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Quantum Computing

−→ Quantum Computing Unit
Optical lattices, NMR, Anyons −→

Quantum bit (Qubit)

Store and process information using quantum states (qubits).
Apply suitable quantum gates (unitary transformations) to the system
Apply measurements (unitary transformation) to extract useful
information.
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Mathematical formulation

Consider a quantum system with two physically measurable states:

| ↑ 〉 = |0〉 =
[

1
0

]
and |→〉 = |1〉 =

[
0
1

]
.

A quantum state is in the superposition

|ψ〉 = a|0〉+ b|1〉 =
[
a
b

]
, a, b ∈ C, |a|2 + |b|2 = 1.

Schrödinger cat interpretation

|0〉 represents a dead cat, |1〉 represents an alive cat,
|ψ〉 = a|0〉+ b|1〉 represents a cat in the sate of both dead and alive with
a probability |a|2 dead and a probability |b|2 alive.
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For two quantum states, |ψ1〉 =
[
a
b

]
, and |ψ2〉 =

[
c
d

]
, the tensor state of

the joint (bipartitle) system is represented by

|ψ1〉 ⊗ |ψ2〉 = |ψ1ψ2〉 =

acadbc
bd

 .

The four measurable states are:

|00〉 = e1 =

1
0
0
0

 , |01〉 = e2 =

0
1
0
0

 , |10〉 = e3 =

0
0
1
0

 , |11〉 = e4 =

0
0
0
1

 .
A general (vector) state is a unit vector in C4, which is a linear
combination of the four measurable states.

Chi-Kwong Li Decomposition of unitary gates



For two quantum states, |ψ1〉 =
[
a
b

]
, and |ψ2〉 =

[
c
d

]
, the tensor state of

the joint (bipartitle) system is represented by

|ψ1〉 ⊗ |ψ2〉 = |ψ1ψ2〉 =

acadbc
bd

 .
The four measurable states are:

|00〉 = e1 =

1
0
0
0

 , |01〉 = e2 =

0
1
0
0

 , |10〉 = e3 =

0
0
1
0

 , |11〉 = e4 =

0
0
0
1

 .

A general (vector) state is a unit vector in C4, which is a linear
combination of the four measurable states.

Chi-Kwong Li Decomposition of unitary gates



For two quantum states, |ψ1〉 =
[
a
b

]
, and |ψ2〉 =

[
c
d

]
, the tensor state of

the joint (bipartitle) system is represented by

|ψ1〉 ⊗ |ψ2〉 = |ψ1ψ2〉 =

acadbc
bd

 .
The four measurable states are:

|00〉 = e1 =

1
0
0
0

 , |01〉 = e2 =

0
1
0
0

 , |10〉 = e3 =

0
0
1
0

 , |11〉 = e4 =

0
0
0
1

 .
A general (vector) state is a unit vector in C4, which is a linear
combination of the four measurable states.

Chi-Kwong Li Decomposition of unitary gates



A large data set!

To simulate a quantum system with n qubits, say, n = 100, a classical
computer has to deal with N = 2n measurable states: |i1 · · · iN 〉.

A simulation of simple system in CN is a difficult (impossible) task.
A quantum computer can handle a general
state |Ψ〉 of n qubits in CN by a
single quantum operation (unitary gate),
leading to high speed computation.

But, general unitary gates are difficult to generate!
So, one needs to decompose a general unitary gate to the product of
“simple” unitary gates.
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A general procedure

Suppose U ∈MN with N = 2n is a unitary matrix acting on n-qubit
states.

We want to write U = V1 · · ·Vk for some elementary quantum gates
(single qubit gates, CNOT gates, etc.)
One often does that by finding U1, . . . , Uk so that Uk · · ·U1U = IN .
Then we have U = U†1 · · ·U

†
k .
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A scheme in numerical linear algebra (Givens transform)

Suppose U = (uij) ∈M4. Consider the first column of U .

Let d31 = {|u31|2 + |u41|2}1/2 and

U41 =

(
1

1
ū31/d31 ū41/d31
−u41/d31 u31/d31

)
so that U41U =

(
u11 ∗ ∗ ∗
u21 ∗ ∗ ∗
d31 ∗ ∗ ∗
0 ∗ ∗ ∗

)
.

Let d21 = {|u21|2 + d2
31}1/2 and

U31 =

(
1

ū21/d21 d31/d21
−u31/d21 u21/d21

1

)
so that U31U41U =

(
u11 ∗ ∗ ∗
d21 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

)
.
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Let

U21 =

(
ū11 d21
−d21 u11

1
1

)
so that U21U31U41U =

(
1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

)
.

Note that the (1, 2), (1, 3), (1, 4) entries will be 0 as well.

Then consider the second column and construct

U42 =

(
1

1
∗ ∗
∗ ∗

)
, U32 =

(
1
∗ ∗
∗ ∗

1

)
so that

U32U42U21U31U41U =

(
1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗

)
.
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Let

U43 =

(
1

1
∗ ∗
∗ ∗

)
so that

U43U32U42U21U31U41U =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 det(U)

)
= D.

Thus,
U = U†41U

†
31U

†
21U

†
42U

†
32U

†
43D.

Number of 2-level matrices used is at most 3 + 2 + 1 = 6.

Lemma
Every N -by-N unitary matrix is the product of m 2-level matrices with

m ≤ (N − 1) + · · ·+ 1 =
(
N

2

)
.
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We only need 2-level matrices of the form:(
1

1
v11 v12
v21 v22

)
,

(
v11 v12
v21 v22

1
1

)
, or

(
1

v11 v12
v21 v22

1

)
.

Type 1 Type 2 Type 5

However, not all of them are simple quantum gates!
Label the rows and columns of a 4-by-4 unitary matrix by (00), (01), (10), (11).

(00)
(01)
(10)
(11)

Let V =
(

v11 v12
v21 v22

)
. Then Type 1 and Type 2 matrices correspond to

controlled qubit gates changing one qubit, namely,

a0|00〉+ a1|01〉+ a2|10〉+ a3|11〉

to:
a0|00〉+ a1|01〉+ |1〉V (a2|0〉+ a3|1〉), (1V )− gate

and
|0〉V (a0|0〉+ a1|1〉) + a2|10〉+ a3|11〉, (0V )− gate.
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Other 2-level and controlled single qubit gates

A Type 5 matrix is not so easy to implement because it changes both qubits.
(00) (01) (10) (11)(
1 0 0 0
0 v11 v12 0
0 v21 v22 0
0 0 0 1

)
(00)
(01)
(10)
(11)

.

There are two other types of controlled qubit gates on 2 qubits:

(00)
(01)
(10)
(11)

(
1 0 0 0
0 v11 0 v12
0 0 1 0
0 v21 0 v22

)
,

(
v11 0 v12 0
0 1 0 0

v21 0 v22 0
0 0 0 1

)
,

Type 3: (V1)-gate. Type 4: (V0) - gate.

corresponding to I2 ⊗ |0〉〈0|+ V ⊗ |1〉〈1| and V ⊗ |0〉〈0|+ I2 ⊗ |1〉〈1|.
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The 4 types of controlled qubit gates with the following circuit diagrams:

V V

V V

(0V ) (1V ) (V 0) (V 1)

For n = 3, we have fully-controlled qubit gates of the types:
(00V ), (01V ), (10V ), (11V ), (0V 0), (0V 1), (1V 0), (1V 1), (V 00), (V 01), (V 10), (V 11).

One easily extends this idea and notation to define fully-controlled gates
acting on n-qubits.

Chi-Kwong Li Decomposition of unitary gates



The 4 types of controlled qubit gates with the following circuit diagrams:

V V

V V

(0V ) (1V ) (V 0) (V 1)

For n = 3, we have fully-controlled qubit gates of the types:
(00V ), (01V ), (10V ), (11V ), (0V 0), (0V 1), (1V 0), (1V 1), (V 00), (V 01), (V 10), (V 11).

One easily extends this idea and notation to define fully-controlled gates
acting on n-qubits.

Chi-Kwong Li Decomposition of unitary gates



The 4 types of controlled qubit gates with the following circuit diagrams:

V V

V V

(0V ) (1V ) (V 0) (V 1)

For n = 3, we have fully-controlled qubit gates of the types:
(00V ), (01V ), (10V ), (11V ), (0V 0), (0V 1), (1V 0), (1V 1), (V 00), (V 01), (V 10), (V 11).

One easily extends this idea and notation to define fully-controlled gates
acting on n-qubits.

Chi-Kwong Li Decomposition of unitary gates



Decomposition using only controlled qubit gates

Type 1 (1V) Type 2 (0V) Type 3 (V1)(
1

1
∗ ∗
∗ ∗

)
,

(
∗ ∗
∗ ∗

1
1

)
,

(
1
∗ ∗

1
∗ ∗

)
.

(00)
(01)
(10)
(11)

1. Use Type 1 matrix to make the (3, 1) instead of the (4, 1) entry zero;
then use the Type 3 matrix to make the (4, 1) entry zero;
then use the Type 2 matrix to make the (2, 1) entry zero.

2. Use Type 1 matrix to make the (3, 2) instead of the (4, 2) entry zero zero;
Use Type 3 matrix to make the (4, 2) entry zero.

3. Use type 1 matrix to make the (3, 4) instead of the (4, 3) entry zero.

Theorem [Vartiainen et al., 2004]
We can always use single fully controlled single qubit gates to do the
decomposition.
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A General Result

In some QC models, one uses the −3/2,−1/2, 1/2, 3/2 states of a
spin-1/2 systems to represent the 2-qubit states |00〉, |01〉, |10〉, |11〉.

In such a case, it is easier to apply changes between

(1) |00〉 and |01〉; (2) |01〉 and |10〉; (3) |10〉 and |11〉.

In general, let P = (j1, j2, . . . , jN ) be a permutation of (1, . . . , N).

A P -unitary matrix is a 2-level unitary matrix obtained from IN by changing its
rows and columns indexed by:

(j1, j2), (j2, j3), · · · , (jn−1, jn).

Examples P = (1, 2, 3, 4), P = (1, 2, 4, 3).

Theorem [Li, Roberts, and Yin, 2013]
Let P = (j1, j2, . . . , jN ) be a permutation of (1, 2, . . . , N).
Then every N -by-N unitary matrix U can be written as a product of no more
than N(N − 1)/2 P -unitary matrices.
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Further simplification

For two qubit system, it is easier to apply the unitary gates of the form:

I2 ⊗ V =
(
V

V

) (00)
(01)
(10)
(11)

and V ⊗ I2 =
(
v11I2 v12I2
v21I2 v22I2

)
.

They will change the vector states

|ψ〉 = a0|00〉+ a1|01〉+ a2|10〉+ a3|11〉

to:
|0〉 ⊗ V (a0|0〉+ a1|1〉) + |1〉 ⊗ (V (a1|0〉+ a2|1〉),

and
V (a0|0〉+ a2|1〉)⊗ |0〉+ (V (a1|0〉+ a3|1〉)⊗ |1〉.

In many (?) QC models, it is less expensive to implement for some quantum
systems.
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Further Reduction

Reduction of U ∈M4 by 2-C0V gates and 4-C1V gates:
−

1 (∗V ) −
3 (V ∗) 1 (1V ) −
2 (1V ) 2 (V 1) 1 (1V ) −

(
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)
→

(
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)
→

(
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

)
→

(
∗ 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

)

→

(
∗ 0 0 0
0 ∗ ∗ ∗
0 0 ∗ ∗
0 ∗ ∗ ∗

)
→

(
∗ 0 0 0
0 ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗

)
→

(
∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

)
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A recursive scheme
Reduction of U ∈M8 by 3-C0V gates, 18-C1V gates, and 7-C2V gates:

−
1 (∗∗V ) −
3 (∗V ∗) 1 (∗1V ) −
2 (∗1V ) 2 (∗V 1) 1 (∗1V ) −
7 (V ∗ ∗) 3 (1∗V ) 4 (1V∗) 2 (10V ) −
4 (1∗V ) 6 (V ∗1) 3 (10V ) 3 (1V ∗) 1 (1∗V ) −
6 (1V ∗) 4 (∗1V ) 5 (V 1∗) 1 (1∗V ) 3 (1V∗) 1 (11V ) −
5 (∗1V ) 5 (1V ∗) 2 (1∗V ) 4 (V 11) 2 (11V ) 2 (1V 1) 1 (11V ) −

Annihilate the off-diagonal entries of U =
(

U11 U12
U21 U22

)
in columns 1, 2, 3 . . .

For column 1, use the scheme of the (n− 1)-qubit case to annihilate the
entries in the upper half, and then modify the scheme for the lower half
to annihilate the entries in the lower half.
For column ` with 2 ≤ ` ≤ 2n−1, use the scheme of the (n− 1)-qubit case
to annihilate the entries in the upper half, and then modify the scheme for
the lower half of Column 1 column to handle the lower half of Column `.
To annihilate the entries in U22, use the same procedures as the previous
case with a single control gate in the first qubit (equal to 1).
A Matlab program was written to do the decomposition.
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A Matlab program was written to do the decomposition.
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Counting the control gates

Theorem

Let gk
n be the number of k-control qubit gates used in our decomposition

scheme for an n-qubit unitary gate for k = 0, 1, . . . , n− 1.

1 g0
n = n.

2 g1
n = n(n− 1)(2n−2 + 1) for all n ≥ 2.

3 g2
n = 1

3(4n − 4)− 2n(n− 1) + n(n− 1)(n− 2)
2 for all n ≥ 3.

4 gn−1
n =

{ 1 if n = 1
4 if n = 2
7 + (n− 3) if n ≥ 3

5 gk
n = gk

n−1 + gk−1
n−1 +

(
n−1

k

)
for all 3 ≤ k < n− 1.
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A comparison with previous results

A recursion formula was obtained by Vartiainen et al.1

gk
n = gk

n−1 + gk−1
n−1 + max(2n−2, 2k) + (22n−k−2 − 2n−2) (for k ≥ 1)

with the conditions that g0
m = 2m−1 for all m = 1, . . . , n.

Here is a comparison of their results and ours.

n g0
n / g0

n g1
n / g1

n g2
n / g2

n g3
n / g3

n g4
n / g4

n T1(n) / T2(n)
1 1 / 1 − − − − 0 / 0
2 2 / 2 4 / 4 − − − 4 / 4
3 3 / 4 18 / 14 7 / 10 − − 32 / 34
4 4 / 8 60 / 50 48 / 40 8 / 22 − 180 / 196
5 5 / 16 180 / 186 242 / 154 60 / 94 9 / 46 880 / 960

Starting from n = 3, we get a small advantage in our decomposition.
The discrepancy becomes large as n gets larger.
For example, T2(10)− T1(10) = 30, 720.

1J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett.
92 177902 (2004).

Chi-Kwong Li Decomposition of unitary gates



A comparison with previous results

A recursion formula was obtained by Vartiainen et al.1

gk
n = gk

n−1 + gk−1
n−1 + max(2n−2, 2k) + (22n−k−2 − 2n−2) (for k ≥ 1)

with the conditions that g0
m = 2m−1 for all m = 1, . . . , n.

Here is a comparison of their results and ours.

n g0
n / g0

n g1
n / g1

n g2
n / g2

n g3
n / g3

n g4
n / g4

n T1(n) / T2(n)
1 1 / 1 − − − − 0 / 0
2 2 / 2 4 / 4 − − − 4 / 4
3 3 / 4 18 / 14 7 / 10 − − 32 / 34
4 4 / 8 60 / 50 48 / 40 8 / 22 − 180 / 196
5 5 / 16 180 / 186 242 / 154 60 / 94 9 / 46 880 / 960

Starting from n = 3, we get a small advantage in our decomposition.
The discrepancy becomes large as n gets larger.
For example, T2(10)− T1(10) = 30, 720.

1J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett.
92 177902 (2004).

Chi-Kwong Li Decomposition of unitary gates



A comparison with previous results

A recursion formula was obtained by Vartiainen et al.1

gk
n = gk

n−1 + gk−1
n−1 + max(2n−2, 2k) + (22n−k−2 − 2n−2) (for k ≥ 1)

with the conditions that g0
m = 2m−1 for all m = 1, . . . , n.

Here is a comparison of their results and ours.

n g0
n / g0

n g1
n / g1

n g2
n / g2

n g3
n / g3

n g4
n / g4

n T1(n) / T2(n)
1 1 / 1 − − − − 0 / 0
2 2 / 2 4 / 4 − − − 4 / 4
3 3 / 4 18 / 14 7 / 10 − − 32 / 34
4 4 / 8 60 / 50 48 / 40 8 / 22 − 180 / 196
5 5 / 16 180 / 186 242 / 154 60 / 94 9 / 46 880 / 960

Starting from n = 3, we get a small advantage in our decomposition.
The discrepancy becomes large as n gets larger.
For example, T2(10)− T1(10) = 30, 720.

1J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett.
92 177902 (2004).

Chi-Kwong Li Decomposition of unitary gates



A comparison with previous results

A recursion formula was obtained by Vartiainen et al.1

gk
n = gk

n−1 + gk−1
n−1 + max(2n−2, 2k) + (22n−k−2 − 2n−2) (for k ≥ 1)

with the conditions that g0
m = 2m−1 for all m = 1, . . . , n.

Here is a comparison of their results and ours.

n g0
n / g0

n g1
n / g1

n g2
n / g2

n g3
n / g3

n g4
n / g4

n T1(n) / T2(n)
1 1 / 1 − − − − 0 / 0
2 2 / 2 4 / 4 − − − 4 / 4
3 3 / 4 18 / 14 7 / 10 − − 32 / 34
4 4 / 8 60 / 50 48 / 40 8 / 22 − 180 / 196
5 5 / 16 180 / 186 242 / 154 60 / 94 9 / 46 880 / 960

Starting from n = 3, we get a small advantage in our decomposition.

The discrepancy becomes large as n gets larger.
For example, T2(10)− T1(10) = 30, 720.

1J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett.
92 177902 (2004).

Chi-Kwong Li Decomposition of unitary gates



A comparison with previous results

A recursion formula was obtained by Vartiainen et al.1

gk
n = gk

n−1 + gk−1
n−1 + max(2n−2, 2k) + (22n−k−2 − 2n−2) (for k ≥ 1)

with the conditions that g0
m = 2m−1 for all m = 1, . . . , n.

Here is a comparison of their results and ours.

n g0
n / g0

n g1
n / g1

n g2
n / g2

n g3
n / g3

n g4
n / g4

n T1(n) / T2(n)
1 1 / 1 − − − − 0 / 0
2 2 / 2 4 / 4 − − − 4 / 4
3 3 / 4 18 / 14 7 / 10 − − 32 / 34
4 4 / 8 60 / 50 48 / 40 8 / 22 − 180 / 196
5 5 / 16 180 / 186 242 / 154 60 / 94 9 / 46 880 / 960

Starting from n = 3, we get a small advantage in our decomposition.
The discrepancy becomes large as n gets larger.

For example, T2(10)− T1(10) = 30, 720.

1J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett.
92 177902 (2004).

Chi-Kwong Li Decomposition of unitary gates



A comparison with previous results

A recursion formula was obtained by Vartiainen et al.1

gk
n = gk

n−1 + gk−1
n−1 + max(2n−2, 2k) + (22n−k−2 − 2n−2) (for k ≥ 1)

with the conditions that g0
m = 2m−1 for all m = 1, . . . , n.

Here is a comparison of their results and ours.

n g0
n / g0

n g1
n / g1

n g2
n / g2

n g3
n / g3

n g4
n / g4

n T1(n) / T2(n)
1 1 / 1 − − − − 0 / 0
2 2 / 2 4 / 4 − − − 4 / 4
3 3 / 4 18 / 14 7 / 10 − − 32 / 34
4 4 / 8 60 / 50 48 / 40 8 / 22 − 180 / 196
5 5 / 16 180 / 186 242 / 154 60 / 94 9 / 46 880 / 960

Starting from n = 3, we get a small advantage in our decomposition.
The discrepancy becomes large as n gets larger.
For example, T2(10)− T1(10) = 30, 720.

1J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett.
92 177902 (2004).

Chi-Kwong Li Decomposition of unitary gates



In Figure 1, we plot the difference between T2 and T1 for n from 1 to 50. We
use the log scale in the y-axis.

Figure 1
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Further research

Can we further reduce the number of control?

Assign different weights (and other parameters) to the k-control gates
based on the difficult level of implementation and consider the new
optimization problem.
Implement our scheme and see whether it is practical.
Study specific problems from experimentalists!

You are welcomed to talk to me or Diane further if interested!
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