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1 Introduction

Consider a semilinear elliptic equation:

(1.1)

{

∆u+ λf(u) = 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded smooth domain in Rn, n ≥ 1, and λ is a positive
parameter. We assume that f satisfies

(f1) f ∈ C1(R,R), f(0) = 0, uf(u) > 0 for u 6= 0, lim
u→±∞

f(u) = ±∞;

(f2)

lim
u→∞

f(u)

u
= f+ ≥ 0, lim

u→−∞

f(u)

u
= f− ≥ 0.

Let 0 < λ1 < λ2 ≤ λ3 ≤ · · ·λk ≤ · · · be the eigenvalues of the boundary
value problem:

(1.2)

{

∆u+ λu = 0 in Ω,

u = 0 on ∂Ω.
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We assume that all eigenvalues λk are simple. Define

(1.3) λ0k =
λk
f ′(0)

.

Since f ′(0) > 0, it is well-known that (λ, u) = (λ0k, 0) is a bifurcation point
where a bifurcation from the trivial solutions u = 0 occurs. (See Crandall,
Rabinowitz [CR].) Let the set of the nontrivial solutions of (1.1) be Σ =
{(λ, u)} ⊂ R+×X, where X = L2(Ω). Then Σ ⊃ ⋃∞

k=1Σk, where Σk is the
closure of the connected component of Σ which contains the point (λ0k, 0).
Since λk is a simple eigenvalue, near (λ0k, 0), Σk is a curve of form (λ(s), u(s)),
(|s| ≤ δ), with λ(0) = λ0k and u(0) = 0. Away from the bifurcation point
(λ, u) = (λ0k, 0), the structure of Σk is very complicated in general. However,
Rabinowitz [R1] showed that the following alternative holds: either Σk is
unbounded in R × X, or Σk contains another point (λ0j , 0), j 6= k, i.e.
Σk = Σj .

The limits f+ and f− has no effect on the bifurcation occurring at (λ0k, 0),
but they affect the asymptotic behavior of Σk greatly. We consider all
different cases of pair (f+, f−): (we assume that f+ ≥ f−)

1. (∞,∞)-type: f+ = f− =∞;

2. (0, 0)-type: f+ = f− = 0;

3. (1, 1)-type: 0 < f− ≤ f+ <∞;

4. (1,∞)-type: 0 < f− < f+ =∞;

5. (0, 1)-type: 0 = f− < f+ <∞;

6. (0,∞)-type: f− = 0, f+ =∞.

Sometimes, we call (∞,∞)-type f asymptotically superlinear, (0, 0)-type f
asymptotically sublinear, and (1, 1)-type f asymptotically linear1.

We are interested in the asymptotic behavior of Σk. For asymptotically
linear f , Shi and Wang [SW] proved that if f also satisfies that

(1.4)
f(u)

u
is increasing in (0,∞) and is decreasing in (−∞, 0),

1In other papers, (1, 1)-type f is often called asymptotically homogeneous nonlinearity.
If f+ 6= f−, then it is also called a jumping nonlinearity. (see Fuč́ik [F])
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and for k = 1, 2, 3, · · · ,m,

(1.5)
λk
f ′(0)

≤ λk+1
supu∈R f

′(u)
,

then for k = 1, 2, 3, · · · ,m, Σk = {(λ(s), u(s)) : s ∈ R} is a simple curve
globally, and there is no degenerate solution of (1.1) on Σk except (λ0k, 0),
i.e. λ′(s) 6= 0 for any s 6= 0. Moreover, Σk ⊂ (λ∞k , λ

0
k) × X, where λ∞k =

min(λk/f+, λk/f−). Thus from (1.5), all Σk’s are mutually separated in
λ-direction, unbounded in u-direction, and there exist λk,+ and λk,− such
that

λk,+ = lim
s→∞

λ(s), and λk,− = lim
s→−∞

λ(s).

Obviously ||u(s)|| → ∞ as s → ±∞, so we call λk,± the blow up points of
Σk. We define the blow up point in a more general way:

Definition 1.1. λ∗ ∈ [0,∞] is a blow up point of the solution set of (1.1)
if there exists a sequence {(λk, uk)} such that lim

k→∞
λk = λ∗ and lim

k→∞
||uk||

=∞ as k →∞.

In the definition, we allow λ∗ = ∞. The main purpose of this paper is
to discuss the set of blow up points of (1.1) for f satisfying (f1) and (f2).
Our motivation is two-fold. First it is related to the a priori estimates of
the solutions. In fact, if λ∗ > 0 is not a blow up point, then all solutions for
this fixed λ∗ are uniformly bounded, then some topological methods can be
applied to obtain some or all solutions. Secondly, if λ∗ is a blow up point
and λ∗ 6= 0,∞, then λ∗ is a point where a bifurcation from infinity occurs.
Our results will be helpful for a better understanding of the bifurcation from
infinity and the global structure of the solution set.

The bifurcation from infinity for asymptotically linear f is well-known.
Rabinowitz [R2] showed that if f+ = f−, and λk is an eigenvalue with odd
algebraic multiplicity, then λ∗ = λk/f± is a blow up point, and Σ possesses
an unbounded component D which meets (λ∗,∞). (See Theorem 1.6 and
Theorem 2.28 in [R2].) A similar result holds when f+ 6= f− and |f+ − f−|
is small, see [S] Proposition 5.1. In [S], the following result was proved:

Proposition 1.2. Assume that f satisfies (f1) and (f2), and λ∗ is a blow
up point of (1.1). If f is asymptotically linear, then either λ∗ = ∞, or
0 < λ∗ <∞ and for (a, b) = (λ∗f+, λ∗f−),

(1.6)

{

∆φ+ aφ+ − bφ− = 0 in Ω,

φ = 0 on ∂Ω,
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has a nontrivial solution φ.

This result is true without any simplicity assumption on eigenvalues.
Let Γ = {(a, b) ∈ R2 : (1.6) has a nontrivial solution}. The set Γ is usually
called Fuč́ık spectrum of −∆ on Ω. Therefore, all blow up points in this
case are contained in a set associated with Fuč́ık spectrum. In the special
case of f+ = f−, it degenerates to the set of eigenvalues of −∆. Note that
the fact λ∗ can be ∞ is not significant since there is a sequence {λk} such
that (λkf+, λkf−) ∈ Γ and λk →∞ as k →∞. So, in this case, ∞ is a blow
up point only because it is an accumulate point of finite blow up points.

In this paper, we will first prove another general result concerning the
blow up points of (1.1):

Theorem 1.3. Assume that f satisfies (f1) and (f2), and λ∗ is a blow up
point of (1.1).

1. If f is asymptotically sublinear, then λ∗ =∞;

2. If f is (0, 1)-type, then λ∗ = ∞ or λ∗ = λ1/f+. Moreover, there
is a connected component D1 of Σ approaching (λ1/f+,∞), and the
solutions on D1 are all positive.

In general, it is not clear if there is only one component approaching
(λ1/f+,∞) in Theorem 1.3 part 2, and it is also not clear if D1 is a curve
near infinity. But if in addition, we assume that limu→∞ f ′(u) = f+, then
by a result of Dancer [D1], D1 is the only component near (λ1/f+,∞), and
it is a curve. The asymptotically superlinear case is far more complicated.
We have only some partial results which are consequences of some earlier
works:

Theorem 1.4. Assume that f satisfies (f1) and (f2), and f is asymptotically
superlinear.

1. If f also satisfies

(1.7) lim
u→∞

f(u)

ul
= 0, with l =

n+ 2

n− 2
if n ≥ 3, l <∞ if n = 1, 2,

(1.8) lim
u→∞

uf(u)− θF (u)
u2f(u)2/n

≤ 0, for some 0 < θ <
2n

n− 2
, if n ≥ 3,

4



and

(1.9)
uf ′(u)

f(u)
≤ n+ 2

n− 2
, if n > 2.

Then λ∗ = 0 is a blow up point with a branch of positive solutions
approaching (λ, u) = (0,∞).

2. If f satisfies (1.7) and f is an odd function, then for any λ∗ ∈ [0,∞],
λ∗ is a blow up point.

The first result is based on a priori estimate of positive solutions by de
Figueiredo, Lions and Nussbaum [DLN]. All conditions (1.7), (1.8) and (1.9)
are subcritical conditions. In fact, it was shown by Brezis and Nirenberg
[BN] that for Ω being the unit ball, n = 3, f(u) = u+u5, the blow up point
of the positive solution curve for (1.1) is λ∗ = λ1/4 > 0. The second result
is based on the fact that, if f is odd, then (1.1) has infinite many solutions
by Lusternik-Schnirelman theory. We conjecture that the second result is
true without oddness of f , but it depends on whether (1.1) has infinite many
solutions without f being odd, which has been an outstanding open question
for a long time. Another related result was proved by Bahri and Lions [BL]:
if f also satisfies (1.4), and λ∗ is a finite blow up point, then not only the
norm of the blowing-up solutions are unbounded, the Morse indices are also
unbounded. The blow up points for (1,∞)-type and (0,∞)-type f are not
known in the most general case. But the blow up points of the branches
of positive solutions and negative solutions may be obtained since they are
only related to one of f+ and f−. And we will obtain the precise information
of blow up points for (1,∞)-type and (0,∞)-type f in a special case below.

The existence and multiplicity of solutions for (1.1) has been studied in
many works, see, for examples, [AM], [AZ], [BW], [CC], [CCN], [CL], [DD],
[LW], [S], [SW] and also the references therein.

In the second part of the paper, we consider the blow up points for
a special case of (1.1): n = 1, and Ω = (0, π), which is an autonomous
ordinary differential equation:

(1.10) u′′ + λf(u) = 0, x ∈ (0, π), u(0) = u(π) = 0.

We will completely classify the blow up points for (1.10) for all f ’s which
satisfy (f1) and (f2). And as a consequence, we determine the asymptotic
behavior of all solution curves Σk. (In this case, we can also show that
Σ = ∪∞k=1Σk.) Our main result in that part is
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Theorem 1.5. Assume that f satisfies (f1) and (f2), and λ∗ is a blow up
point of (1.10).

1. If f is asymptotically superlinear, then the set of λ∗ is [0,∞];

2. If f is (1,∞)-type, then λ∗ = 0 or λ∗ =∞ or λ∗ = λk/f− for k ∈ N.
Moreover, there is only one connected component of Σ approaching
(0,∞), and the solutions on that component are all positive.

3. If f is (0,∞)-type, then λ∗ = 0 or λ∗ = ∞. Moreover, there is only
one connected component of Σ approaching (0,∞), and the solutions
on that component are all positive.

A more complete classification will be found in Theorem 3.6. It is in-
teresting that we obtain finite blow up points for (1,∞)-type f . A con-
sequence is that there is a bifurcation from infinity occurring at such a
point, and moreover we can show that at each λ∗ = λk/f−, there are four
branches of solutions bifurcating from there. (See Figure 2.) Recall that if
f+ = f− ∈ (0,∞), then there are only two branches of solutions bifurcating
from λ∗ = λk/f±. (See Figure 1.) The bifurcation from infinity for (1,∞)-
type f does not seem to be found in the literature. The asymptotic profile of
solution on such branch is that the solution has large negative humps, and
very small positive humps as ||u|| → ∞, u(x) ≈ −M | sin(kx)| for k ∈ N,
where M = ||u||. In the asymptotically linear case, the sizes of positive
humps and negative humps are in the same order as ||u|| → ∞.

We prove Theorems 1.2, 1.3 and 1.4 in Section 2, and study (1.10) in
Section 3. And in Section 4, we obtain an exact multiplicity result for (1.10).

λ

u

λ01 λ02 λ03

Figure 1: Bifurcation from ∞
for (1, 1)-type f

λ

u

λ01 λ02 λ03

Figure 2: Bifurcation from ∞
for (1,∞)-type f
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2 Blow up points for PDE

In this section, we prove Theorems 1.2, 1.3 and 1.4.

Proof of Theorem 1.2. Let λ∗ be a blow up point and λ∗ <∞. Then there
exists a sequence {(λk, uk)} such that limk→∞ λk = λ∗ and limk→∞ ||uk|| =
∞ as k →∞. We define φk(x) = ||uk||−1uk(x), then φk satisfies

(2.1) ∆φk + λk
f(uk)

uk
φk = 0.

We multiply (2.1) by φk and integrate over Ω, then we obtain

(2.2)

∫

Ω
|∇φk|2dx− λk

∫

Ω

f(uk)

uk
φ2kdx = 0.

Since f(u)/u is bounded, then ||φk||H1
0
(Ω) is uniformly bounded. Thus there

exists φ ∈ H1
0 (Ω) such that {φk} has a subsequence (which we still denote

by {φk}) converging to φ strongly in L2(Ω), and weakly in H1
0 (Ω). Let

Ω+ = {x ∈ Ω : φ(x) > 0} and Ω− = {x ∈ Ω : φ(x) < 0}. Then uk(x) =
||uk||φk(x)→ ±∞ as k →∞ for x ∈ Ω+

⋃

Ω−, thus

(2.3)
f(uk(x))

uk(x)
→ f+, x ∈ Ω+, and

f(uk(x))

uk(x)
→ f−, x ∈ Ω−,

by Lebesgue Control Convergence Theorem.

Let ψ ∈ C10 (Ω). We multiply (2.1) by ψ and integrate over Ω, then we
obtain (here Ω0 = Ω\(Ω+⋃

Ω−))

∫

Ω
∇φk · ∇ψdx− λk

∫

Ω+

f(uk)

uk
φkψdx

− λk
∫

Ω−

f(uk)

uk
φkψdx− λk

∫

Ω0

f(uk)

uk
φkψdx = 0.

(2.4)

By the weak convergence of φk and (2.3), we obtain

(2.5)

∫

Ω
∇φ · ∇ψdx−

∫

Ω
(λ∗f+φ

+ − λ∗f−φ−)ψdx = 0,

and we conclude that φ is a weak solution of (1.6) with (a, b) = (λ∗f+, λ∗f−).
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Proof of Theorem 1.3. We follows the similar way as in Theorem 1.2. Let
λk, uk, φk be the same as in the proof of Theorem 1.2. Suppose that the
blow up point λ∗ ∈ [0,∞), then {λk} is bounded, and we can still conclude
{φk} has a subsequence (which we still denote by {φk}) converging to some φ
strongly in L2(Ω), and weakly in H1

0 (Ω). Let Ω± be the same as in the proof
of Theorem 1.2. Since f is sublinear, then (2.3) holds with f+ = f− = 0.
Then (2.4) and (2.5) are also true with f+ = f− = 0. That implies ∆φ = 0,
which has only zero solution in H1

0 (Ω), contradicting ||φ|| = 1. So for any
finite λ∗ ≥ 0, λ∗ is not a blow up point.

Next we prove ∞ is a blow up point. It suffices to prove for λ large,
(1.1) has a positive solution u(λ) such that ||u(λ)|| → ∞ as λ→∞. We use
the sub-supersolution method. Let φ(x) be the principle eigenfunction of
∆φ+ λ1φ = 0, φ = 0 on ∂Ω. Then for any K > 0, if λ > 0 is large enough,
∆(Kφ) + λf(Kφ) = −λ1Kφ + λf(Kφ) > 0. So Kφ is a subsolution. On
the other hand, we choose v(x) = −M(x · x) + CM , where x · x =

∑n
i=1 x

2
i

for x = (x1, x2, · · · , xn), M and C are positive constants specified later.
Then ∆v(x) = −2nM , and ∆v+ λf(v) = −2nM + λ(f(v)/v)v =M [−2n+
λ(f(v)/v)(C − x · x)]. First we choose C > 0 such that for any x ∈ Ω,
C2 > C − x · x ≥ C1 > 0. This can be achieved since Ω is bounded. Next
we choose M > 0 for fixed K,λ > 0, such that a) MC1 > Kφ(x) for x ∈ Ω;
b) λC2(f(MC1)/MC1) < 2n. All these can be met just letting M large
enough, since f is asymptotically sublinear. Therefore v is a supersolution
for suchM,C > 0, and v > Kφ. Therefore, there exists a solution u of (1.1)
such that v ≥ u ≥ Kφ for any K > 0, and ||u|| ≥ K||φ||. Since K can be
arbitrarily large, ∞ is a blow up point.

The proof for (0, 1)-type f is similar. The same proof will yield that φ
satisfies ∆φ+ λ∗f+φ

+ = 0 for some φ ∈ H1
0 (Ω). But the only possibility is

that λ∗f+ = λ1 and φ = φ+ is the principle eigenfunction. So λ∗ = λ1/f+ is
the only possible finite blow up point. On the oereth hand, from Theorem
2.28 in [R2], λ1/f+ is a point where bifurcation form infinity occurs, and
the solutions on the component approaching (λ1/f+,∞) are positive. The
same proof as in the last paragraph shows that ∞ is a blow up point for
(0, 1)-type f .

Proof of Theorem 1.4. For the first part, we apply Theorem 2.1 of [DLN].
When f satisfies the conditions in Theorem 1.4 (1), (1.1) has at least one
positive solution uλ for λ ∈ (0, λ01). Moreover, for λ in any compact subset of
(0, λ01), uλ is uniformly bounded because of the a priori estimate in Theorem
1.2 of [DLN]. However as λ → 0+, the solution uλ cannot be bounded
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anymore since (1.1) has no solution when λ = 0. So λ = 0 is a blow up
point with a branch of positive solutions approaching (λ, u) = (0,∞).

For the second part, we apply Theorem 9.38 of [R3]. Then for any fixed
λ ∈ (0,∞), (1.1) has a sequence of unbounded solutions, so λ is a blow up
point. And 0 and ∞ are also blow up points since they are in the closure of
(0,∞).

3 Blow up points of ODE

In this section, we consider the blow up points of (1.10). In fact, we will
determine most of the profile of the solution set Σ of (1.10). We starts
with some preliminaries on (1.10). First, since f(u) is at least C1, then
all solutions of (1.10) are smooth, so in this section, we will work in space
X = C1[0, π] instead of L2 space. The eigenvalue problem

(3.1) φ′′ + λφ = 0, x ∈ (0, π), φ(0) = φ(π) = 0

possesses a sequence of eigenvalues {λj = j2} such that λ1 < λ2 < · · · <
λj → ∞ as j → ∞, λj is a simple eigenvalue, the eigenfunction φj corre-
sponding to λj has exactly (j − 1) zeros in (0, π) and all zeros of φj in [0, π]
are simple. (A simple zero of φj is a point x ∈ [0, π] such that φj(x) = 0
and φ′j(x) 6= 0). We define

S+j ={v ∈ X : v(0) = v(π) = 0, vx(0) > 0, v has exactly j − 1 zeros in

(0, π), and all zeros of v in [0, π] are simple},
S−j =− S+j , and Sj = S+j ∪ S−j .

Then Theorem 2.3 of [R1] can be applied to (1.10), and we have the following
lemma:

Lemma 3.1. For any k ∈ N, (1.10) possesses a component of solutions Σk

in R×X with Σk ⊂ (R× Sk) ∪ {(λ0k, 0)} and Σk is unbounded.

Let Σ+k = Σk
⋂

S+k and Σ−k = Σk
⋂

S−k . We show that we can use
the maxu(λ, ·) to parameterize Σ+k , and minu(λ, ·) to parameterize Σ−k .
If u(λ, ·) ∈ Sk is a nontrivial solution of (1.10) with k > 2, then u(λ, ·)
is a rescaling and periodic extension of a positive solution and a negative
solution. In fact, (u, ux) is a solution of a first order system:

(3.2) u′ = v, v′ = −λf(u), u(0) = 0, v(0) 6= 0.
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For the function f which we consider here, each solution orbit of (3.2) in
(u, v) plane is a periodic orbit centered at origin from the phase portrait
analysis of (3.2).

Lemma 3.2. Suppose that f satisfies (f1), (f2). Given k ∈ N, for any d > 0
there exists exactly one λ > 0 such that (1.1) has a solution u(λ, ·) ∈ S+k
and maxx∈[0,π] u(λ, x) = d. Similar result hold for d < 0 and S−k .

Proof. We prove the lemma for k = 2m + 1 where m ∈ N. The case when
k is an even number is similar. Consider the initial value problem:

(3.3) u′ = v, v′ = −f(u), u(0) = d, v(0) = 0.

Let (u(x), v(x)) be the unique solution of (3.3). For any d > 0, there exists
a unique T1 = T1(d) > 0 such that u(T1) = 0, u(x) > 0 and v(x) < 0 for
x ∈ [0, T1), and there exists a unique T2 = T2(d) such that v(T1 + T2) = 0,
u(x) < 0 and v(x) < 0 for x ∈ (T1, T1 + T2). Let v(T1) = −v0 < 0 for some
v0 > 0. Then

(3.4) u′ = v, v′ = −f(u), u(0) = 0, v(0) = v0

has a unique solution (u1(x), v1(x)) for x > 0. In particular, (u1(x), v1(x)) =
(u(x + T1), v(x + T1)) from the property of (3.4). Therefore, u1(x) with
x ∈ [0, 2(m+1)T1+2mT2] is a solution of u′′+ f(u) = 0, u(0) = 0, u(2(m+
1)T1+2mT2) = 0, and u1 has exactly 2m+1 zeros in (0, 2(m+1)T1+2mT2).
Let T = 2(m+1)T1+2mT2, u2(x) = u1(Tx), then u2 is a solution of (1.10)
with λ = π−2T 2. Since T1 and T2 are uniquely determined by d > 0, thus
T and λ are also uniquely determined by d.

Lemma 3.2 implied that Σ+k can be represented as a graph {(λ(d), d) :
d > 0} in R+ × R+. We define Σ+k = {(λk,+(d), d) : d > 0}, Σ−k =
{(λk,−(d), d) : d < 0}. To determine the asymptotic behavior of λk,±(d),
we derive the explicit formula of λk,±(d). For any d 6= 0, let (u(x), v(x)) be
the unique solution of (3.3). From the proof of Lemma 3.2, there is a unique
T1 = T1(d) > 0 such that u(T1) = 0, u(x) 6= 0 and v(x) 6= 0 for x ∈ [0, T1).
T1 can be calculated from the equation (1.10):

(3.5) T1(d) =
1√
2

∫ d

0

du
√

F (d)− F (u)
.

where F (u) =
∫ u
0 f(t)dt. From the symmetry of the orbit of (3.3), we also

have T1(R(d)) = T2(d), where T2(d) is defined in the prrof of Lemma 3.2,
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and R(d) is the unique point satisfying F (d) = F (R(d)). Then λk,±(d) can
be determined as follows: (m ≥ 1)

λ2m−1,±(d) = π−2[2mT1(d) + 2(m− 1)T1(R(d))]
2,

λ2m,±(d) = π−2[2mT1(d) + 2mT1(R(d))]
2.

(3.6)

To compute T1(d), we have the following basic estimates:

Lemma 3.3. Suppose that f satisfies

(3.7) (a− η)u ≤ f(u) ≤ (a+ η)u, for u ≥M,

where a,M > 0, 0 < η < a/2. Then

(3.8)
a− η
2

(u2 − v2) ≤ F (u)− F (v) ≤ a+ η

2
(u2 − v2),

for any u > v ≥M .

Proof. Define G(u) = F (u)−F (v)− (1/2)(a+ η)(u2 − v2). Then G(v) = 0,
G′(u) = f(u)− (a+ η)u ≤ 0 for u ∈ [v,∞) by (3.7). Hence (3.8) holds.

Lemma 3.4. Suppose that f satisfies (f1) and (f2).

1. Suppose 0 < f+ <∞, then for d > 0 large enough,

(3.9) T1(d) =
π

2
f
−1/2
+ + o(1).

2. Suppose f+ =∞, then for any fixed A > 0, for d > 0 large enough,

(3.10) T1(d) ≤ A−1/2
(π

2
+ o(1)

)

.

3. Suppose f+ = 0, then for any fixed A > 0, for d > 0 large enough,

(3.11) T1(d) ≥ A−1/2
(π

2
+ o(1)

)

.

Proof. First we consider the case of 0 < f+ < ∞. For any η > 0, there is
M1 > 0 such that (3.7) holds for a = f+, M =M1. Then for d > M1,

(3.12)
√
2T1(d) =

∫ d

0

du
√

F (d)− F (u)
=

[∫ M1

0
+

∫ d

M1

]

≡ [I1 + I2].

11



(3.13)

I1 =

∫ M1

0

du
√

F (d)− F (u)
≤ M1

√

F (d)− F (M1)
≤M1

√

2

(f+ − η)(d2 −M2
1 )

I2 =

∫ d

M1

du
√

F (d)− F (u)
≤
√

2

f+ − η

∫ d

M1

du√
d2 − u2

=

√

2

f+ − η

∫ 1

M1/d

dw√
1− w2

(let w = u/d)

=

√

2

f+ − η

[

π

2
− arcsin

(

M1

d

)]

.

(3.14)

Similarly, we obtain

(3.15) I2 ≥
√

2

f+ + η

[

π

2
− arcsin

(

M1

d

)]

.

Therefore, from (3.13), (3.14) and (3.15)

T1(d) =(f
−1/2
+ + C(η))

[

π

2
− arcsin

(

M1

d

)]

+O



(f
−1/2
+ + C(η))

√

(

M1

d

)2

− 1





=
π

2
f
−1/2
+ + C(η) +O

(

M1

d

)

,

(3.16)

where M1/d << 1, C(η) is a constant and C(η)→ 0 as η → 0.

Next we consider the case of f+ = ∞. For any A > 0, there exists
M1 > 0 such that f(u) ≥ Au for any u > M1. Then (3.10) can be established
from (3.13), (3.14). Similarly we can prove (3.11).

We are ready to prove our main result on λk,±(d):

Theorem 3.5. Suppose that f satisfies (f1) and (f2).

1. If f is of (∞,∞)-type, then as d→ ±∞, λk,±(d)→ 0 for k ∈ N;

2. If f is of (0, 0)-type, then as d→ ±∞, λk,±(d)→∞ for k ∈ N;
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3. If f is of (1, 1)-type, then for m ≥ 1,

λ2m−1,+(d) = [mf
−1/2
+ + (m− 1)f

−1/2
− ]2 + o(1), d→∞,

λ2m−1,−(d) = [(m− 1)f
−1/2
+ +mf

−1/2
− ]2 + o(1), d→ −∞,

λ2m,±(d) = [mf
−1/2
+ +mf

−1/2
− ]2 + o(1), d→ ±∞;

(3.17)

4. If f is of (1,∞)-type, then for m ≥ 1,

λ2m−1,+(d) = (m− 1)2f−1− + o(1), d→∞,
λ2m−1,−(d) = m2f−1− + o(1), d→ −∞,
λ2m,±(d) = m2f−1− + o(1), d→ ±∞, ;

(3.18)

5. If f is of (0, 1)-type, then for λ1,+(d) = f−1+ + o(1) as d → ∞,
λ1,−(d)→∞ as d→ −∞ and λk,±(d)→∞ as d→ ±∞ for k ≥ 2;

6. If f is of (0,∞)-type, then for λ1,+(d) → 0 as d → ∞, λ1,−(d) → ∞
as d→ −∞ and λk,±(d)→∞ as d→ ±∞ for k ≥ 2.

Proof. The proofs are all similar and right from the estimates in Lemma 3.4.
Note that the estimates in Lemma 3.4 is also true if we consider u ∈ (−∞, 0),
and as d → ±∞, then R(d) → ∓∞. We prove the case of f being (1,∞).
From (3.6),

(3.19) λ2m−1,+(d) = π−2[2mT1(d) + 2(m− 1)T1(R(d))]
2,

By (3.10), T1(d) ≤ [(π/2) + O(d−1)]A−1/2 for any A > 0 as d → ∞, and

by (3.9), T1(R(d)) = (π/2)f
−1/2
− + o(1). So we choose any large A > 0, we

obtain λ2m−1,+(d) = (m−1)2f−1− +o(1) as d→∞. Other proofs are similar,
so we omit them.

We now determine the blow up points of (1.10) for all cases.

Theorem 3.6. Suppose that f satisfies (f1) and (f2), and B(f) ⊂ [0,∞] is
the blow up points set of (1.10).

1. If f is of (∞,∞)-type, then B(f) = [0,∞];

2. If f is of (0, 0)-type, then B(f) =∞;
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3. If f is of (1, 1)-type, then B(f) = {∞}⋃{[mf−1/2+ + (m − 1)f
−1/2
− ]2,

[(m− 1)f
−1/2
+ +mf

−1/2
− ]2, [mf

−1/2
+ +mf

−1/2
− ]2 : m ∈ N};

4. If f is of (1,∞)-type, then B(f) = {0,∞}⋃{m2f−1− : m ∈ N};

5. If f is of (0, 1)-type, then B(f) = {f−1+ ,∞};

6. If f is of (0,∞)-type, then B(f) = {0,∞}.

Proof. First we prove for (0, 0)-type f . From Theorem 3.5, λ1,±(d) → ∞
as d → ±∞. For any fixed λ∗ > 0, there is a maximal d∗ > 0 such that
λ1,+(d∗) = λ∗, then for any k ≥ 1, if λk,+(d) = λ∗, then d ∈ (0, d∗). (Notice
that λk,+(d) > λj,+(d) for k > j, so λ1,+(·) serves as an envelope of other
λk,+.) And such d∗ can be found for any point in a compact neighborhood
of λ∗. Same arguments can be applied to λk,−(·). Thus λ∗ is not a blow up
point. λ = 0 is not a blow up point either, since λ1,±(d) has global minimum
which is positive. On the other hand, it is easy to see that ∞ is a blow up
point. The proofs for (0, 1)-type and (0,∞)-type are similar, since in each
case we have an envelope which goes to infinity, and there is only one curve
is outside of that envelope, which makes f−1+ (or 0) also being a blow up
point in respective cases.

For (1, 1)-type f , the result can be obtained by combining Theorem 3.5
and Theorem 1.2. For (1,∞)-type f , we know that all of 0, ∞ and m2f−1−
are blow up points. Suppose that there is another one λ∗ ∈ (0,∞), then by
the definition, there is a solution sequence {(λk, uk)} such that λk → λ∗ and
||u|| → ∞ as k →∞. Then eventually all (λk, uk) will be on the same curve
λi,±, since otherwise |λk − λj | ≥ f−1− + o(1) from (3.18). Then λ∗ = m2f−1−
for some m ∈ N.

Finally we deal with (∞,∞)-type f . From Theorem 3.5, we see that
for any λ > 0, (1.10) has infinitely many nontrivial solutions, and these
solutions must be unbounded. Indeed, for any fixed λ > 0 and d0 > 0,
T1(d0) and T(R(d)) are well defined and finite, then there exists m ∈ N

such that λm,+(d0) > λ from the formula of λm,±(d). On the other hand,
limd→∞ λm,+(d) = 0, thus there exists d1 > d0 such that λm,+(d1) = λ,
which implies any d0 > 0 is not an upper bound of L∞ norm of solutions of
(1.10). Thus any λ ∈ [0,∞] is a blow up point.

We finish this section by summarizing our results in this section and
describe the set Σ of the nontrivial solutions of (1.10). From Lemmas 3.1
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and 3.2, Σ =
⋃∞
k=1Σk,±, where Σk,+ ⊂ S+k and Σk,− ⊂ S−k . Each Σk,± is a

curve in R+ × X, with a global parameter d = maxx∈[0,π] u(λ, x) for Σk,+

or d = minx∈[0,π] u(λ, x) for Σk,−. So we can write Σk,+ = {(λk,+(d), d) :
d > 0} and Σk,− = {(λk,−(d), d) : d < 0}. Σk,+ bifurcates from (λ0k, 0),
and terminates at a blow up point which is determined by Theorem 3.6.
Under merely (f1) and (f2), there may be turning points on Σk,+, which is
where λ′k,+(d) = 0. However, if we also assume (1.4) (superlinear) or the
condition with opposite sign (sublinear), then there is no turning points on
Σk,+ except at (λ0k, 0). (See [SW] Theorem 1.4 and [S] Theorem 7.1, also
Section 4 of the present paper.)

From Theorem 3.6, there are several cases where we have a blow up point
λ∗ ∈ (0,∞). For (0, 1)-type, there is a unique finite blow up point, where the
branch of positive solutions blows up, which is not surprising from the result
of [R2]. For (1, 1)-type, there are a sequence of blow up points related to
the Fuč́ık spectrum. In fact, the Fuč́ık spectrum in one dimensional space
is well-known, which consists of two curves in R+ × R+ emanating from
(λk, λk). (See [S].) The blow up points in Theorem 3.6 can be regarded as
all the intersection points of a ray y = (f+/f−)x, x > 0 and the curves of the

Fuč́ık spectrum. For the blow up points of form [mf
−1/2
+ + (m − 1)f

−1/2
− ]2

or [(m − 1)f
−1/2
+ + mf

−1/2
− ]2, there is exactly one solution curve blowing

up at that point, and for the points of form [mf
−1/2
+ +mf

−1/2
− ]2, there are

two curves, one with d > 0 and one with d < 0. See Theorem 3.5 for
corresponding curves.

For (1,∞)-type, there are four curves blowing up at m2f−1− for m ∈ N,
and they are Σ2m,±, Σ2m−1,− and Σ2m+1,+. From the point of view of
bifurcation from infinity, a multiple bifurcation occurs at m2f−1− . Note that
m2f−1− = λm/f−, it would be an interesting question whether λ = λm/f− is
a point where a bifurcation from infinity occurs for general domain Ω, and
if so, what is the multiplicity of bifurcation at such a point.

4 An Exact Multiplicity Result

In this section, we are concerned with the multiplicity of the nontrivial
solutions of (1.1) for a fixed λ > 0. To obtain the exact multiplicity results,
we assume f also satisfies (1.4), or

(4.1)
f(u)

u
is decreasing in (0,∞) and is increasing in (−∞, 0).
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We will only consider (1.10). The exact multiplicity for (1.1) for general
domain was established in [SW] and [S], but with much restricted conditions
on the relation between the nonlinear function f(u) and the spectral set {λi}.

The bifurcation version of the exact multiplicity for (1.10) is also proved
in [SW] and [S], which we quote here:

Theorem 4.1. Suppose that f satisfies (f1), (f2) and (1.4). Then there
exists a solution curve Σk = {(λk(d), u(d)) : d ∈ R} bifurcating from
(λ, u) = (λ0k, 0), λ

′
k(d) < 0 for d > 0 and λ′k(d) > 0 for d < 0. If

(λ, u) ∈ Σk\{(λ0k, 0)}, then u ∈ Sk. Let λk,± = limd→±∞ λk(d), then λk,+
and λk,− belongs to the blow up point set in Theorem 3.5 according to the
different behavior of (f+, f−). The same results hold if we replace (1.4) by
(4.1), except λ′k(d) > 0 for d > 0 and λ′k(d) < 0 for d < 0.

Theorem 4.1 excludes the possibility of turning points on Σk, and Σk is
a curve which bends to the left if (1.4) holds and bends to the right if (4.1)
holds. So for fixed λ, we can examine the location of all bifurcation points
and determine the exact count of the nontrivial solutions. Similar to [S], we
consider

(4.2) u′′ + f(u) = 0, x ∈ (0, π), u(0) = u(π) = 0.

We have the following result:

Theorem 4.2. Suppose that f satisfies (f1), (f2) and (1.4).

1. If f is of (∞,∞)-type, then (4.2) has infinitely many solutions;

2. If f is of (0, 0)-type, then (4.2) has exactly 2k nontrivial solutions if
λk < f ′(0) ≤ λk+1;

3. If f is of (1,∞)-type, then (4.2) has exactly 1 nontrivial solution if
f− ≤ λ1, and has 4k−2m+1 nontrivial solutions if λm < f ′(0) ≤ λm+1
and λk < f− ≤ λk+1;

4. If f is of (0, 1)-type, then (4.2) has no nontrivial solution if f ′(0) < λ1
and f+ ≤ λ1, has exactly 1 nontrivial solution if f ′(0) < λ1 and λ1 <
f+, has no nontrivial solution if f ′(0) = λ1, and has exactly 2k − 1
nontrivial solution if λ1 < f ′(0) ≤ λk+1 for k ≥ 1;

5. If f is of (0,∞)-type, then (4.2) has exactly 1 nontrivial solution if
f ′(0) < λ1, has no nontrivial solution if f ′(0) = λ1, and has exactly
2k − 1 nontrivial solution if λ1 < f ′(0) ≤ λk+1 for k ≥ 1;
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For (1, 1)-type f , a similar result holds, see Theorem 7.7 in [S]. The
proof of the theorem is quite simple by just counting the number of bifurca-
tions. For example, we sketch a proof for (0, 1)-type f : we can embed (4.2)
into (1.10), then λm < f ′(0) ≤ λm+1 and λk < f− ≤ λk+1 are equivalent to
λm/f

′(0) < λ ≤ λm+1/f
′(0) and λk/f− < λ ≤ λk+1/f−. For λ ≤ λk/f−,

there is one solution bifurcated from λ = 0 and four solutions bifurcated
from λ = λi/f− for i = 1, 2, · · · , k, so there are 4k + 1 solutions bifurcated
from infinity before λ reaches λ = λk/f−. On the other hand, each time
λ crosses λ = λi/f

′(0), two solutions bifurcate into u = 0, so among these
4k + 1 solutions, 2m solutions bifurcate into 0 before λ = λm/f

′(0), so the
final count is 4k − 2m+ 1.
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