a point where a bifurcation from the trivial solutions occurs,
and the bifurcation is subcritical. So �±

k continues to the left. However, since Ik is
separated from other Ĩ j’s, �±

k cannot go beyond �= �∞k;+. So both �+
k and �−

k blow
up before �= �∞k;+. By the same arguments as in the proof of Theorem 3.2, we can
show there are no solutions other than the ones on �±

k . The blow-up points must be
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Fig. 3. Bifurcation curves split at ∞.

points where bifurcation from in5nity occur, so by Lemma 2.2, if �∗ is such a point,
then (�∗f±; �∗f−)∈�, the FuOcPQk spectrum.

The proof can be completed as long as the following proposition is true.

Proposition 5.2. Suppose the assumptions in Theorem 5:1 hold and k¿ 2, then there
exists �¿ 0 and for each f+=f− ∈ (1; 1+�), there exist exactly two numbers �= �k;±
in Ik such that (�f+; �f−)∈�. Moreover, �k;± are both the points where a bifurcation
from in=nity occur.

Proof. Let p=f+=f−. From the properties of FuOcPQk Spectrum, near (a; b) = (�k ; �k),
there exist two decreasing curves b= �k;1(a) and b= �k;2(a) and a neighborhood N
of (�k ; �k) such that � ∩ N = {(a; �k; i(a)): a∈ (�k − 2; �k + 2); i= 1; 2}. Thus there
exists �¿ 0 such that for p∈ (1− �; 1+ �); b=pa and b= �k; i(a) (i= 1; 2) has exactly
one intersection point in N . Moreover, �; 2 and N can be chosen in the way that
({(a; pa): a¿ 0; p∈ (1 − �; 1 + �)} ∩ {(a; b): a¿�k; b¡�k}) ⊂ N . It is known [29]
that for Pk = {(a; b): �k−1 ¡a; b¡�k}; � ∩ (Pk−1 ∪ Pk) = ∅. So inside Qk , there are
exactly two points on b=pa which belong to �, say (a1; pa1) and (a2; pa2). Then
�= �k;± are de5ned as �k;+ = a1=f+ and �k;− = a2=f+. (We can re-index them to make
�k;+ ¿�k;−.)

Next we prove that the bifurcation from in5nity occur at �k;±. We rewrite (1.1) as

0u + �f+u+ + �f−u− + N (�; u) = 0;

where

N (�; u) = �
[
f(u+)
u+ − f+

]
u+ − �

[
f(u−)
u−

− f−

]
u−:

Let w= u=||u||22, then the equation of w is

0w + �f+w+ + �f−w− + N1(�; w) = 0;

where N1(�; w) = ||w||22N (�; ||w||−2
2 w). It is standard to prove ||N1(�; w)||2 = o(||w||2)

as ||w||2 → 0 (which we omit here). Then from Theorem 1 in [28], �= �k;± are
points where a bifurcation from the trivial solutions occurs, which is an extension of
the bifurcation from simple eigenvalue by Crandall and Rabinowitz [14]. In [28], it is
showed that � is a bifurcation point for 0u+�u+�u− +N (�; u) = 0 in � and u= 0 on
@� if (�; �+�)∈�. The result in [28] cannot be directly applied here since the equation
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is in a slightly di9erent form, but the proof still works without essential change. So
we would just refer the proof to [28]. By the inverse transformation u=w=||w||22, we
conclude that �k;± are points where a bifurcation from in5nity occurs.

Now we complete the proof of Theorem 5.1.

Completion of Proof of Theorem 5:1. The solution curves �±
k which bifurcate from

(�0
k ; 0) must blow up to ∞ at �= �k;±. Suppose that the two branches both blow up at

the �= �k;+(¡�k;−). �k;− is still a point where a bifurcation from in5nity occurs, and
by Lemma 2.3, the bifurcation is subcritical. So there exists a solution curve �∗ (it is
a curve since all solutions are nondegenerate), which continues to the right of �k;−.
By our assumptions, �∗ cannot go beyond �= �0

k , and by the same proof as in that
of Theorem 3.2, �∗ cannot meet the line of trivial solutions. So the only possibility is
that �∗ blows up at �= �k;+. However, the bifurcation from in5nity at �= �k;+ has to
be subcritical by Lemma 2.3, so that is a contradiction. Therefore, �+

k and �−
k have to

blow up at two di9erent points �k;+ and �k;− respectively. There are no other solutions
by the previous arguments in the proof of Theorem 3.2.

6. Equation without the parameter �

In this section, we restate our main results in the context of (1.2), the nonparame-
terized version. First, in the context of (1.2), our main results can be summarized as
follows (we assume that f satis5es (f1), (f2) and f is superlinear):
(A) If �k 6f′(0)¡f±6 �k+1, then (1.2) has only the trivial solution u= 0;
(B) If �k−1 ¡f′(0)¡�k ¡f±6 supu∈R f′(u)¡�k+1, then (1.2) has exactly two

nontrivial solutions which are nondegenerate and with Morse index M (u) = k;
(C1) There exists �¿ 0, such that if �k−1 − �¡f′(0)¡�k−1 ¡�k ¡f±6 supu∈R

f′(u)¡�k+1 and �k=�k−1 ¡f±=f′(0), then (1.2) has exactly four nontrivial so-
lutions;

(C2) There exists �¿ 0, such that if �k−1 ¡f′(0)¡�k ¡�k+1 ¡f± ¡�k+1 + � and
�k+1=�k ¡f±=f′(0), then (1.2) has exactly four nontrivial solutions;

(D) If f′(0)¡�1 ¡�2 ¡f±6 supu∈R f′(u)¡�3, then (1.2) has exactly two non-
trivial sign-changing solutions which are nondegenerate and with Morse index
M (u) = 2;

Result (B) here is essentially the same as the results of Castro and Lazer [11] and Am-
brosetti and Mancini [2]. The conversion of the results for (1.1) to (1.2) is obvious. Let
g(�; u) = �f(u), then �k=f+ ¡�¡�k=f′(0) is equivalent to gu(�; 0)¡�k ¡gu(�;+∞).
So the conditions on the above results can all be converted from the conditions
on equation (1.1). Notice that in above f+ �=f− is allowed, which is equivalent
�∈ (max{�k=f+; �k =f−}; �0

k), not in the gap of two FuOcPQk spectrum points. So the
conclusions above can be easily drawn from the results in previous section.

Theorem 5.1 can also be restated for (1.2). In fact, we can combine Theorem 5.1
and a continuation argument to prove the following result which completely classi5es
the solution set when f′(0)∈ (�k−1; �k) and (f+; f−)∈Qk :
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Theorem 6.1. Let f satisfy (f1); (f2), and let f be superlinear. Suppose �k−1 ¡
f′(0)¡�k; supu∈R f′(u)¡�k+1, and (f+; f−)∈Qk . Then (1.2)

has no nontrivial solution if (f+; f−)∈ I2;
has exactly one nontrivial solution if (f+; f−)∈ I3 \ I2;
and has exactly two nontrivial solutions if (f+; f−)∈ I1:

Proof. From (A), (1.2) has no nontrivial solution when (f+; f−)∈Pk−1 = [�k−1; �k ]×
[�k−1; �k ], the lower-left square block of Qk ; and from (B), (1.2) has exactly two
nontrivial solutions when (f+; f−)∈Pk = [�k ; �k+1]× [�k ; �k+1], the upper-right square
block of Qk . So we shall only consider (f+; f−)∈Qk \ (Pk−1 ∪ Pk). Because of the
symmetry, we can further assume that f+ ¿f− so (f+; f−) is in the lower-right
block Pk;k−1 = [�k ; �k+1] × [�k−1; �k ].

Let N be the neighborhood de5ned in Proposition 5.2. We 5rst assume that
(f+; f−)∈Pk;k−1 ∩ N . We construct a function g : R → R such that g satis5es
(f1), (f2) and g is superlinear. Moreover g± =f±; �k ¿g′(0)¿f′(0); ug′′(u)¿ 0 (so
supu∈R g′(u) =f+), and

supu∈R g′(u)
g′(0)

=
g+

g′(0)
6min

(
�k+1

�k
;

�k

�k−1

)
: (6.1)

We 5rst consider equation 0u + g(u) = 0 in �, and u= 0 on @�. We embed 0u +
g(u) = 0 into a family of equations 0u + �g(u) = 0, then Theorem 5.1 can be ap-
plied: Ik ∩ (

⋃
j �=k Ĩ j) = ∅ by (6.1). Thus for �∈ [�k=f+; �k =f−], there exists �k;± such

that 0u + �g(u) = 0 has no nontrivial solution when �∈ [�k=f+; �k;+], has exactly
one nontrivial solution when �∈ (�k;+; �k;−], and has exactly two nontrivial solutions
when �∈ (�k;−; �k =f−]. Notice that when � increases from �k=f+ to �k=f−, the pair
(�f+; �f−) slides along the ray b=pa (p=f+=f−) crossing the FuOcPQk spectrum
curves twice. So the result in Theorem 1.1 is true for g(u) and (f+; f−)∈Pk;k−1 ∩N .

Next, we prove it is true for f(u) and (f+; f−)∈Pk;k−1 ∩ N . De5ne a homo-
topy: H1(t; u) = t5(u) + (1 − t)>(u),where t ∈ [0; 1]; 5(u) = u − LF(u); >(u) = u −
LG(u); L= (−�)−1 as in the proof of Theorem 3.2, F and G are the Nemiskii oper-
ator associated with f and g, respectively. For any nontrivial solution u of 5(u) = 0;
deg(5;Nu; 0) = (−1)k for a small neighborhood Nu of u since u is nondegenerate and
has Morse index k. And the same is true for >. Also, we have deg(5;N0; 0) =
deg(>;N0; 0) = (−1)k−1. For R¿ 0 large enough, H (t; u) �= 0 for t ∈ [0; 1] and u∈
@B(R; 0), since for h(t; u)=tf(u)+ (1− t)g(u); h′(t;±∞) =f±; (h′(t;+∞); h′(t;−∞)) �∈
�, so all solutions are a priori bounded by the same argument in the proof of Theorem
3.2. Therefore the number of the solutions for (1.2) is the same as that of 0u+g(u) = 0.

Finally we prove it is true for f(u) and (f+; f−)∈Pk;k−1 \ N . First, we assume
that (f+; f−)∈ I3. Let (a1; b1) and (a2; b2) be two points in I3 ∩ Pk;k−1 such that
t(a1; b1)+(1− t)(a2; b2) ⊂ I3∩Pk;k−1. Let gi (i= 1; 2) be two functions satisfying (f1),
(f2) and gi be superlinear. Moreover gi+ = ai; gi− = bi; �k ¿g′i(0)¿�k−1; i= 1; 2.
De5ne a homotopy: H1(t; u) = t51(u) + (1 − t)52(u), where t ∈ [0; 1]; 5i(u) = u −
LGi(u); Gi is the Nemiskii operator associated with gi for i= 1; 2. Then similar to
above, deg(5i; Nu; 0) = (−1)k for any small neighborhood of the nontrivial solution
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u and deg(5i; N0; 0) = (−1)k−1 for any small neighborhood of the trivial solution 0.
And for R¿ 0 large enough, H1(t; u) �= 0 for t ∈ [0; 1] and u∈ @B(R; 0) since the path
avoids the FuOcPQk spectrum curves, so all solutions are a priori bounded by Lemma 2.2.
In particular, the number of the solutions for 0u + g1(u) = 0 is the same as that of
0u+g2(u) = 0. Since I3∩Pk;k−1 is path-connected, then for any (a; b)∈ I3∩Pk;k−1, there
exists (a1; b1)∈ I3 ∩ N and a piecewise linear path which is entirely inside I3 ∩ Pk;k−1

connecting (a; b) and (a1; b1). Then for any (a; b)∈ I3 ∩ Pk;k−1, if (f+; f−) = (a; b),
then (1.2) has exactly one nontrivial solution. The proof for (f+; f−)∈ I1 or I2 is
similar.

7. The special case of n = 1

In this section, we consider (1.1) for n= 1 and �= (0; �):

u′′ + �f(u) = 0; x∈ (0; �); u(0) = u(�) = 0: (7.1)

We would completely classify all the solutions of (7.1) for f satisfying (f1), (f2) and
f being superlinear or sublinear. Our approach here is similar to [31] Section 4. Our
main result is

Theorem 7.1. Suppose that f satis=es (f1); (f2); and f is superlinear. For k ∈N;
there exists �k;+; �k;− ∈ [�∞k;+; �

∞
k;−] such that the set of nontrivial solutions � of (1:1)

satis=es

�=
⋃
k∈N

�±
k ; �±

k = {(�; u±k (�; ·)): �∈ (�k;±; �0
k)}: (7.2)

Moreover; @xu+
k (�; 0)¿ 0 (resp. @xu−k (�; 0)¡ 0); and u+

k (�; ·) (resp u−k (�; ·)) has ex-
actly k − 1 zeros in (0; �); all solutions of (1:1) which have exactly k − 1 zeros lie
on the curve �±

k ; M (u±k ) = k; and there are no turning points on �±
k . Furthermore;

�k;+ = �k;− if k is even; and �k;+ �= �k;− if k is odd.

The theorem gives the exact count of the nontrivial solutions of (1.1) for any �¿ 0.
In fact if f+ =f−, then (1.1) has exactly 2p nontrivial solutions if � belongs to
exactly p intervals Ij’s. The number of solutions can be an odd number for some � if
f+ �=f−. In fact, in the proof we would show that if f′(0); f+ and f− are given,
then �k;+ and �k;− can be explicitly calculated, so the exact number of solutions for
any �¿ 0 can always be determined.

To prove the theorem, we need the following preliminaries. First,


′′ + �
= 0; x∈ (0; �); 
(0) =
(�) = 0 (7.3)

possesses a sequence of eigenvalues {�j = j2} such that �1 ¡�2 ¡ · · ·¡�j → ∞ as
j → ∞; �j is a simple eigenvalue, any eigenfunction 
j corresponding to �j has exactly
j − 1 zeros in (0; �) and all zeros of 
j in [0; �] are simple. (A simple zero of 
j is
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a point ∈ [0; �] such that 
j(x) = 0 and 
′
j(x) �= 0). We de5ne

S+
j = {v: v(0) = v(�) = 0; vx(0)¿ 0; v has exactly j − 1 zeros in

(0; �); and all zeros of v in [0; �] are simple};
S−
j =−S+

j ; and Sj = S+
j ∪ S−

j :

Then Theorem 2:3 of [25] can be applied to (7.1), and we have the following lemma.

Lemma 7.2. For any k ∈N; (7:1) possesses a continuum of solutions �k in R × E
with �k ⊂ (R× Sk) ∪ {(�0

k ; 0)} and �k is unbounded; where E =C2[0; �].

Let �+
k =�k ∩ S+

k and �−
k =�k ∩ S−

k . To prove Theorem 7.1, we need to 5nd a
global parameter for each component �±

k . We show we can use the max u(�; ·) to
parameterize �+

k , and min u(�; ·) to parameterize �−
k .

If u(�; ·)∈ Sk is a nontrivial solution of (7.1) with k ¿ 2, then u(�; ·) is a rescaling
and periodic extension of a positive solution and a negative solution. In fact, (u; ux) is
a solution of a 5rst order system:

u′ = v; v′ = − �f(u); u(0) = 0; v(0) �= 0: (7.4)

For the function f which we consider here, each solution orbit of (7.4) in (u; v) plane
is a periodic orbit centered at origin from the phase portrait analysis of (7.4).

Lemma 7.3. Suppose that f satis=es the conditions in Theorem 7:1. Given k ∈N; for
any d¿ 0 there exists exactly one �¿ 0 such that (1:1) has a solution u(�; ·)∈ S+

k
and maxx∈[0;�] u(�; x) =d. Similar result hold for d¡ 0 and S−

k .

Proof. We prove the lemma for k = 2m+1 where m∈N. The case when k is an even
number is similar. Consider the initial value problem

u′ = v; v′ = − f(u); u(0) =d; v(0) = 0: (7.5)

Let (u(x); v(x)) be the unique solution of (7.5). For any d¿ 0, there exists a unique
T1 =T1(d)¿ 0 such that u(T1) = 0; u(x)¿ 0 and v(x)¡ 0 for x∈ [0; T1), and there ex-
ists a unique T2 =T2(d) such that v(T1+T2) = 0; u(x)¡ 0 and v(x)¡ 0 for x∈ (T1; T1+
T2). Let v(T1) = − v0 ¡ 0 for some v0 ¿ 0. Then

u′ = v; v′ = − f(u); u(0) = 0; v(0) = v0 (7.6)

has a unique solution (u1(x); v1(x)) for x¿ 0. In particular, (u1(x); v1(x)) = (u(x +
T1); v(x + T1)) from the property of (7.6). Therefore, u1(x) with x∈ [0; 2(m + 1)T1 +
2mT2] is a solution of u′′+f(u) = 0; u(0) = 0; u(2(m+1)T1+2mT2) = 0, and u1 has ex-
actly 2m+1 zeros in (0; 2(m+1)T1+2mT2). Let T = 2(m+1)T1+2mT2; u2(x) = u1(Tx),
then u2 is a solution of (7.1) with �=T 2�−2. Since T1 and T2 are uniquely determined
by d¿ 0, thus T and � are also uniquely determined by d.

Lemma 7.3 implies that �+
k can be written as a graph {(�(d); d): d¿ 0} in R+×R+.

Another reason that the solutions of (7.1) can be classi5ed is that the FuOcPQk spectrum
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in the case of ordinary di9erential equation is completely known. In fact, FuOcPQk (see
[20, Lemma 42:2, p. 323]) proved

Lemma 7.4. Consider


′′ + a
+ − b
− = 0; x∈ (0; �); 
(0) =
(�) = 0: (7.7)

Let �= {(a; b)∈R2: (7:7) has a nontrivial solution}. Then �=
⋃5

i=1 �i; where
�1 = {(1; b): b∈R}; �2 = {(a; 1): a∈R};

�3 =
⋃
k∈N

�3; k ; �3; k =
{

(a; b):
a1=2b1=2

a1=2 + b1=2 = k; a; b¿ 1
}

;

�4 =
⋃
k∈N

�4; k ; �4; k =
{

(a; b):
a1=2(b1=2 − 1)
a1=2 + b1=2 = k; a; b¿ 1

}
;

and

�5 =
⋃
k∈N

�5; k ; �5; k =
{

(a; b):
(a1=2 − 1)b1=2

a1=2 + b1=2 = k; a; b¿ 1
}

:

Relating Lemma 7.4 to Fig. 1, we 5nd that for each k ∈N; �3; k is a decreasing curve
emerging from (a; b) = (2k; 2k); �4; k and �5; k are two decreasing curves emerging from
(a; b) = (2k+1; 2k+1). In particular, it implies, for an even number 2k, the two curves
of FuOcPQk spectrum are coincident, and for an odd number 2k + 1¿ 3, the two curves
are distinct.

The last tool we need is a comparison argument based on Sturm comparison lemma.
Following [31], we consider the solution w(u; ·) of

w′′ + �f′(u(�; x))w= 0; x∈ (0; �); w(0) = 0; w′(0) = 1; (7.8)

where u= u(�; ·) is a solution of (7.1). The following lemma is similar to Lemma 4:3
in [31], so we omit the proof.

Lemma 7.5. Suppose that u(�; ·) is a solution of (7:1); and w(u; ·) is the solution of
(7:8); then M (u(�; ·)) = k if and only if w(�; ·) has exactly k zeros in (0; �).

The key result for proving the nonexistence of turning points is the following lemma.

Lemma 7.6. Suppose that f satis=es the conditions in Theorem 7:1. If (�; u(�; ·))∈ Sk

is a solution of (7:1); then M (u(�; ·)) = k; and w(u; �) �= 0. In particular; u(�; ·) is
nondegenerate.

Proof. Since u∈ Sk , then all zeros of u(�; ·) are simple. By the maximum principle
and that f(u)u¿ 0 for u �= 0; u(�; ·) has no positive local minimum and negative local
maximum. Thus u(x) = u(�; x) has k−1 zeros in (0; �) and ux(x) = ux(�; x) has k zeros
in (0; �). The functions u(x); w(x) =w(�; x) and ux(x) satisfy the following equations,
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respectively

u′′ + �
f(u)
u

u= 0; w′′ + �f′(u)w= 0; u′′x + �f′(u)ux = 0:

Since f is superlinear, then f′(u)¿f(u)=u for u �= 0. By the Sturm comparison lemma,
between any two consecutive zeros of u, there exists at least one zero of w. Since
u(0) = u(�) = 0, then u has k + 1 zeros in [0; �]. Thus w has at least k zeros in (0; �).
On the other hand, between any two consecutive zeros of w, there exists at least one
zero of ux. So if w has at least k + 1 zeros in (0; �), plus w(0) = 0, then ux has at
least k + 1 zeros, which contradicts with ux having only k zeros. Thus w has at most
k zeros in (0; �). Therefore, w has exactly k zeros in (0; �). w(�) = 0 will lead to a
similar contradiction. So w(�) �= 0 and by Lemma 7.5, M (u(�; ·)) = k.

Now we are ready to prove Theorem 7.1.
Proof of Theorem 7:1. By Lemma 7.2, for k ∈N, there exists a solution curve �k

bifurcating from (�0
k ; 0), and the solution u(�; ·) on �k has exactly k−1 zeros in (0; �).

By Lemma 7.6, M (u(�; ·)) = k, then the k-th eigenvalue �k(u(�; ·))¿ 0. Therefore, by
Lemma 2.3, the solution curve �k bends to the left of �0

k since f is superlinear. By
Lemma 7.3, �+

k = {(�k(d); d): d¿ 0}. By Lemma 7.6, (7.1) has no nontrivial degen-
erate solution, thus �′k(d) �= 0 for any d¿ 0 and in fact �′k(d)¡ 0 since it is true
for d¿ 0 small. So �+

k can also be parameterized by �. Let �∗ = inf{�: (�; d)∈�+
k }.

�∗ ¿ 0 since f satis5es (f2), then (7.1) has only trivial solution if �¿ 0 is small.
Therefore �∗ must a point where �+

k blows up. From Lemma 2.2, (�∗f+; �∗f−)∈�,
and since �+

k ⊂ S+
k , then the “eigenfunction” 
 corresponding to (�∗f+; �∗f−) also

belongs to S+
k . From Lemma 7.4, there is exactly one �= �k;+ ∈ (0; �0

k) such that
(�k;+f+; �k;+f−)∈� and the corresponding “eigenfunction” 
∈ S+

k . Hence, �∗ = �k;+.
The proof for �−

k is similar. By Lemma 7.3, there are no other solutions of (7.1)
which have k − 1 zeros in (0; �) except the ones on �k . The last statement follows
directly from Lemma 7.4.

A complete classi5cation of solutions for (1.2) can also be obtained when n= 1,
which is a generalization of Theorem 6.1 for this special case. We consider

u′′ + f(u) = 0; x∈ (0; �); u(0) = u(�) = 0: (7.9)

From Lemma 7.4, we know that for k¿ 2, there exists two decreasing curves b= �k;1(a)
and b= �k;2(a) emerging from (�k ; �k), and we assume that �k;1(a)¿ �k;2(a). When k
is even, �k;1(a) = �k;2(a), and when k is odd, �k;1(a)¿�k;2(a). For k¿ 2, we de5ne

Jk = {(a; b): �k;1(a)¿b¿�k;2(a)}; Ik = {(a; b): �k+1;2(a)¿b¿�k;1(a)};
�k;1 = {(a; b): b= �k;1(a)}; �k;2 = {(a; b): b= �k;2(a)}:

And

J1 = {(a; b): a¿�1; 0¡b¡�1} ∪ {(a; b): b¿�1; 0¡a¡�1};
I1 = {(a; b): a¿�1; b¿�1; b¡�2;2(a)};
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�1;1 = {(a; b): a¿ �1; b= �1} ∪ {(a; b): b¿ �1; a= �1};
�1;2 = {(a; b): �1¿ a¿ 0; b= �1} ∪ {(a; b): �1¿ b¿ 0; a= �1}:

We also assume that �0 = 0 and I0 = {(a; b): 0¡a¡�1; 0¡b¡�1}. Note that Jk = ∅
if k is even. Then we have the following exact multiplicity result.

Theorem 7.7. Let f satisfy (f1); (f2); and let f be superlinear. Suppose that �k−16
f′(0)¡�k for k¿ 2; and �k−1 ¡f′(0)¡�k for k = 1.
(1) If (f+; f−)∈ Jm∪(�m;1\{(�m; �m)}); then (7:9) has exactly 2(m−k)+1 nontrivial

solutions for m¿ k.
(2) If (f+; f−)∈ Im ∪ �m+1;2; then (7:9) has exactly 2(m− k) + 2 nontrivial solutions

for m¿ k − 1.

In Theorem 7.7, f′(0) can be any positive number, and since f is superlinear, then
f+ ¿f′(0); f− ¿f′(0), our result completely classi5es the solution set for these
f+; f−.

Proof. Similar to the proof in Section 6, we embed equation (7.9) into a one-parameter
family of equations (7.1). Then (7:9) is equivalent to (7:1) with �= 1. For �= 1; �k−16
f′(0)¡�k implies �k−1=f′(0)6 1¡�k=f′(0).

Let (f+; f−)∈ Jm ∪ (�1;m \ {(�m; �m)}) for some m¿ k, and p=f+=f− ¿ 0. In
this case p �= 1. We consider �∈R+, then (�f+; �f−) moves along the ray b=pa,
(a¿ 0). The ray b=pa intersect each �j; i (i= 1; 2; j¿ 1) exactly once. We denote
the intersection points of b=pa and �m; i, (i= 1; 2) by �m;+; �m;−. Then

�1;− ¡�1;+ ¡�2;− = �2;+ ¡ · · ·¡�2k−1;− ¡�2k−1;+ ¡�2k;− = �2k;+ ¡ · · · :
Since (f+; f−)∈ Jm ∪ �m;1, then �m;+¿ 1¿�m;−. By Theorem 7.1, �±

j exists for
�∈ I±j ≡ (�j;±; �0

j ). Thus, 1∈ Im;− but 1 �∈ Im;+. On the other hand, for any j such that
k6 j¡m; 1∈ Ij;± since 1¡�0

k 6 �0
j and 1¿�m;− ¿�j;±. Hence for �= 1, (7.3) has

exactly 2(m − k) + 1 solutions, which are in �±
j ; k6 j¡m and �−

m . The proof for
(f+; f−)∈ Im ∪ �m+1;2 is similar.

We remark that Theorem 7.1 is also true if (f2) is replaced by f(u)=u → ∞ as
u → ±∞. (So f is no longer asymptotic linear but asymptotic superlinear.) In this
case, all �ks continue left to �= 0+ and there is no turning points on any of �k except
(�; u) = (�0

k ; 0). So for any �¿ 0, (7.1) has in5nite many solutions. In [30], we consider
the case only one of the limit (f+ and f−) is ∞ and the other is 5nite. There is a
new type of bifurcation from in5nity in that case.

Appendix A. Stability of the solutions bifurcating from in$nity

The bifurcation from in5nity for an asymptotic linear operator is well-known. The
following result is due to Rabinowitz [26] and Dancer [17].
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Theorem 8.1. Let �0(�= 0)∈R and let F : R×X → X be a continuous mapping such
that F(�; u) =−u+�Bu+H (�; u); where B is a continuous linear operator on X; �−1

0
is an isolated point of the spectrum of B such that �−1

0 has algebraic multiplicity
1; w0 is the eigenvector corresponding to �−1

0 ; and H satis=es ||H (�; u)||=||u|| → 0 as
||u|| → ∞; uniformly for � near �0; For any �¿ 0; there exist M and �¿ 0 such that;
if |�1 − �0|6 � and |�2 − �0|6 �; u= Bw0 +w; v= Bw0 + z where |B|¿M; ||w||6 �|B|;
and ||z||6 �|B|; then

||H (�1; u) − H (�2; v)||6 �[||u− v|| + (||u|| + ||v||)|�1 − �2|]:
If Z is a complement of span{w0} in X; then there exists N ¿ 0 and continuous
mappings � : {s: |s|¿N} → R and  : {s: |s|¿N} → Z such that �(s) → �0 and
|| (s)|| → 0 as |s| → ∞ and F(�(s); sw0 + s (s)) = 0. Moreover; there exist C and
D¿ 0 such that each solution (�; u) of F(�; u) = 0 with |�−�0|6 D and ||u||¿C has
the above form.

In the context of Theorem 8.1, we have the following result concerning the stability
of the solutions on the bifurcation curve which we obtain in Theorem 8.1. (Recall that
� is a K-simple eigenvalue of a linear operator L if there exists w such that Lw= �Kw,
where K is also a linear operator.)

Theorem 8.2. Let F; B; H; Z; �0 and w0 be as in Theorem 8:1; and let (�(s); u(s));
|s|¿ 2; be the solution curve in Theorem 8:1. In addition; we assume that H (�; u)
is twice continuously diCerentiable; for �∈R; ||Hu(�; u)||= o(||u||) as ||u|| → ∞;
K is a bounded linear operator from X to X; and 0 is a K-simple eigenvalue of
Fu(�0;∞) = − I + �0B. Then there exist �¿ 0; C1 functions � : (�0 − �; �0 + �) → R;
� : {s: |s|¿ 2} → R; v : (�0 − �; �0 + �) → X; w : {s: |s|¿ 2} → X such that

Fu(�;∞)v(�) = �(�)Kv(�) for �∈ (�0 − �; �0 + �); (8.1)

Fu(�(s); u(s))w(s) = �(s)Kw(s) for s∈{s: |s|¿ 2}; (8.2)

�(�0) = lim|s|→∞ �(s) = 0; v(�0) = lim|s|→∞ w(s) =w0; and v(�)−w0 ∈Z; w(s)−w0 ∈Z .
Moreover; �′(�0) �= 0; and near s=∞ the functions �(s) and −s�′(s)�′(�0) have the
same zeros; and; whenever �(s) �= 0; the same sign. More precisely;

lim
|s|→∞;�(s)�=0

−s�′(s)�′(�0)
�(s)

= 1: (8.3)

Proof. Since

||Fu(�(s); u(s)) − Fu(�0;∞)||
6 |�(s) − �0| · ||Fu(�0;∞)|| + |�0| · ||Hu(�(s); u(s))|| → 0

as |s| → ∞, then by Lemma 1:3 of [15], (8.1) and (8.2) hold, and �(�0) = lim|s|→∞ �(s)
= 0; v(�0) = lim|s|→∞ w(s) =w0, and v(�)−w0 ∈Z; w(s)−w0 ∈Z . The other parts of
the proof are similar to the proof of Theorem 1:16 in [15].

Theorems 8.1 and 8.2 can be directly applied to (1.1) for f+ =f−. It is possible to
generalize them to the case of f+ �=f− if some appropriate cones in X are de5ned.
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We do not attempt to do such a generalization here. But we point out that Theorem
8.2 holds as long as the solutions near (�0;∞) form a curve, the same proof can be
carried over for Bu= au+ − bu−. In this paper, when f+ �=f−, we only show that
�∗ is a bifurcation point if (�∗f+; �∗f−)∈�. With a little more careful analysis, we
can show the solutions actually form a curve. But we do not need to do that, since in
all the situations, the solutions are nondegenerate, so they form a curve automatically.
Thus Theorem 8.2 can be applied even to the case of f+ �=f−.
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