1. Suppose that a bug is crawling on a flat plate along the circle $x = \sin t, y = \cos t$, while the temperature of the plate is given by $T = x^2e^y - 2xy$. Find dT/dt at $t = \pi/4$ by the chain rule.

2. Consider function

 $$f(x, y) = 48xy - 32x^3 - 24y^2$$

 (a) At $P(1, 1)$, what is the gradient of f?
 (b) Find the directional derivative of f at P along $A = i + 2j$.
 (c) Along which direction, the value of function $f(x, y)$ decreases the fastest at P?
 (d) What is the level curve of $f(x, y)$ at P? Find the equation of the tangent line to the level curve of $f(x, y)$ at P.

3. Consider function

 $$f(x, y) = 4xy - x^2y - xy^2$$

 (a) Find all the local maxima, local maxima and saddle points of the function.
 (b) Find the absolute maxima and minima of $f(x, y)$ on the closed triangular region bounded by the x-axis, y-axis and $x + y = 6$.

4. Use the method of Lagrange multipliers to find extreme values of $f(x, y) = 5xy$ on the ellipse $4x^2 + y^2 = 4$.

5. Consider the integral

 $$\int_0^\pi \int_0^x x \sin ydydx.$$

 Over which region is this integral calculated?
 (A) A rectangle with vertices $(0, 0), (0, \pi), (\pi, 0)$ and (π, π);
 (B) A triangle with vertices $(0, 0), (0, \pi)$ and $(\pi, 0)$;
 (C) A triangle with vertices $(0, 0), (0, \pi)$ and (π, π);
 (D) A triangle with vertices $(0, 0), (\pi, 0)$ and (π, π).

6. Still consider the integral

 $$\int_0^\pi \int_0^x x \sin ydydx.$$

 If we first integrate with respect to x, then which is the correct form?
 (A) $\int_0^\pi \int_0^y x \sin ydydx$, (B) $\int_0^\pi \int_0^y x \sin ydydx$, (C) $\int_0^\pi \int_0^y x \sin ydydx$, (D) $\int_0^\pi \int_0^y x \sin ydydx$

7. Find the volume of the region in the first octant between the cylinder $z = y^2$ and the xy-plane that is bounded by the planes $x = 0$, $x = 1$, $y = 0$ and $y = 1$.
8. Calculate the integral:
\[\iint_D \frac{y}{1 + x^2} \, dA \]

where \(D \) is the bounded by \(y = \sqrt{x} \), \(y = 0 \) and \(x = 1 \).

9. Calculate the iterated integral by first reversing the order of integration.
\[\int_0^1 \int_x^1 \cos(y^2) \, dy \, dx \]

10. Find the volume of the tetrahedron in the first octant bounded by the three coordinate planes, and the plane \(3x + 4y + 5z = 60 \).

11. Find the volume under the paraboloid \(z = x^2 + y^2 \) above the triangle enclosed by the lines \(y = x \), \(x = 0 \) and \(x + y = 2 \) in the \(xy \) plane.