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This paper gives a detailed introduction to the orbifold notation for two-dimensional (2-D) symme-
try groups. It discusses the correspondence between properties of orbifolds and symmetries in the
original surface. The problem of determining a gransitu is addressed. Elementary proofs of the
classification of the Euclidean and spherical 2-D symmetry groups are presented.
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PRELIMINARIES We make extensive use of this method [2] and give
short “fibrifold names” to all 3-D crystallographic space
Introduction groups.

The finite subgroups of the three-dimensional (3-D) The oOrbifold Concept
orthogonal group have been enumerated by several

authors, using several different methods (see [3]). The What the above 2-D groups have in common is

17 plane crystallographic groups have also been enumer-y,,; they act discretely on surfaces of constant curvature,
ated by Polya and Niggli, who usgdadlstmctmethod anal- namely, the sphere for the orthogonal groups, the Eu-
ogous to that used 30 years earlier for the harder problem jiqean plane for the 17 crystallographic groups, and the

of enumerating the 219 space groups. hyperbolic plane for the non-Euclidean crystallographic

The aim of this paper is to describe a uniform method 455 To cover all three cases we shall speak merely of
that enumerates all these groups and also the analogousihe syrface”

ones in the hyperbolic plane, notable examples of which
are the symmetry groups of Escher’s four “Circle Limit”
pictures. However, in this paper, we concentrate on the
spherical and Euclidean cases.

The method is due to Macbeath [4] who studied
groups of Mdbius transformations and it has been elevated
by Thurston to a general method for studying the geome-
try of manifolds [1,6]. We shall use Thurston’s “orbifold”
language, but point out that our “orbifold symbol” is just o---0ABC---xab---Cxaff - X -+ X
an elegant form of Macbeath’s “signature.”

Theorbifold of such a group is “the surface divided
by the group™ that is to say, the quotient topological space
whose points are the orbits under the group. (We canregard
“orbifold” as an abbreviation of “orbit-manifold.”) The
orbit of a pointp under a grous is the set of all images
of p under elements db.

Our orbifold symbol

indicates the features of the orbifold. Here the letters rep-
resent numbers: these numbers together with the symbols
1This contribution is part of a collection titled Generalized Crystallog- o, *, andx we call thecharactersof the orbifold Symbo"
raphy and is dedicated to the 75th anniversary of Professor Alan L. We can freeb’ permute the numbeksB, C thatrep-
Mackay, FRS. resent gyrations and also the pastsb---c, *xaf, ...,
2Department of Mathematics, Princeton University, Princeton, New that represent boundaries, and cyclically permute the num-
JJersey 08544-1000. . bersa, b, ¢ that represent corners on any given boundary.
WSI-Informatik, Universiéit Tlibingen, Sand 14, 72076uingen, . .
Finally, we can always reverse the cyclic orders for all

Germany. . K L .
4To whom all correspondence should be addressed. Email: huson@ Poundaries simultaneously and individually if anchar-
informatik.uni-tuebingen.de acter is present.
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We shall now explain the meanings of the different
parts of our symbol. Like all connected 2-D manifolds,
the orbifold can be obtained from a sphere by possibly
punching some holes so as to yield boundary curves (indi-
cated byx) and maybe adjoining a number of handle (
or crosscapsx). However, an orbifold is slightly more
than a topological manifold, because it inherits a metric
from the original surface, which means, in particular, that
angles are defined on it.

Numbersa, b, ..., c added after a star indicater-
ner points that is, points on the corresponding bound-
ary curve at which the angles ar¢a, = /b, ..., 7/c. Fi-
nally, numbersA, B, C--- not after any star represent
cone pointsthat is, nonboundary points at which the to-
tal angles are2/A, 27 /B, 2 /C - - -. (We usually print
these numbers in a slightly larger font.)

The orbifold idea is the most powerful way to achieve

a conceptual understanding of these groups and, in partic-

ular, it trivializes their enumeration. However, it is also
important to be able to find the group of a particular pat-
ternin situ without needing to visualize its orbifold. We
do this by studying those structures in the original surface
that correspond to important features of the orbifold.

Our explanations will have the following form. We
start from a property of the orbifold, then describe its cor-
relate in the original surface, and provide a way to rec-
ognize and indicate this on a figure. In other words, the

actions we perform are determined by considering the orb-

ifold, but, for convenience, we actually perform them on
the original surface.

ORBIFOLD BOUNDARIES
AND KALEIDOSCOPES

The symmetry group of a finite physical object nec-

essarily preserves some sphere, for example, one centere
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Fig. 2. The orbifold associated with the symmetry group of a table.

planes of symmetry belong to orbits of size 2 (such as
{y, ¥’} and, finally, there are two orbits of size 1, corre-
sponding to the zenitte] and nadir §).

The orbifold is found by collapsing each orbit to a
point—in this case, it is isomorphic to the quarter of a
sphere shown in Fig. 2 (like the peel from one quarter of
an orange.) We see that it has a boundary.

Orbifold Boundaries

The boundary of this orbifold is a curve with twor-
ner pointsof angler /2, symbolized«22. In general, we
write xab- - - ¢ for a boundary curve that has corner points
with anglesr/a, 7/b, ..., 7/c in that order, around it,
but is otherwise smooth. Obviously, this is the same as
xb- - - ca; only thecyclic order matters.

A boundary curve of an orbifold may have any num-
ber of corners from 0 upward. An object, such as the chair
in Fig. 3 that just has bilateral symmetry, has a hemispher-
ical orbifold as depicted in Fig. 4. Since this boundary has
no corners, we denote it by(followed by no numbers).

On the other hand, the nine reflecting planes of a
cube (Fig. 5) cut the sphere into 48 triangular regions,
&vhose angles are/4, = /3, w /2. Thus, the orbifold here

at the object’s center of gravity. The symmetry group of has symbok432.

the table shown in Fig. 1 acts on the sphere drawn around

it. Most points of the sphere are in orbits of size 4, like
{x, x’, X", x”"}; however, points that lie on either of the

Fig. 1. The symmetries of a table act on a sphere drawn around it.

Recognizing Kaleidoscopes

It is important to recognize what corresponds to a
boundary and its corners on the original surface.

The boundary symbalab- - - cis also called &alei-
doscope symbdiecause its preimage in the surface is a
set of mirror lines that meet in setsafb, ..., c at their
crossing points. (For example, the kaleidosceg@ of

5In the case that an orientable orifold has several boundary curves, the
corners on these should be listed in the cyclic orders induced from some
fixed orientation. Changing this orientation reverses the cyclic orders
for all boundary curves.
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Fig. 3. The symmetries of a chair.

Fig. 4. The orbifold associated with the symmetry group of a chair.

Fig. 5. The symmetry group of a cube consists of reflections in nine
different planes.

Fig. 6. The orbifold *432 associated with the symmetry group of
the cube.

249

Fig. 7. Kaleidoscope of type2222.

the table in Fig. 1 consists of two great circles that meet
at both the zenith and nadir.)

The kaleidoscope of the chair is just a great circle,
which has no point on two or more mirror lines and so has
symbolx, while that of the cube (Fig. 5) has typd32;
corresponding to the fact that its nine great circles meetin
sets of 4, 3, and 2 at various points (Fig. 6).

Marking Kaleidoscopes

For a kaleidoscope, we draw a heavy line marked
over just enough mirror segments to define the orbifold
boundary, then mark each corner on this with the number
of mirrors through it, possibly with a subscript to dis-
tinguish between different types of corner. For example,
Fig. 7 has a kaleidoscope of typ2222; the four types of
corners are labeled 22, 23, and 2.

The black-and-white brick wall of Fig. 8 looks very
different, but has the same growp222, where now gis
the center of a white brick ;2s between two white bricks,

23 is the center of a black brick, and & between two
black bricks.

CONE POINTS AND GYRATION POINTS
Cone Points

The typical point on the surface is fixed only by the
identity element. At such points, the orbifold looks locally
exactly like the original surface. Thisis not so for boundary
points of the orbifold, because the corresponding points on
the original surface are fixed by reflections. There is only
one other type of singular point that an orbifold can have:
the cone point which comes about when a point on the
surface is fixed by a nontrivial rotation, but no reflection.
Theorder Aof the cone point is the largest order of any
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Fig. 8. A black-and-white brick wall and the orbifold associated with its symmetry

group.
such rotation—the angle around it will then be/2A. We Marking Gyration Points

indicate a cone point in the orbifold symbol by writing

its orderA (in a large font) before any boundary symbol The order of a gyration point is the largest order of
xab--.c. any rotation that fixes it. As in Fig. 10, we indicate a

What corresponds to this on the original surface?  representative of each type of gyration point by a heavy
spot marked with its order (usually in a larger font than that
used for corner points). Once again we can use subscripts
to distinguish between different types of gyration points
with the same order.

Gyration Points

Figure 9 is obtained from Fig. 8 by making all the
bricks have the same color. Now there is a rotation of
order 2 around the center of the square outlined by the THE GLOBAL TOPOLOGY OF AN ORBIFOLD
mirrors. A nontrivial rotation like this around a point that
doesnot lie on a mirror line, we call gyrationand the We have now described everything about the orb-
corresponding point gyration point The fact that the ifold that can be discovered by analyzing the locality of a
center does not lie on a mirror is important, since it makes single point. What remains is its 2-D topology. Any 2-D
the corresponding point of the orbifold a cone point rather manifold (perhaps with boundary) may be obtained from

than a corner point. a sphere (possibly perforated) by adding either handles or
The orbifold for Fig. 8 was a square whose four cor- crosscaps. We discuss two examples.

ners corresponded tq,2,, 23, and 2. However, in Fig. 9 The orbifold of Fig. 11a is a torus. We have out-

the new gyration interchanges ®ith 23 and 2 with 24. lined a fundamental region by joining the centers of four

Correspondingly, the orbifold of Fig. 9is obtained fromthe equivalent parallelograms. The torus is obtained from
intermediate figure by identifying opposite points. With a this in the usual way by identifying opposite sides (see
paper model, this can actually be done by tearing a path Fig. 11b). Topologically, a torus can be obtained from a
from the boundary to the center and then coiling the paper sphere by adjoining a handle)( so the orbifold symbol
to double thickness. for Fig. 11c iso.

Since this orbifold has one order 2 cone point and For Fig. 12 the orbifold is a Mbius strip, obtained by
a boundary with two order 2 corner points, its orbifold rolling up (with a twist) the strip outlined by two vertical
symbol is 222. lines. Topologically, a Mbius strip can be obtained from

|
A

21 22

Fig. 9. A brick wall. The corresponding orbifold shown on the right is obtained from the
intermediate figure by identifying opposite points.
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Fig. 10. The markings on the brick wall indicate the connection between

the symmetries of the wall and the corresponding orbifold. c ‘ ‘ ' O ‘

a disk or sphere with one hole)( by adjoining a crosscap (a) (©)
(x), so the orbifold symbol for Fig. 12 isx.

(W)
21 29

Fig. 12. This periodic system of vases (a) gives rise to the orbifold
*x (b), which is topologically a Mbius strip (c).
Recognizing and Marking the Global Topology

A crosscap makes the orbifold nonorientable. Thus, explained by mirrors, gyrations, or miracles. We call this
the presence of at least one crosscap can be detected on thewonderful wanderingor just awonder and indicate it
original surface by finding a path from a place in the motif in our illustrations by drawing the corresponding pair of
to a mirror image copy of itself that does not pass through dotted paths accompanied by a ring (a “wonder-ring™), as
a mirror line. Since this kind of “mirrorless” reflection of  in Fig. 13b.
motif is rather paradoxical, we shall call inairacle cross We have shown that we can detect the presence of
(for “mirrorless crossing”), or just miracle miracles and wonders by examination of the original sur-

We indicate each miracle in our figures by a dot- face. It is rather hard to count them and for this we rec-
ted line marked with a cross (see Fig. 13a). Note that ommend the reader construct the orbifold.

Fig. 12 contains both ordinary reflections and mirrorless Fortunately, only one of the spherical and Euclidean
ones, corresponding to its orbifold symbot. groups has more than one wonder or miracle, illustrated

A handle in the orbifold corresponds to another kind in Fig. 14a. The orbifold is a Klein bottle obtained by
of repetition of matif. It forces the existence of two inde- identifying the sides of the indicated rectangle (Fig. 14b).
pendent, homologically nontrivial paths on the orbifold, Topologically, aKlein bottle can be obtained from a sphere
as in Fig. 11c. These correspond to two paths from a partby adding two crosscaps, so, indeed, there must be two
of the motif to two nonreflected images of itself. These miracles here (Fig. 14c), corresponding to the orbifold
repetitions of motif have the property that they cannot be symbolx x.

Fig. 11. This periodic tiling (a) gives rise to the orbifold(b), which is Fig. 13. (a) A“miracle” accounts for the nonvertical repetition in Fig. 12,
topologically a torus (c). whereas (b) a “wonder” accounts for the repetitions of motif in Fig. 11.
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Fig. 14. A tiling (a) with the orbifold (b) and two different “miracles” (c) that generate the
group x x.

THE ORBIFOLD SYMBOL Let us explain how this comes about. The right-hand
side of the defect formula is thebifold Euler character-
We indicate the type of an orbifold by juxtaposing istic ch (Q) of the orbifoldQ. It can be obtained from the
the symbols for the handles, cone points, boundaries (with usual formula
corners), and crosscaps from which it is made. Thurston
shows that this symbol determines the orbifold as a con- ch@Q =v—e+f

stant curvature surface up to isotopy (i.e., CONtinuous vari- \yherey e andf are the numbers of vertices, edges, and

atior!). We shall not prove this, in gener'al, here, since the ;.05 of 4 map drawn o@, provided these are suitably
Euclidean and spherical cases are so simple that not mucfyggen Because these numbers are often fraction&) ch(
proof is required. is also called théractional Euler characteristiof Q.

For example the orbifold okpqr is a triangle with In our figures, we will enlarge the vertices and edges
anglesr/p, 7/q, andr/r, anditis easy to see that thisis ¢ ans of surfaces and orbifolds into discs and strips so

unique up to scale, in a space thatis Euclidean, spherical o4t \we can see how they break up. Thus, Fig. 16 shows

hyperbolic accordingly, as the sum of these angles equals,o map formed by the vertices, edges, and faces of the
7, Or is greater or smaller than. brick of Fig. 15.

Again, that of«2222 is a quadrilateral with four right
angles, which must be a rectangle in the Euclidean plane,and F — 6 faces, agreeing with the fact that the Euler
so the groupx2222 is generated by the reflections in the 14 acteristic of the sphere is28 — 12+ 6. However,
sides of the rectangle. Since any one rectangle can bey. orpifold Q here is just one eighth of the sphere
continuously de_forme_d into any other, any two groups of (Fig. 17) and for it the corresponding numbers aee 1,
type 2222 are isotopic. _ _ e=3/2, f =3/4, and so the orbifold Euler character-

The orbifold of a group of typeab is a two-sided istic ch(Q) = 1 — 3/2 + 3/4 = 1/4 — 2/8. Applying the
figure with anglesr/a andx/b. In a constant-curvature  jofect formula to the orbifold symboi222 gives the

space, the only possibility is the lune bounded by two great ¢, e value 2- (14 1/4+1/4+1/4) = 1/4 = 2/8.We
circles on the sphere, in which both the angles are equal.

Thus,xab can only exist whew = b.

On the sphere it hag = 8 vertices,E = 12 edges,

Table I. Defects Associated with Different Characters of

an Orbifold?

THE DEFECT FORMULA Char Defect Char Defect
o 2 * Or X 1
How can we find the ordeg of a groupG from its 2 1/2 2 Y4
orbifold symbolQ? The answer, when finite, is given by 2 2/431 i ;/g
the remarkablelefect formula 5 4j5 = 2§5
2 6 5/6 6 5/12

= =2-") " defect(s)= ch(Q) N (N —1)/N N (N—1)2N
g o0 1 oo 1/2

summed over all the characters of the orbifold symbol, aThe larger font numbers on the left are those not following

where these defects are tabulated in Table I. any.
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Fig. 15. The symmetries of a brick.

Fig. 16. The map formed by the vertices, edges, and faces of a brick.

Fig. 17. The orbifold for the symmetry group of a brick is one eighth of

the sphere.

=

Fig. 18. Introducing a hole (whose boundary has no corner) decreases

the Euler characteristic by 1.
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prefer to write the Euler characteristics in the forpg2
since then the denominator is the group order.

The maps on an orbifold are images of those maps
on the sphere that are invariant under the gréu hen,
obviously, the counts of vertices, edges, and faces of such
orbifold maps are

\Y E
v=—, e=—, andf :E
g g g
and so the orbifold Euler characteristic will be:
V—-—E+F 2
ch@Q=v—-e+f=——"=—
g g

whereV, E, andF are the corresponding counts on the
sphere. Obviously, we can evaluate @hf@@asv — e+ f
for anymap on the orbifold.

We shall use this principle to show how the charac-
teristic changes as we modify the orbifold. As usual, it
implies that adding a handle or crosscap reduces the Euler
characteristic by 2 or 1, respectively.

Introducing a hole: (whose boundary has no corner)
decreases ch)) by 1. To see this, take the hole to be a face
of the map (Fig. 18). This face and the adjacewertices
andn edges contributa — n + 1 tov — e+ f before the
modification, buin/2 — n/2 + 0 after, a decrease of 1.

Again, changing an interior poifit from an ordinary
point to an A-fold cone point decreases &) by 1—
1/A = (A—1)/A because we can suppoBés a vertex
of the map, when its contributions tobefore and after
the change are 1 andgl A.

Similarly, changing an ordinary boundary poiRt
(contributing %2 to v) to ana-fold corner point (contri-
buting 1/2a) reduces the characteristic by2l— 1/2a =
(a—1)/2a.

We have now proved that for the orbifo@@of a finite
group of orderg, we do indeed have

ch(Q) = g =2- ) defect(s)

These are the orbifolds of positive characteristic.

Those of characteristic 0 are precisely the Euclidean
groups, since, for them, the orbifold is a quotient of a
torus, which has ordinary Euler characteristic 0. Those of
negative characteristic correspond to groups acting in the
hyperbolic plane. This follows from the universal interpre-
tation of the orbifold Euler characteristic as the integrated
Gaussian curvature over the orbifold, divided by. 2

ENUMERATING THE GROUPS

In enumerating the&) for which ch(@Q) has a given
sign, it suffices in the first instance to list only those that
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consist of one or more followed only by digits since 4 gyration about the center of that square: again, all such
the following “demotions” preserve the sign of €. In groups are isotopic.

the first demotionAB- - - C must be the entire orbifold A general proof, which applies also to the hyperbolic
symbol, and the characteristic is halved. The other three case, can be found in the literature; we omit further details.
preserve the characteristic and may be performed locally.

“AB...C (_pd;mg:z_) AB...C The Spherical Groups
< demote- We find these by enumerating the candidate symbols
(final) * X Q for which ch(@) is positive, starting with those of form
—promote- xab- - - ¢, which correspond to the solutions of
«~demote-
a—1 b-1 c—1

- —promote—> ° — vt Tt <2

+AA <«demote- Ax namely: (5, 3, 2), (4, 3, 2), (3, 3, 2), (2,B), and (, n),
—promote— where we allonm orn to be 1.

However, we shall see in a moment that the last case
only corresponds to a group whemn= n. This givesrise to
The Euclidean Plane Crystallographic Groups the cases on the left in Table Ill: once again the remaining
cases on any given line are obtained by promation.
After these demotions, a case with just arteas the
form: xab- - - ¢, for which The Bad Orbifolds
a—-1 b-1 c—-1 ]
chQ=2-1-—"————---— — Once again the argument should be supplemented
2a 2b 2c : g . .
) ) by a discussion of the existence and uniqueness of the
For a Euclidean group, this must be 0, and so we must cqrresponding groups. Most cases easily follow from the

solve: fact that there exists a spherical triangle (unique up to
a-1 b-1 P c—1 5 isometry) with angles of the form/a, /b, andr /c, just
a b o c if the sum of these angles exceetds
The solutions are: (6, 3, 2), (4, 4, 2), (3, 3, 3), and (2, 2, 2, For an arbitrary orbifold symbol, in general, the ex-

2). If two characters are present, there can be no further Stence and uniqueness up to isotopy is proved by dissect-

character, since they already have total defect 2. This leaddnd the orbifold into triangles. However, in the casan
to the five cases on the left in Table II: they promote to (M N = 1) the relevant polygon is a two-sided one (see
give the cases that follow them. Fig. 19) with anglest/m and/n. Obviously, this can

This must surely be the simplest and most conceptual only b_e the spherical lune bounded by two great circles,
enumeration of these 17 groups. However, it should be for which the two angles must be equal, so thet n.
supplemented by a proof that for each of the candidate 1€ Same must hold fann, since any such group could
symbols there is just one group up to isotopy. This is easily Necessarily be extended tmn by adjoining a reflection
proved for each particular case, for instance, itis clear that 1rough the two corresponding gyration points.
any group of type2222 must be generated by reflections _The symbolsmnandmn(m # n), together with the
in the four sides of a rectangle: since this rectangle can beParticular casesm andm (m > 1) that arise by putting
continuously transformed into any other, all such groups " = 1. are the only ones that do not correspond to groups.
are isotopic. Similarly, a group of typ&«2 is generated

by reflections in sides of a square, together with the order Table lll. The Spherical Grougs

%532 532
*432 432
. %332 32 332
Table II. The 17 Plane Crystallographic Groups w2on 2un 29n
%632 632 *Nn N« Nx nn
%442 442 442 a -
%333 343 333 There are seven particular groups and seven
%2292 2402 22 2222 infinite series controlled by a parameter
o £x xx o n> 1. (Whenn = 1, it is customarily omit-

ted from the symbol.)
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Fig. 19. For the symbokmn, the orbifold is a spherical lune bounded
by two great circles, so that = n.

Fig. 20. Inspired by Escher’s Circle Limit IV, this tilings has symmetry

The Seven Frieze Groups group 43.

So far we have tacitly assumed that the numbers in

. - ) orbifold Euler characteristics:
our orbifold symbols are finite, which corresponds to the

compactness of the orbifold. The frieze groups correspond for 4x3: 2_ 3_ 1— 1 = _1
to cases when this condition is violated: they correspond 4 3 12
to the orbifold symbolsQ that contain the characteo for ¥3333: 2—1— 1 1 11 _ 1
and have chD) = 0. The enumeration is easy (Table IV); ' 3 3 3 3 3
it turns out that these groups are obtained by putting

oo in Table lll.

GENERATORS AND RELATIONS FOR

Groups in the Hyperbolic Plane TWO-DIMENSIONAL GROUPS

It is a well-known principle that if a simply-
connected manifold is divided by a growp to obtain
another manifold, then the fundamental group of the quo-
tient manifold is isomorphic t&. What happens is that
a path from the base point to itself in the quotient mani-
fold lifts to a path in the original manifold that might not
return to the base point, in which case it corresponds to a
nontrivial element ofs.

This principle applies also when the quotient space is

more general orbifold, except that some care is required

or the definitions. The important point is that a path that

Escher’s Circle Limit pictures are really in the hy-
perbolic plane. For example, the angels and devils of his
Circle Limit IV ([5] p. 296) form a picture with symmetry
group 43, if we ignore the fact that every fourth figure
is facing away from us (and the artist's monogram) (see
Fig. 20).

Although such groups are not our main concern here,
we should point out that one of the great strengths of the
orbifold method is that makes them just as easy to handle
as the Euclidean and spherical cases—they correspon

preciselyto the orbifold symbol3, forwhich ch Q) < 0, bounces off a mirror boundary in the orbifold should be

the orbifold being compact just &o is not mentioned. . . .
The orbifold notation helps to understand the many !|fted to a path that goes through the corresponding mirror
in the original surface.

relationships between these groups. For example, passing Figure 21 shows the paths in the orbifold whose lifts

to a subgroup of indexmultiplies the characteristic by are the generators for the corresponding aroun. We chose
The subtler properties of Escher’s pictures often hint 9 P g group.

at such relationships. For example, if we do take account
of the fact that some of the angels and devils are facing
away from us in Circle Limit IV, the group of that picture
drops t0x3333, of index 4 in 43. This agrees with the

o>

Y
A
Table IV. The Seven Frieze Groups a...yi..k...w:l
#2200 2500 2200 . . . . .
G000 0o % 00X 0000 Fig. 21. Paths in the orbifold that lift to generators of the corresponding

group.
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a base point in the upper half plane and for each of the bounce off the boundary and are separated by the corners.
features These correspond to reflections in the group that satisfy

o---A-..xabC--- x the relations.

we have one Greek generator correspondingto apaththat 1= P? = (PQ? = Q? = (QR” = R* = (RS°

circumnavigates that feature in the positive direction, and — Qandi-lPi =S
maybe some Latin generators.

For ao symbol, represented in the figure by a bridge, Finally, for a crosscapx, represented in our figure
the two Latin generatorX, Y are homology generators by a cross inside a circle whose opposite points are to
for the handle so formed. They satisfy the relations: be identified, the Latin generat@rcorresponds to a path

“through” the crosscap and satisfies the relation:
XY IXY=[X, Y] =« )
Z°=w

For a gyration symboA, there is no Latin genera- A complete presentation for the group is obtained
tor, but the corresponding Greek generataatisfies the 1y compining the generators and relations that we have
relation described for each feature, and adjoining tebal

A1 relation:

For a mirror boundary with corners, there are+ 1 @ yeecheo=1

Latin generator®, Q, ..., Scorresponding to paths that  which asserts that the product of all Greek generatorsis 1.

Table Al. The Abstract Structure of Spherical Gro@ips

Families of groups

Order nn nx nx xnn  22n 2%n, *22mn
1 1
2 22 X * * 22
3 33
4 44 2% *22 222 2%
5 55
6 66 3x %33 223
7 77
8 88 4x x4 4 224 2%2
9 99
10 1010 5% *5 5 225
11 1111
12 1212 6x *6 6 226 2x3 332

24 2424 12x *1212 2212 2%6 432 %332 3x2

36 36 36 18x *1818 2218 29

48 4848 24x %2424 2224 212 %432

60 6060 30x x3030 2230 2x15 532

120 120120 60x *6060 2260 2x30 %532
c D P 2x P

Group structures

aUnseparated groups on the same line are isomorphic. The group structures ar€gydligdral
(D) and polyhedral P), or the direct products (8 C, 2 x D, 2 x P) of these with a group of
order 2. The structures of the polyhedral groups 332, 432, and 532 are the alternating and

symmetric group®\s, &, andSs.
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We propose the following notation for this set of gen- All these matters are displayed in Table Al. The
erators and relations: groups of any given order occupy one line and groups

are abstractly isomorphic just if they are not separated by

XY LAY AP gRPRES. L 2 Lo
a dividing line.

APPENDIX: ISOMORPHISMS BETWEEN

THE SPHERICAL GROUPS REFERENCES

. R . . 1. Conway, J. InGroups, Combinatorics and Geometi@ambridge
OccaS|Ona”y' two of the infinite series contain the University Press: Cambridge, 1992; pp. 438-447 (London Mathe-

same group. For example, whar= 1 andb = 2 we have: matical Society Lecture Note Series 165).
2. Conway, J.; Delgado Friedrichs, O.; Huson, D.; ThurstorCutrib.
22a = bb, *22a = xbb, 2xa = bx and Geometry Algebr2001,42,475.
3. Coxeter, H.; Moser, Wsenerators and Relations for Discrete Groups
xaa = ax (Springer: Berlin, 1980).

] ] ) 4. Macbeath, ACanad. J. Math1967,19,1192.
But also, two different spherical groups can be iso- 5. Schattschneider, Misions of Symmetry: Notebooks, Periodic Draw-

morphlc as abstract groupsl For example' Slnce a” groups Inggoe)lnd Related Work of M. C. ESC}(Ereeman: San Fl’anCiSCO, CA,
. . = 1 .
of order two are abstractly isomorphic, we haxe= 6. Thurston, W.The Geometry and Topology of Three-Manifolds

22 = %, (Princeton University: Princeton, New Jersey, 1980).



