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In this notes we survey some old and new results on the entire solutions of semilinear elliptic
equations, i.e. the solutions of

(1) ∆u + f(u) = 0, x ∈ Rn,

where n ≥ 1, and f(u) is a smooth function. The solutions of (1) are related to the equilibrium
solutions of a singularly perturbed reaction-diffusion equation or system, for example,

(2) ε2∆uε + f(uε) = 0, x ∈ Ω, Bu = 0, x ∈ ∂Ω,

where ε > 0 is a small parameter, Ω is a smooth bounded domain in Rn, and Bu is an appropriate
boundary condition. The connection of (1) and (2) are made by a typical technique called blowup
method. Suppose that {uε} is a family of solutions of (2). The simplest setup of the blowup
method is to choose Pε ∈ Ω, and define vε(y) = uε(εy + Pε), for y ∈ Ωε = {y : εy + Pε ∈ Ω}. Then
usually in a proper sense, vε (y) → U(y), as ε → 0, where U is an entire solution if Pε is not too
close to ∂Ω. (See for example, Gidas and Spruck [GS2], and Ni and Takagi [NT1, NT2].) Thus the
local spatial pattern of the equilibrium solution to the reaction-diffusion equation is governed by
the spatial pattern of the entire solution. On the other hand, if uε is bounded and nonnegative,
then it is also natural to require the entire solution to be bounded and nonnegative.

A related question is the connection of the solutions of (2) to the equation on a half-space:

(3) ∆u + f(u) = 0, x ∈ Rn
+ = {xn > 0}, u = 0, x ∈ {xn = 0},

and the boundary blowup of (2) when Bu = u (Dirichlet boundary) and Pε ∈ ∂Ω (or near ∂Ω).
Under very general conditions, it has been shown that the positive solutions of (3) are functions
with form u = u(xn), thus (3) is reduced to an ODE u′′ + f(u) = 0. More precisely, the following
result has been proved by Dancer [D1] and Berestycki, Caffarelli, and Nirenberg [BCN2]: (see also
earlier result by Angenent [A] and the survey paper by Berestycki [B])

Theorem 1. Suppose that f is Lipschitz countinuous, and u is a bounded positive solution of (3).
Then

1. If f(0) ≥ 0, then
∂u

∂xn
> 0 for x ∈ Rn

+;
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2. If f(0) ≥ 0 and n = 2 or 3, then u(x′, xn) = u(xn), i.e. u is a function of xn alone, and
u′(xn) > 0;

3. If f(sup u) ≤ 0, then u(x′, xn) = u(xn), i.e. u is a function of xn alone, and u′(xn) > 0.

From Theorem 1, we can conclude that there are not many spatial patterns for the half-space
problem in general. on the other hand, we also notice that the case of f(0) < 0 and n ≥ 4 for (3)
is still partially open.

For the whole space problem (1), the earliest result on entire solutions is the classical theorem
of Liouville in 1831 (see [GT]):

Theorem 2.

1. Every solution of ∆u = 0 which is bounded from below or above on Rn is a constant.

2. Every bounded subharmonic function in R2 is a constant. Thus when n = 2, if f(u) ≥ or
(≤) 0 for all u, then any bounded solution of (1) is a constant.

It is not very hard to show that when n ≥ 3, there exists non-constant bounded subharmonic
function defined on Rn. But results of Liouville-type have been found for n ≥ 3, though usually
with much more advanced methods. An example is the solutions of

(4) ∆u + up = 0, x ∈ Rn, n ≥ 3, p > 0, u > 0.

Gidas and Spruck [GS1] prove that when 1 < p < (n + 2)/(n − 2) (it can also be extended
to p ∈ (0, 1]), then the solution u of (4) must be u ≡ 0; and it has been observed that when
p ≥ (n + 2)/(n− 2), (4) does have infinite many radially symmetric positive solutions. Later Chen
and Li [CL] proves the same result but with a much shorter proof. Here the Liouville-type theorem
is proved by showing the radial symmetry of the solution, which was first used in Gidas, Ni and
Nirenberg [GNN], where they also prove a result similar to that of [GS1] but with a decaying
condition on u at ∞. More recently, such techniques are also adapted to the case of super critical
exponent p ≥ (n + 2)/(n − 2). A summary of the radial symmetry of the solutions of (4) is as
follows:

Theorem 3. Suppose that u is a positive solution of (4).

1. ([GS1, CL]) If 0 < p <
n + 2

n − 2
, then u ≡ 0;

2. (Caffarelli, Gidas and Spruck [CGS]) If p =
n + 2

n − 2
, then u must be radially symmetric;

3. (Zou [Z1, Z2]) If
n + 2

n − 2
< p <

n + 1

n − 3
(< ∞ if n = 3), and |x|αu(x) ≤ C for C > 0, where

α = 2/(p − 1), then u must be radially symmetric;

4. (Guo [G]) If
n + 1

n − 3
< p <

n

n − 4
(< ∞ if n = 4), then u is radially symmetric if and only if

lim
|x|→∞

|x|αu(x) = λ, where λ = [α(n− 2−α)]1/(p−1), and lim
|x|→∞

|x|1−(µ+n)/2(|x|αu(x)−λ) = 0

where µ = 2α + 4 − 2n;



5. (Guo [G]) If p ≥ n

n − 4
, Then u is radially symmetric if and only if lim

|x|→∞
|x|αu(x) = λ.

Theorem 3 shows that Liouville theorem holds when n ≥ 3 and the function has a subcritical
growth rate, and when the function has a supercritical growth, the radially symmetric patterns
emerge. We should also mention that when n ≥ 4, (4) also has positive non-radial solutions

u(x′, xn) = U(x′) when p ≥ n + 1

n − 3
, and U(x′) is a radially symmetric solution of (4) in Rn−1,

x′ ∈ Rn−1. Such solutions have the spatial patterns in a lower dimensional space. It would be
interesting to know if solutions with other spatial pattern exist. It is also curious if Liouville-type
theorem holds for other positive f(u) in (4). The only other known result is for logistic type growth
function, see Du and Ma [DM], and Dancer and Du [DD].

A lesson we can learn from Liouville-type theorems above is that “normally” we need a sign-
changing f(u) to have a non-trivial spatial pattern for (1). It is worthwhile to take a look of the
patterns of (1) in R1. In fact, a bounded solution of u′′+f(u) = 0 defined on R for any C1 function
f(u) must be one of the following:

1. A constant;

2. A periodic function;

3. (Hetroclinic solution) A monotone function u(x) with lim
x→−∞

u(x) = m and lim
x→∞

u(x) = M ;

4. (Homoclinic solution) A symmetric function—without loss of generality, we assume it is an
even function, such that u(x) = u(−x), u is monotone on (0,∞), lim

x→±∞
u(x) = M .

While all these patterns still exist on a higher dimensional space as lower dimensional patterns, we
would like to know for a sign-changing f(u), what are the other possible spatial patterns in higher
dimensions?

Here we have to limit our attention to a more special class of nonlinearity f(u). We assume
that f satisfies

(f1) f is smooth, f(α) = 0 and f ′(α) > 0;

(f2) There exists m < α such that f(m) = 0, f ′(m) < 0, and f(u) < 0 for u ∈ (m, α);

and one of the following:

(Balanced) There exists M > α such that f(M) = 0, f ′(M) < 0, and f(u) > 0 for u ∈ (α, M).

Moreover

∫ M

m
f(u)du = 0;

(Unbalanced 1) There exists M > α such that f(M) = 0, f ′(M) < 0, and f(u) > 0 for

u ∈ (α, M). Moreover

∫ M

m
f(u)du > 0; or

(Unbalanced 2) f(u) > 0 for all u > α, and

∫ M

m
f(u)du > 0.



An example of balanced nonlinearity is f(u) = u − u3, which is in the Allen-Cahn-Ginzburg-
Landau equation; an example of unbalanced type 1 nonlinearity is f(u) = u(u + 1)(a − u), for
a > 1, which can be thought as Allen-Cahn-Ginzburg-Landau with potential function with unequal
well depths, or logistic growth with strong Allee effect; and for unbalanced type 2 nonlinearity, a
typical example is f(u) = −u+up, (n+2)/(n−2) > p > 1, and u > 0, which arises from models of
pattern formations in morphogenesis and chemotaxis, and has been studied extensively in recent
years (See for example, Ni [N], and the references in [BDS, BS].)

We notice that in the above classification of bounded solutions of u′′ + f(u) = 0, when f is
balanced, there is a hetroclinic solution but no homoclinic solution, and when f is unbalanced,
there is a homoclinic solution but no hetroclinic solution. This gives an indication of the difference
between the solution sets of (1) for balanced and unbalanced nonlinearities f . In the following we
will browse through the gallery of spatial patterns for both nonlinearities.

Unbalanced Case:

For the unbalanced f , the first n-dimensional (cannot be reduced to a lower-dimensional one)
pattern is the radially symmetric solution:

Theorem 4. Suppose that f(u) is unbalanced, and either it is bounded or it is unbounded but
subcritical, then (1) has a least energy solution U ∈ H2(Rn)

⋂
C2(Rn), and U is radially symmetric.

The earliest existence result seems to be in Strauss [St], and more general existence results
are proved in Berestycki and Lions [BL] with a variational approach, and in Berestycki, Lions and
Peletier [BLP] with a shooting method approach. The symmetry is prove in [GNN]. When f also
satisfies certain convex conditions, the radial solution can be shown to be unique. In particular,
when f(u) = −u + up, (n + 2)/(n− 2) > p > 1, the uniqueness is proved in Kwong [K] and also see
a more general result in Kwong and Zhang [KZ]; when f(u) = −u(u − b)(u − c), 0 < 2b < c, the
uniqueness is proved in Ouyang and Shi [OS], and Dancer [D2, D3].

Is the radially symmetric solution the only n-dimensional non-periodic pattern? There is no
certain answer yet. However, the indication is yes, from the following result:

Theorem 5. Suppose that f(u) is unbalanced, and either it is bounded or unbounded but subcritical,
and u ∈ C2(Rn) is a solution of (1). Then u must be radially symmetric if one of the following is
true:

1. (Farina [Fa]) The nodal set {u = α} is bounded;

2. (Dancer [D5]) The Morse index of u is finite (n = 2, 3);

3. (Shi [S3]) u is symmetric with respect to each xi = 0, and ∂xi
u < 0 in {x > 0}.

Hence if there is non-radial solution, then it must have unbounded nodal set and infinite Morse
index (for n = 2 or 3), and cannot be symmetric. On the other hand, there are many spatial-periodic
solutions of (1). In [S1], the author studies a boundary value problem

(5) uxx + uyy + λf(u) = 0, (x, y) ∈ Ω,
∂u

∂n
= 0, (x, y) ∈ ∂Ω,

where λ > 0 and Ω = (0, 1) × (0, b), a rectangle. (5) has a one-dimensional solution v(λ, x, y) =
u(λ, x), where u satisfies

(6) u′′ + λf(u) = 0, u′(0) = u′(1) = 0, u′(x) < 0.



In fact (5) has a solution curve Σ1 = {v(λ, x, y) = u(λ, x) : λ > λ∗, u
′(x) < 0}, for some λ∗ > 0 (see

Fig. 1.)
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Fig. 1: Branch of 1-d solutions
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Fig. 2: Mushroom for balanced f
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Fig. 3: Tree for unbalanced f

Theorem 6. (Shi [S1]) Let f be a unbalanced nonlinearity. Then for (5), there exist infinite many
bifurcation points (Λk, v(Λk, ·)) ∈ Σ1 where pitchfork bifurcations occur. All secondary branches are
unbounded (see Fig. 3.)

The solutions of (5) can be re-scaled, reflected and periodic extended to a doubly-periodic
solution of (1) with periods Tx = 2

√
λ, and Ty = 2b

√
λ. Thus the results of Theorem 6 imply that

for any b = Tx/Ty > 0, when TxTy = λ is large enough, there is a doubly periodic solution u(x, y)
of (1) with (minimal) x-period Tx, and (minimal) y-period Ty; and when TxTy = λ is small, there
is no such solution. Moreover we can show that when TxTy is large, u is a solution with infinitely
many spikes (which approximates the radially symmetric solution in R2) evenly distributed on a
rectangular checker board, and the nodal lines {u = α} are nearly circles. Another type of solutions
with periodic structure is found by Dancer [D4]:

Theorem 7. (Dancer [D4]) Suppose f(u) = −u+up. Then there exist solutions u of (1) such that
u is periodic in xn and decays in x′. More precisely for

∆u + λf(u) = 0, x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω,

where Ω = Rn−1 × (0, 1), a trivial solution branch is Σ2 = {v(λ, x′, xn) = u(λ1/2x′)}, where u is
the radially symmetric solution on Rn−1. There is a bifurcation point λ∗∗ > 0 such that a global
branch emerging from Σ2, on which the solutions depend on variable xn.

Balanced Case:

The studies of (1) with balanced nonlinearity is strongly guided by the famous De Giorgi’s
conjecture [DG]:

Let u be a solution of ∆u + 2u − 2u3 = 0, x ∈ Rn, such that |u| ≤ 1,
∂u

∂xn
> 0, for all x ∈ Rn.

Is it true that all level sets {u = k} of u are hyperplanes, at least if n ≤ 8?

The conjecture was first proved by Ghoussoub and Gui [GG] for the case of n = 2, with a key
idea from Berestycki, Caffarelli and Nirenberg [BCN2]. A weak version called Gibbons’ conjecture,
which assumes that u approaches ±1 uniformly as xn → ±∞, was proved independently by Barlow,
Bass and Gui [BBG], Berestycki, Hamel and Monneau [BHM] and Farina [Fa]. The case of n = 3
was proved by Ambrosio and Cabré [AC], and Alberti, Ambrosio and Cabré [AAC]. Very recently,
Savin [Sa] proved the original conjecture for n ≤ 8. While most of these results can be generalized



from f(u) = 2u− 2u3 to more general bistable nonlinearities, the result of [GG] for n = 2 holds for
any smooth function f .

There also exist doubly periodic solutions of (1) for balanced f . But compared to Theorem 6,
we have

Theorem 8. (Shi [S1]) Let f be a balanced nonlinearity. Then for (5), for any positive integer N ,
there exists bN > 0 such that for almost all b > bN , there are 2N bifurcation points (Λ±

k , v(Λ±
k , ·)) ∈

Σ1 where pitchfork bifurcations occur (see Fig. 2).

Similar to Theorem 6, Theorem 8 implies that (1) has a doubly periodic solution with (minimal)
x-period Tx = 2

√
λ, and (minimal) y-period Ty = 2b

√
λ for any b = Ty/Tx > k0 (or b−1 > k0), only

when S1 > TxTy > S2. On the other hand, in [S2], the author shows that if b = Tx/Ty = 1 (Ω is
a square), when T 2

x > S2, there is a doubly periodic solution u(x, y) with (minimal) x-period Tx,
and (minimal) y-period Tx; and when Tx is large, the nodal lines are orthogonal curves which are
nearly straight lines. The latter doubly periodic pattern is related to a new non-periodic pattern
on R2: the saddle solution.

Theorem 9. (Shi [S2]) Suppose that f is a balanced nonlinearity. Then (1) has a unique solution
u ∈ C2(R2) satisfying

u(x, y) = α if xy = 0,

M > u(x, y) > α if xy > 0,

α > u(x, y) > m if xy < 0,

u(y, x) = u(x, y), u(−y,−x) = u(x, y).

The saddle solution was first found by Dang, Fife and Peletier [DFP] in 1992 with the extra
conditions that f is odd and f(u)/u is decreasing; A paper by Alama, Bronsard and Gui [ABG]
studies the vector version of (1) with the condition of f being odd, and their method can also be
adapted to proving the existence of saddle solution in the scalar case. The uniqueness of the saddle
solution is proved in Berestycki, Caffarelli and Nirenberg [BCN1]. In [Sc], Schatzman proves that
the Morse index of the saddle solution is exactly one when f(u) = 2u−2u3, and the saddle solution
is always unstable from the result in [BCN2] and [D5]. It is conjectured that a more degenerate
saddle solution un exists for any integer n and at least when f is an odd function so that the the
nodal set of un consists of {(x, y) : x + iy ∈ tekπi/n, k = 0, 1, 2, ·, 2n − 1}. Then the saddle solution
in Theorem 9 is u2, and the monotone one-dimensional solution is u1. Such solution can be named
as a “pizza solution”. To close the door of our spatial pattern gallery, we mention a non-existence
result in [S2]:

Proposition 10.

1. For balanced f , there is no radially symmetric solution in Rn for n ≥ 1.

2. For unbalanced f , there is no saddle solution for n = 2.

In some sense, the radially symmetric solutions and the saddle solution in R2 are just like the
homoclinic and hetroclinic solutions in R1 for unbalanced and balanced nonlinearities respectively,
and they shows the characters of these two types of nonlinearities.

From the above overview of the spatial patterns exhibited by the solutions of (1), we believe that
a classification of bounded solutions of (1) is possible, at least for the balanced and unbalanced



nonlinearities which we defined here. The possible schemes of the classification are according
to the number of critical points or the Morse indices of the solutions. The Morse index of a
bounded solution u of (1) is defined as the dimension of negative space of the functional E(φ) =∫
Rn [|∇φ|2 − f ′(u)φ2]dx, where φ ∈ C∞

0 (Rn), and u is said to be weakly stable if E(φ) ≥ 0 for all
φ ∈ C∞

0 (Rn). A recent result by Dancer [D5] and the earlier result of [GG] about De Giorgi’s
conjecture in R2 can be summarized as the following theorem:

Theorem 11. Suppose that u is a bounded smooth solution of (1) in R2. Then the following
statements are equivalent:

1. u is weakly stable;

2. there exists a unit vector v ∈ R2 such that ∇u · v > 0 for any x ∈ R2;

3. u(x, y) = w(v1x + v2y), where v = (v1, v2), and w is a bounded solution of w′′ + f(w) = 0 in
R such that w′(z) > 0 for all z ∈ R.

Notice that Theorem 11 has no requirements on the nonlinearity f except assuming f is C1.
Dancer [D5] also characterizes the finite Morse index solutions of (1) for the unbalanced f . To
conclude our survey, we list the known non-constant spatial patterns in the following table:

Number of balanced unbalanced
critical points

0 De Giorgi’s conjecture generalized De Giorgi’s conjecture
1-d monotone pattern; not exist n = 2, 3

1 saddle solution (and pizza solution?) radially symmetric solution

≥ 2 and < ∞ not exist? not exist?

∞ doubly-periodic doubly-periodic,
periodic-radially symmetric

A similar table can be listed according to the Morse indices, and probably a relation can be
established between the Morse indices and the number of critical points.
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