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The nonlinear Schrödinger (NLS) equation is as follows:
(1.1)

This is a canonical and universal equation that plays an important
 role in plasma physics, nonlinear optics, and condensed matter 
(i.e. Bose-Einstein condensate). We consider the two component 
system of the following form:

(1.2)

where           for n=1, 2, or 3;        (j=1, 2) is the wave function of 
two interacting condensates; Vj is the trap potential; and 
interactions strengths λj and β are determined by scattering 
lengths.  We look for a pulse-like soliton solution to (1.2) in the 
form:

(1.3)
and reduce equation (1.2) to a system of PDEs:

(1.4)

where we treat μj as a chemical potential. When Vj=0, the 
solutions to (1.4) are the canonical ground states. We consider 
such ground states of the form:

(1.5)

For         where λj, μj, β > 0, and n = 1, 2, or 3. We look for 
positive solutions of (1.5) when            . Since such a solution is 
known to be radially symmetric and decay exponentially, we can 
consider:

(1.6)

Since solutions to (1.6) are radially symmetric, they satisfy the 
following:

(1.7)

In particular, this solution solves the system:

(1.8)

for r > 0. We consider (1.8) and its generalization numerically. 
Our results indicate for all parameters in (1.7) that the solution is 
unique.  This is not proved for general coupled Schrodinger 
equations. 
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We consider the initial value (1.8).  Local existence and 
uniqueness can be proved via standard contraction mapping 
principle. We denote a solution to (1.8) by (u1(r;A,B)), u2(r;A,B)) 
or simply (u1(r), u2(r)) when there is no confusion. The solution 
(u1(r), u2(r)) can be extended to the maximal interval (0, R). Note 
that this includes the case that (u1(r), u2(r)) is extended to r = R 
and u1(r) = u2(r) = 0. 

We look for two types of solutions. If
(2.1)

then (u1(r), u2(r)) is a ground state solution; if

(2.2)

then (u1(r), u2(r)) is a crossing solution.  From previous work in 
the field, we know that any solution to (1.6) is radially 
symmetric and thus a solution to (1.8) satisfying (2.1).  Define:

(2.3)

 
This is a gradient system. The set {f(u1, u2) = 0} consists of the 
line {u1 = 0} and the ellipse E1 = {μ1u1

2 + βu2
2 = λ1}, and the set 

{g(u1, u2) = 0} and the ellipse E2 = {βu1
2 + μ2u2

2 = λ2}. Let

(2.4)

Then when 0 < β < β1 and β > β2, E1 and E2 intersect exactly once 
in the first quadrant, and when β1 < β < β2, E1 and E2 do not 
intersect, hence one ellipse is inside the other. In the first case, f 
= g = 0 is a global minimum.  According to the signs of f and g, 
we define the following region in R+

2:

(2.5)

We use an numerical method to solve an initial value problem such 
as (1.7). We consider a more general problem:

                                                                                                     (3.1)

Where f and g are appropriate nonlinear functions and A, B > 0. 
We first expand the system (3.1) from two second order differential 
equations to four first order differential equations:

                                                                                                     (3.2)

First, we discretize the space of initial values {(A, B) : Ab ≤ A ≤ Ae, 
Bb ≤ B ≤ Be} to a two dimensional data structure:

where Ai = Ab + (i/n)(Ae - Ab)  and Bj = Bb + (j/n)(Be – Bb). Then 
for each initial value (Ai, Bj), we solve (3.2) by using an 
appropriate ODE solver in MatLab until the solution reaches a 
stopping time defined by T = sup{r>0 : u1(r)v1(r)u2(r)v2(r) ≠ 0}. In 
fact, we only detect the stopping time if the initial value (A, B) is 
valid, which means that is satisfies f(A, B) > 0 and g(A, B) > 0.  
That is, if (A, B) belongs to region I defined in (2.5). If 
(A, B) ϵ                      , then initially u'(r) > 0 or v'(r)>0 for small 
R >0, and the solution cannot be the one we desire.  On the 
bifurcation graph, we use the color “cyan” for the data point (Ai, 
Bj) if (Ai, Bj) ϵ                    . On the other hand, if the initial value 
(Ai, Bj) is an element of I, then for some δ > 0, u1(r), u2(r) > 0 and 
u1'(r), u2'(r) < 0 for r in (0, δ), hence T is well defined. As the 
solution reaches T, we color the data point according to the 
classifications:

(3.3)

“Blue” for u1(T) = 0, “green” for u1'(T) = 0, “red for u2(T) = 0, and 
“yellow” for u2'(T) = 0.

We investigate the qualitative behavior of solutions to the shooting 
problem (3.1).  We used MatLab solver ode113 since it handles 
computational intense models with an acceptable degree of 
accuracy.  

Existence of bifurcation points can be shown from our numerical 
bifurcation diagrams of the shooting problem (3.1).  In our 
numerical experiment, we fix a set of parameters (λ1, λ2, μ1, μ2) = 
(1, 2, 1, 1) and n = 3. We use β as a free parameter.  In Fig. 3, one 
can see that β1* ≈ 0.85. As β → (β1*)-, the green region shrinks to 
empty near (A, B) = (0, 6).  This indicates a convergence of the 
ground states of the system to the semitrivial state (u1(r), u2(r)). 
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