Decomposition of unitary gates

Chi-Kwong Li
Department of Mathematics
The College of William \& Mary

Decomposition of unitary gates

Chi-Kwong Li
Department of Mathematics
The College of William \& Mary

Joint work with Diane Pelejo, Rebecca Roberts, Xiaoyan Yin. arXiv:1210.7366,arXiv:1311.3599

Quantum Computing

Quantum bit (Qubit)

Quantum Computing

Quantum bit (Qubit)

- Store and process information using quantum states (qubits).

Quantum Computing

Quantum bit (Qubit)

- Store and process information using quantum states (qubits).
- Apply suitable quantum gates (unitary transformations) to the system

Quantum Computing

Quantum bit (Qubit)

- Store and process information using quantum states (qubits).
- Apply suitable quantum gates (unitary transformations) to the system
- Apply measurements (unitary transformation) to extract useful information.

Mathematical formulation

Consider a quantum system with two physically measurable states:

$$
|\uparrow\rangle=|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad|\rightarrow\rangle=|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Mathematical formulation

Consider a quantum system with two physically measurable states:

$$
|\uparrow\rangle=|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad|\rightarrow\rangle=|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

A quantum state is in the superposition

$$
|\psi\rangle=a|0\rangle+b|1\rangle=\left[\begin{array}{l}
a \\
b
\end{array}\right], \quad a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1 .
$$

Mathematical formulation

Consider a quantum system with two physically measurable states:

$$
|\uparrow\rangle=|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad|\rightarrow\rangle=|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

A quantum state is in the superposition

$$
|\psi\rangle=a|0\rangle+b|1\rangle=\left[\begin{array}{l}
a \\
b
\end{array}\right], \quad a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1
$$

Schrödinger cat interpretation

- $|0\rangle$ represents a dead cat, $|1\rangle$ represents an alive cat,

Mathematical formulation

Consider a quantum system with two physically measurable states:

$$
|\uparrow\rangle=|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad|\rightarrow\rangle=|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

A quantum state is in the superposition

$$
|\psi\rangle=a|0\rangle+b|1\rangle=\left[\begin{array}{l}
a \\
b
\end{array}\right], \quad a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1
$$

Schrödinger cat interpretation

- $|0\rangle$ represents a dead cat, $|1\rangle$ represents an alive cat,
- $|\psi\rangle=a|0\rangle+b|1\rangle$ represents a cat in the sate of both dead and alive with a probability $|a|^{2}$ dead and a probability $|b|^{2}$ alive.
- For two quantum states, $\left|\psi_{1}\right\rangle=\left[\begin{array}{l}a \\ b\end{array}\right]$, and $\left|\psi_{2}\right\rangle=\left[\begin{array}{l}c \\ d\end{array}\right]$, the tensor state of the joint (bipartitle) system is represented by

$$
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle=\left|\psi_{1} \psi_{2}\right\rangle=\left[\begin{array}{c}
a c \\
a d \\
b c \\
b d
\end{array}\right]
$$

- For two quantum states, $\left|\psi_{1}\right\rangle=\left[\begin{array}{l}a \\ b\end{array}\right]$, and $\left|\psi_{2}\right\rangle=\left[\begin{array}{l}c \\ d\end{array}\right]$, the tensor state of the joint (bipartitle) system is represented by

$$
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle=\left|\psi_{1} \psi_{2}\right\rangle=\left[\begin{array}{l}
a c \\
a d \\
b c \\
b d
\end{array}\right]
$$

- The four measurable states are:

$$
|00\rangle=e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],|01\rangle=e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],|10\rangle=e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],|11\rangle=e_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

- For two quantum states, $\left|\psi_{1}\right\rangle=\left[\begin{array}{l}a \\ b\end{array}\right]$, and $\left|\psi_{2}\right\rangle=\left[\begin{array}{l}c \\ d\end{array}\right]$, the tensor state of the joint (bipartitle) system is represented by

$$
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle=\left|\psi_{1} \psi_{2}\right\rangle=\left[\begin{array}{l}
a c \\
a d \\
b c \\
b d
\end{array}\right]
$$

- The four measurable states are:

$$
|00\rangle=e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],|01\rangle=e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],|10\rangle=e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],|11\rangle=e_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

- A general (vector) state is a unit vector in \mathbb{C}^{4}, which is a linear combination of the four measurable states.

A large data set!

- To simulate a quantum system with n qubits, say, $n=100$, a classical computer has to deal with $N=2^{n}$ measurable states: $\left|i_{1} \cdots i_{N}\right\rangle$.

A large data set!

- To simulate a quantum system with n qubits, say, $n=100$, a classical computer has to deal with $N=2^{n}$ measurable states: $\left|i_{1} \cdots i_{N}\right\rangle$.
- A simulation of simple system in C^{N} is a difficult (impossible) task.

A large data set!

- To simulate a quantum system with n qubits, say, $n=100$, a classical computer has to deal with $N=2^{n}$ measurable states: $\left|i_{1} \cdots i_{N}\right\rangle$.
- A simulation of simple system in C^{N} is a difficult (impossible) task.
- A quantum computer can handle a general state $|\Psi\rangle$ of n qubits in C^{N} by a single quantum operation (unitary gate), leading to high speed computation.

A large data set!

- To simulate a quantum system with n qubits, say, $n=100$, a classical computer has to deal with $N=2^{n}$ measurable states: $\left|i_{1} \cdots i_{N}\right\rangle$.
- A simulation of simple system in C^{N} is a difficult (impossible) task.
- A quantum computer can handle a general state $|\Psi\rangle$ of n qubits in C^{N} by a single quantum operation (unitary gate), leading to high speed computation.

- But, general unitary gates are difficult to generate!

A large data set!

- To simulate a quantum system with n qubits, say, $n=100$, a classical computer has to deal with $N=2^{n}$ measurable states: $\left|i_{1} \cdots i_{N}\right\rangle$.
- A simulation of simple system in C^{N} is a difficult (impossible) task.
- A quantum computer can handle a general state $|\Psi\rangle$ of n qubits in C^{N} by a single quantum operation (unitary gate), leading to high speed computation.

- But, general unitary gates are difficult to generate!
- So, one needs to decompose a general unitary gate to the product of "simple" unitary gates.

A general procedure

- Suppose $U \in M_{N}$ with $N=2^{n}$ is a unitary matrix acting on n-qubit states.

A general procedure

- Suppose $U \in M_{N}$ with $N=2^{n}$ is a unitary matrix acting on n-qubit states.
- We want to write $U=V_{1} \cdots V_{k}$ for some elementary quantum gates (single qubit gates, CNOT gates, etc.)

A general procedure

- Suppose $U \in M_{N}$ with $N=2^{n}$ is a unitary matrix acting on n-qubit states.
- We want to write $U=V_{1} \cdots V_{k}$ for some elementary quantum gates (single qubit gates, CNOT gates, etc.)
- One often does that by finding U_{1}, \ldots, U_{k} so that $U_{k} \cdots U_{1} U=I_{N}$.

A general procedure

- Suppose $U \in M_{N}$ with $N=2^{n}$ is a unitary matrix acting on n-qubit states.
- We want to write $U=V_{1} \cdots V_{k}$ for some elementary quantum gates (single qubit gates, CNOT gates, etc.)
- One often does that by finding U_{1}, \ldots, U_{k} so that $U_{k} \cdots U_{1} U=I_{N}$.
- Then we have $U=U_{1}^{\dagger} \cdots U_{k}^{\dagger}$.

A scheme in numerical linear algebra (Givens transform)

Suppose $U=\left(u_{i j}\right) \in M_{4}$. Consider the first column of U.

A scheme in numerical linear algebra (Givens transform)

Suppose $U=\left(u_{i j}\right) \in M_{4}$. Consider the first column of U.
Let $d_{31}=\left\{\left|u_{31}\right|^{2}+\left|u_{41}\right|^{2}\right\}^{1 / 2}$ and

$$
U_{41}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \bar{u}_{31} / d_{31} \\
& & \bar{u}_{41} / d_{31} \\
& & u_{41} / d_{31} & u_{31} / d_{31}
\end{array}\right) \text { so that } U_{41} U=\left(\begin{array}{cccc}
u_{11} & * & * & * \\
u_{21} & * & * & * \\
d_{31} & * & * & * \\
0 & * & * & *
\end{array}\right) \text {. }
$$

A scheme in numerical linear algebra (Givens transform)

Suppose $U=\left(u_{i j}\right) \in M_{4}$. Consider the first column of U.
Let $d_{31}=\left\{\left|u_{31}\right|^{2}+\left|u_{41}\right|^{2}\right\}^{1 / 2}$ and

$$
U_{41}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \bar{u}_{31} / d_{31} \\
& & \bar{u}_{41} / d_{31} \\
& & -u_{41} / d_{31} & u_{31} / d_{31}
\end{array}\right) \text { so that } U_{41} U=\left(\begin{array}{cccc}
u_{11} & * & * & * \\
u_{21} & * & * & * \\
d_{31} & * & * & * \\
0 & * & * & *
\end{array}\right) \text {. }
$$

Let $d_{21}=\left\{\left|u_{21}\right|^{2}+d_{31}^{2}\right\}^{1 / 2}$ and

$$
U_{31}=\left(\begin{array}{cccc}
1 & & & \\
& \bar{u}_{21} / d_{21} & d_{31} / d_{21} & \\
& -u_{31} / d_{21} & u_{21} / d_{21} & 1 \\
& & 1
\end{array}\right) \text { so that } U_{31} U_{41} U=\left(\begin{array}{cccc}
u_{11} & * & * & * \\
d_{21} & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right) \text {. }
$$

Let

$$
U_{21}=\left(\begin{array}{cccc}
\bar{u}_{11} & d_{21} & & \\
-d_{21} & u_{11} & & \\
& & & 1
\end{array}\right) \text { so that } U_{21} U_{31} U_{41} U=\left(\begin{array}{llll}
1 & * & * & * \\
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right) .
$$

Let

$$
U_{21}=\left(\begin{array}{cccc}
\bar{u}_{11} & d_{21} & & \\
-d_{21} & u_{11} & & \\
& & & 1
\end{array}\right) \text { so that } U_{21} U_{31} U_{41} U=\left(\begin{array}{llll}
1 & * & * & * \\
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right) .
$$

Note that the $(1,2),(1,3),(1,4)$ entries will be 0 as well.

Let

$$
U_{21}=\left(\begin{array}{cccc}
\bar{u}_{11} & d_{21} & & \\
-d_{21} & u_{11} & & \\
& & & 1
\end{array}\right) \text { so that } U_{21} U_{31} U_{41} U=\left(\begin{array}{cccc}
1 & * & * & * \\
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right) .
$$

Note that the $(1,2),(1,3),(1,4)$ entries will be 0 as well.
Then consider the second column and construct

$$
U_{42}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & * & * \\
& & * & *
\end{array}\right), \quad U_{32}=\left(\begin{array}{llll}
1 & & & \\
& * & * & \\
& * & * & \\
& & &
\end{array}\right)
$$

so that

$$
U_{32} U_{42} U_{21} U_{31} U_{41} U=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right)
$$

Let

$$
U_{43}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & * & * \\
& & * & *
\end{array}\right)
$$

so that

$$
U_{43} U_{32} U_{42} U_{21} U_{31} U_{41} U=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \operatorname{det}(U)
\end{array}\right)=D .
$$

Let

$$
U_{43}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & * & * \\
& & * & *
\end{array}\right)
$$

so that

$$
U_{43} U_{32} U_{42} U_{21} U_{31} U_{41} U=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \operatorname{det}(U)
\end{array}\right)=D .
$$

Thus,

$$
U=U_{41}^{\dagger} U_{31}^{\dagger} U_{21}^{\dagger} U_{42}^{\dagger} U_{32}^{\dagger} U_{43}^{\dagger} D
$$

Let

$$
U_{43}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & * & * \\
& & * & *
\end{array}\right)
$$

so that

$$
U_{43} U_{32} U_{42} U_{21} U_{31} U_{41} U=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \operatorname{det}(U)
\end{array}\right)=D .
$$

Thus,

$$
U=U_{41}^{\dagger} U_{31}^{\dagger} U_{21}^{\dagger} U_{42}^{\dagger} U_{32}^{\dagger} U_{43}^{\dagger} D
$$

Number of 2-level matrices used is at most $3+2+1=6$.

Let

$$
U_{43}=\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & * & * \\
& & * & *
\end{array}\right)
$$

so that

$$
U_{43} U_{32} U_{42} U_{21} U_{31} U_{41} U=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \operatorname{det}(U)
\end{array}\right)=D .
$$

Thus,

$$
U=U_{41}^{\dagger} U_{31}^{\dagger} U_{21}^{\dagger} U_{42}^{\dagger} U_{32}^{\dagger} U_{43}^{\dagger} D .
$$

Number of 2-level matrices used is at most $3+2+1=6$.

Lemma

Every N-by- N unitary matrix is the product of m 2-level matrices with

$$
m \leq(N-1)+\cdots+1=\binom{N}{2}
$$

We only need 2-level matrices of the form:

$$
\begin{gathered}
\left(\begin{array}{llll}
1 & & & \\
& 1 & v_{11} & v_{12} \\
& & v_{21} & v_{22}
\end{array}\right),
\end{gathered},\left(\begin{array}{llll}
v_{11} & v_{12} & & \\
& \text { Type 1 } & \text { Type 2 } & \\
& & 1 & 1
\end{array}\right), \text { or }\left(\begin{array}{llll}
1 & v_{22} & & \\
& v_{11} & v_{12} & \\
& v_{21} & v_{22} & 1 \\
& \text { Type } 5
\end{array}\right.
$$

We only need 2-level matrices of the form:

$$
\begin{gathered}
\left(\begin{array}{llll}
1 & & & \\
& 1 & v_{11} & v_{12} \\
& & v_{21} & v_{22}
\end{array}\right),
\end{gathered},\left(\begin{array}{llll}
v_{11} & v_{12} & & \\
& \text { Type 1 } & \text { Type 2 } & \\
& & 1 & 1
\end{array}\right), \text { or }\left(\begin{array}{llll}
1 & v_{22} & & \\
& v_{11} & v_{12} & \\
& v_{21} & v_{22} & 1 \\
& \text { Type } 5
\end{array}\right.
$$

However, not all of them are simple quantum gates!

We only need 2-level matrices of the form:
$\begin{aligned} & \text { (00) } \\ & \text { (01) } \\ & \text { (11) })\end{aligned} \quad\left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & v_{11} & v_{12} \\ & & v_{21} & v_{22}\end{array}\right),\left(\begin{array}{llll}v_{11} & v_{12} & & \\ v_{21} & v_{22} & & \\ & & 1 & \\ & & & 1\end{array}\right), \operatorname{or}\left(\begin{array}{llll}1 & & & \\ & v_{11} & v_{12} & \\ & v_{21} & v_{22} & \\ & & & 1\end{array}\right)$.
Type 1
Type 2
Type 5

However, not all of them are simple quantum gates!
Label the rows and columns of a 4-by-4 unitary matrix by $(00),(01),(10),(11)$.

We only need 2-level matrices of the form:
$\begin{aligned} & (00) \\ & (010 \\ & (11) \\ & (11)\end{aligned}\left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & v_{11} & v_{12} \\ v_{21} & v_{22}\end{array}\right),\left(\begin{array}{llll}v_{11} & v_{12} & & \\ v_{21} & v_{22} & & \\ & & & \\ & & & 1\end{array}\right)$, or $\left(\begin{array}{llll}1 & & & \\ & v_{11} & v_{12} & \\ & v_{21} & v_{22} & \\ & & & 1\end{array}\right)$.
Type 1
Type 2
Type 5

However, not all of them are simple quantum gates!
Label the rows and columns of a 4-by-4 unitary matrix by $(00),(01),(10),(11)$.
Let $V=\left(\begin{array}{ll}v_{11} & v_{12} \\ v_{21} & v_{22}\end{array}\right)$.

We only need 2-level matrices of the form:
(00)
(01)
(10)
(11)

$$
\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & v_{11} & v_{12} \\
& & v_{21} & v_{22}
\end{array}\right),(
$$

$$
\left(\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22} \\
&
\end{array}\right.
$$

$\left.\begin{array}{ll}1 & \\ & 1\end{array}\right)$, or
$\left(\begin{array}{llll}1 & & & \\ & v_{11} & v_{12} & \\ & v_{21} & v_{22} & \\ & & & 1\end{array}\right)$.
Type 5

However, not all of them are simple quantum gates!
Label the rows and columns of a 4-by-4 unitary matrix by $(00),(01),(10),(11)$.
Let $V=\left(\begin{array}{ll}v_{11} & v_{12} \\ v_{21} & v_{22}\end{array}\right)$. Then Type 1 and Type 2 matrices correspond to controlled qubit gates changing one qubit, namely,

$$
a_{0}|00\rangle+a_{1}|01\rangle+a_{2}|10\rangle+a_{3}|11\rangle
$$

to:

$$
a_{0}|00\rangle+a_{1}|01\rangle+|1\rangle V\left(a_{2}|0\rangle+a_{3}|1\rangle\right), \quad(1 V)-\text { gate }
$$

and

$$
|0\rangle V\left(a_{0}|0\rangle+a_{1}|1\rangle\right)+a_{2}|10\rangle+a_{3}|11\rangle, \quad(0 V)-\text { gate. }
$$

Other 2-level and controlled single qubit gates

A Type 5 matrix is not so easy to implement because it changes both qubits.

$$
\begin{aligned}
& (00) \\
& (01)
\end{aligned}(10) \quad(11) .
$$

Other 2-level and controlled single qubit gates

A Type 5 matrix is not so easy to implement because it changes both qubits.

$$
\begin{gathered}
(00) \\
(01)
\end{gathered}(10)(11) .
$$

There are two other types of controlled qubit gates on 2 qubits:

$$
\begin{array}{cc}
\begin{array}{c}
(00) \\
(01) \\
(10)
\end{array}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & v_{11} & 0 & v_{12} \\
0 & 0 & 1 & 0 \\
0 & v_{21} & 0 & v_{22}
\end{array}\right), & \left(\begin{array}{cccc}
v_{11} & 0 & v_{12} & 0 \\
0 & 1 & 0 & 0 \\
v_{21} & 0 & v_{22} & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
\text { Type 3: (V1)-gate. } & \text { Type 4: (V0)-gate. }
\end{array}
$$

corresponding to $I_{2} \otimes|0\rangle\langle 0|+V \otimes|1\rangle\langle 1|$ and $V \otimes|0\rangle\langle 0|+I_{2} \otimes|1\rangle\langle 1|$.

The 4 types of controlled qubit gates with the following circuit diagrams:

The 4 types of controlled qubit gates with the following circuit diagrams:

For $n=3$, we have fully-controlled qubit gates of the types: $(00 V),(01 V),(10 V),(11 V),(0 V 0),(0 V 1),(1 V 0),(1 V 1),(V 00),(V 01),(V 10),(V 11)$.

The 4 types of controlled qubit gates with the following circuit diagrams:

For $n=3$, we have fully-controlled qubit gates of the types:

$$
(00 V),(01 V),(10 V),(11 V),(0 V 0),(0 V 1),(1 V 0),(1 V 1),(V 00),(V 01),(V 10),(V 11)
$$

One easily extends this idea and notation to define fully-controlled gates acting on n-qubits.

Decomposition using only controlled qubit gates

Type 1 (1V) Type $2(0 \mathrm{~V}) \quad$ Type 3 (V1)

Decomposition using only controlled qubit gates

$$
\begin{array}{llll}
& \text { Type } 1(1 \mathrm{~V}) & \text { Type } 2(0 \mathrm{~V}) & \text { Type } 3(\mathrm{~V} 1) \\
(00) \\
(10) \\
(11)
\end{array} \quad\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & * & * \\
& & * & *
\end{array}\right),\left(\begin{array}{llll}
* & * & & \\
* & * & & \\
& & 1 & \\
& & & 1
\end{array}\right),\left(\begin{array}{llll}
1 & & & \\
& * & & * \\
& & 1 & \\
& * & & *
\end{array}\right) .
$$

1. Use Type 1 matrix to make the $(3,1)$ instead of the $(4,1)$ entry zero; then use the Type 3 matrix to make the $(4,1)$ entry zero; then use the Type 2 matrix to make the $(2,1)$ entry zero.

Decomposition using only controlled qubit gates

$$
\begin{array}{llll}
& \text { Type } 1(1 \mathrm{~V}) & \text { Type } 2(0 \mathrm{~V}) & \text { Type } 3(\mathrm{~V} 1) \\
(00) \\
(010) \\
(11)
\end{array} \quad\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & * & * \\
& & * & *
\end{array}\right),\left(\begin{array}{cccc}
* & * & & \\
* & * & & \\
& & 1 & \\
& & &
\end{array}\right),\left(\begin{array}{llll}
1 & & & \\
& * & & * \\
& & 1 & \\
& * & & *
\end{array}\right) .
$$

1. Use Type 1 matrix to make the $(3,1)$ instead of the $(4,1)$ entry zero; then use the Type 3 matrix to make the $(4,1)$ entry zero; then use the Type 2 matrix to make the $(2,1)$ entry zero.
2. Use Type 1 matrix to make the $(3,2)$ instead of the $(4,2)$ entry zero zero; Use Type 3 matrix to make the $(4,2)$ entry zero.

Decomposition using only controlled qubit gates

$$
\text { Type } 1 \text { (1V) Type } 2 \text { (0V) Type } 3 \text { (V1) }
$$

(00)
(01)
(10)
(11)
$\left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & * & * \\ & & * & *\end{array}\right),\left(\begin{array}{ll}* & * \\ * & * \\ & \end{array}\right.$
1),
(1

1. Use Type 1 matrix to make the $(3,1)$ instead of the $(4,1)$ entry zero; then use the Type 3 matrix to make the $(4,1)$ entry zero; then use the Type 2 matrix to make the $(2,1)$ entry zero.
2. Use Type 1 matrix to make the $(3,2)$ instead of the $(4,2)$ entry zero zero; Use Type 3 matrix to make the $(4,2)$ entry zero.
3. Use type 1 matrix to make the $(3,4)$ instead of the $(4,3)$ entry zero.

Theorem [Vartiainen et al., 2004]

We can always use single fully controlled single qubit gates to do the decomposition.

A General Result

- In some QC models, one uses the $-3 / 2,-1 / 2,1 / 2,3 / 2$ states of a spin- $1 / 2$ systems to represent the 2 -qubit states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$.

A General Result

- In some QC models, one uses the $-3 / 2,-1 / 2,1 / 2,3 / 2$ states of a spin- $1 / 2$ systems to represent the 2 -qubit states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$.
- In such a case, it is easier to apply changes between
(1) $|00\rangle$ and $|01\rangle$;
(2) $|01\rangle$ and $|10\rangle$;
(3) $|10\rangle$ and $|11\rangle$.

A General Result

- In some QC models, one uses the $-3 / 2,-1 / 2,1 / 2,3 / 2$ states of a spin- $1 / 2$ systems to represent the 2 -qubit states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$.
- In such a case, it is easier to apply changes between
(1) $|00\rangle$ and $|01\rangle$;
(2) $|01\rangle$ and $|10\rangle$;
(3) $|10\rangle$ and $|11\rangle$.

In general, let $P=\left(j_{1}, j_{2}, \ldots, j_{N}\right)$ be a permutation of $(1, \ldots, N)$.

A General Result

- In some QC models, one uses the $-3 / 2,-1 / 2,1 / 2,3 / 2$ states of a spin- $1 / 2$ systems to represent the 2-qubit states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$.
- In such a case, it is easier to apply changes between
(1) $|00\rangle$ and $|01\rangle$;
(2) $|01\rangle$ and $|10\rangle$;
(3) $|10\rangle$ and $|11\rangle$.

In general, let $P=\left(j_{1}, j_{2}, \ldots, j_{N}\right)$ be a permutation of $(1, \ldots, N)$.
A P-unitary matrix is a 2-level unitary matrix obtained from I_{N} by changing its rows and columns indexed by:

$$
\left(j_{1}, j_{2}\right),\left(j_{2}, j_{3}\right), \cdots,\left(j_{n-1}, j_{n}\right)
$$

A General Result

- In some QC models, one uses the $-3 / 2,-1 / 2,1 / 2,3 / 2$ states of a spin- $1 / 2$ systems to represent the 2-qubit states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$.
- In such a case, it is easier to apply changes between
(1) $|00\rangle$ and $|01\rangle$;
(2) $|01\rangle$ and $|10\rangle$;
(3) $|10\rangle$ and $|11\rangle$.

In general, let $P=\left(j_{1}, j_{2}, \ldots, j_{N}\right)$ be a permutation of $(1, \ldots, N)$.
A P-unitary matrix is a 2-level unitary matrix obtained from I_{N} by changing its rows and columns indexed by:

$$
\left(j_{1}, j_{2}\right),\left(j_{2}, j_{3}\right), \cdots,\left(j_{n-1}, j_{n}\right)
$$

Examples $P=(1,2,3,4), P=(1,2,4,3)$.

A General Result

- In some QC models, one uses the $-3 / 2,-1 / 2,1 / 2,3 / 2$ states of a spin- $1 / 2$ systems to represent the 2-qubit states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$.
- In such a case, it is easier to apply changes between
(1) $|00\rangle$ and $|01\rangle$;
(2) $|01\rangle$ and $|10\rangle$;
(3) $|10\rangle$ and $|11\rangle$.

In general, let $P=\left(j_{1}, j_{2}, \ldots, j_{N}\right)$ be a permutation of $(1, \ldots, N)$.
A P-unitary matrix is a 2-level unitary matrix obtained from I_{N} by changing its rows and columns indexed by:

$$
\left(j_{1}, j_{2}\right),\left(j_{2}, j_{3}\right), \cdots,\left(j_{n-1}, j_{n}\right)
$$

Examples $P=(1,2,3,4), P=(1,2,4,3)$.

Theorem [Li, Roberts, and Yin, 2013]

Let $P=\left(j_{1}, j_{2}, \ldots, j_{N}\right)$ be a permutation of $(1,2, \ldots, N)$.

A General Result

- In some QC models, one uses the $-3 / 2,-1 / 2,1 / 2,3 / 2$ states of a spin- $1 / 2$ systems to represent the 2-qubit states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$.
- In such a case, it is easier to apply changes between
(1) $|00\rangle$ and $|01\rangle$;
(2) $|01\rangle$ and $|10\rangle$;
(3) $|10\rangle$ and $|11\rangle$.

In general, let $P=\left(j_{1}, j_{2}, \ldots, j_{N}\right)$ be a permutation of $(1, \ldots, N)$.
A P-unitary matrix is a 2-level unitary matrix obtained from I_{N} by changing its rows and columns indexed by:

$$
\left(j_{1}, j_{2}\right),\left(j_{2}, j_{3}\right), \cdots,\left(j_{n-1}, j_{n}\right)
$$

Examples $P=(1,2,3,4), P=(1,2,4,3)$.

Theorem [Li, Roberts, and Yin, 2013]

Let $P=\left(j_{1}, j_{2}, \ldots, j_{N}\right)$ be a permutation of $(1,2, \ldots, N)$.
Then every N-by- N unitary matrix U can be written as a product of no more than $N(N-1) / 2 P$-unitary matrices.

Further simplification

For two qubit system, it is easier to apply the unitary gates of the form:

$$
I_{2} \otimes V=\left(\begin{array}{ll}
V & \\
& V
\end{array}\right) \begin{gathered}
(00) \\
(01) \\
(10) \\
(11)
\end{gathered} \quad \text { and } \quad V \otimes I_{2}=\left(\begin{array}{ll}
v_{11} I_{2} & v_{12} I_{2} \\
v_{21} I_{2} & v_{22} I_{2}
\end{array}\right)
$$

For two qubit system, it is easier to apply the unitary gates of the form:

$$
I_{2} \otimes V=\left(\begin{array}{ll}
V & \\
& V
\end{array}\right) \begin{gathered}
(00) \\
(01) \\
(10) \\
(11)
\end{gathered} \quad \text { and } \quad V \otimes I_{2}=\left(\begin{array}{ll}
v_{11} I_{2} & v_{12} I_{2} \\
v_{21} I_{2} & v_{22} I_{2}
\end{array}\right)
$$

They will change the vector states

$$
|\psi\rangle=a_{0}|00\rangle+a_{1}|01\rangle+a_{2}|10\rangle+a_{3}|11\rangle
$$

to:

For two qubit system, it is easier to apply the unitary gates of the form:

$$
\left.I_{2} \otimes V=\left(\begin{array}{cc}
V & \\
& V
\end{array}\right) \begin{array}{l}
(00) \\
(01) \\
(10) \\
(11)
\end{array}\right) \quad \text { and } \quad V \otimes I_{2}=\left(\begin{array}{ll}
v_{11} I_{2} & v_{12} I_{2} \\
v_{21} I_{2} & v_{22} I_{2}
\end{array}\right)
$$

They will change the vector states

$$
|\psi\rangle=a_{0}|00\rangle+a_{1}|01\rangle+a_{2}|10\rangle+a_{3}|11\rangle
$$

to:

$$
|0\rangle \otimes V\left(a_{0}|0\rangle+a_{1}|1\rangle\right)+|1\rangle \otimes\left(V\left(a_{1}|0\rangle+a_{2}|1\rangle\right),\right.
$$

and

$$
V\left(a_{0}|0\rangle+a_{2}|1\rangle\right) \otimes|0\rangle+\left(V\left(a_{1}|0\rangle+a_{3}|1\rangle\right) \otimes|1\rangle .\right.
$$

For two qubit system, it is easier to apply the unitary gates of the form:

$$
I_{2} \otimes V=\left(\begin{array}{cc}
V & \\
& V
\end{array} \begin{array}{cc}
\left(\begin{array}{l}
(00) \\
(01) \\
(10) \\
(11)
\end{array}\right)
\end{array} \quad \text { and } \quad V \otimes I_{2}=\left(\begin{array}{ll}
v_{11} I_{2} & v_{12} I_{2} \\
v_{21} I_{2} & v_{22} I_{2}
\end{array}\right)\right.
$$

They will change the vector states

$$
|\psi\rangle=a_{0}|00\rangle+a_{1}|01\rangle+a_{2}|10\rangle+a_{3}|11\rangle
$$

to:

$$
|0\rangle \otimes V\left(a_{0}|0\rangle+a_{1}|1\rangle\right)+|1\rangle \otimes\left(V\left(a_{1}|0\rangle+a_{2}|1\rangle\right),\right.
$$

and

$$
V\left(a_{0}|0\rangle+a_{2}|1\rangle\right) \otimes|0\rangle+\left(V\left(a_{1}|0\rangle+a_{3}|1\rangle\right) \otimes|1\rangle .\right.
$$

In many (?) QC models, it is less expensive to implement for some quantum systems.

Reduction of $U \in M_{4}$ by $2-\mathrm{C}^{0} \mathrm{~V}$ gates and $4-\mathrm{C}^{1} \mathrm{~V}$ gates:

-			
$1(* V)$	-		
$3(V *)$	$1(1 V)$	-	
$2(1 V)$	$2(V 1)$	$1(1 V)$	-

$$
\begin{aligned}
&\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right) \rightarrow\left(\begin{array}{llll}
* & * & * & * \\
0 & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right) \rightarrow\left(\begin{array}{llll}
* & * & * & * \\
0 & * & * & * \\
* & * & * & * \\
0 & * & * & *
\end{array}\right) \rightarrow\left(\begin{array}{lllll}
* & 0 & 0 & 0 \\
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right) \\
& \rightarrow\left(\begin{array}{lllll}
* & 0 & 0 & 0 \\
0 & * & * & * \\
0 & 0 & * & * \\
0 & * & * & *
\end{array}\right) \rightarrow\left(\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right) \rightarrow\left(\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & * & 0 \\
0 & 0 & 0 & *
\end{array}\right)
\end{aligned}
$$

A recursive scheme

Reduction of $U \in M_{8}$ by $3-\mathrm{C}^{0} \mathrm{~V}$ gates, $18-\mathrm{C}^{1} \mathrm{~V}$ gates, and $7-\mathrm{C}^{2} \mathrm{~V}$ gates:

-							
$1(* * V)$	-						
$3(* V *)$	$1(* 1 V)$	-					
$2(* 1 V)$	$2(* V 1)$	$1(* 1 V)$	-				
$7(V * *)$	$3(1 * V)$	$4(1 V *)$	$2(10 V)$	-			
$4(1 * V)$	$6(V * 1)$	$3(10 V)$	$3(1 V *)$	$1(1 * V)$	-		
$6(1 V *)$	$4(* 1 V)$	$5(V 1 *)$	$1(1 * V)$	$3(1 V *)$	$1(11 V)$	-	
$5(* 1 V)$	$5(1 V *)$	$2(1 * V)$	$4(V 11)$	$2(11 V)$	$2(1 V 1)$	$1(11 V)$	-

A recursive scheme

Reduction of $U \in M_{8}$ by $3-\mathrm{C}^{0} \mathrm{~V}$ gates, $18-\mathrm{C}^{1} \mathrm{~V}$ gates, and $7-\mathrm{C}^{2} \mathrm{~V}$ gates:

-							
$1(* * V)$	-						
$3(* V *)$	$1(* 1 V)$	-					
$2(* 1 V)$	$2(* V 1)$	$1(* 1 V)$	-				
$7(V * *)$	$3(1 * V)$	$4(1 V *)$	$2(10 V)$	-			
$4(1 * V)$	$6(V * 1)$	$3(10 V)$	$3(1 V *)$	$1(1 * V)$	-		
$6(1 V *)$	$4(* 1 V)$	$5(V 1 *)$	$1(1 * V)$	$3(1 V *)$	$1(11 V)$	-	
$5(* 1 V)$	$5(1 V *)$	$2(1 * V)$	$4(V 11)$	$2(11 V)$	$2(1 V 1)$	$1(11 V)$	-

Annihilate the off-diagonal entries of $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$ in columns $1,2,3 \ldots$

A recursive scheme

Reduction of $U \in M_{8}$ by $3-\mathrm{C}^{0} \mathrm{~V}$ gates, $18-\mathrm{C}^{1} \mathrm{~V}$ gates, and $7-\mathrm{C}^{2} \mathrm{~V}$ gates:

-							
$1(* * V)$	-						
$3(* V *)$	$1(* 1 V)$	-					
$2(* 1 V)$	$2(* V 1)$	$1(* 1 V)$	-				
$7(V * *)$	$3(1 * V)$	$4(1 V *)$	$2(10 V)$	-			
$4(1 * V)$	$6(V * 1)$	$3(10 V)$	$3(1 V *)$	$1(1 * V)$	-		
$6(1 V *)$	$4(* 1 V)$	$5(V 1 *)$	$1(1 * V)$	$3(1 V *)$	$1(11 V)$	-	
$5(* 1 V)$	$5(1 V *)$	$2(1 * V)$	$4(V 11)$	$2(11 V)$	$2(1 V 1)$	$1(11 V)$	-

Annihilate the off-diagonal entries of $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$ in columns $1,2,3 \ldots$

- For column 1, use the scheme of the $(n-1)$-qubit case to annihilate the entries in the upper half,

A recursive scheme

Reduction of $U \in M_{8}$ by $3-\mathrm{C}^{0} \mathrm{~V}$ gates, $18-\mathrm{C}^{1} \mathrm{~V}$ gates, and $7-\mathrm{C}^{2} \mathrm{~V}$ gates:

-							
$1(* * V)$	-						
$3(* V *)$	$1(* 1 V)$	-					
$2(* 1 V)$	$2(* V 1)$	$1(* 1 V)$	-				
$7(V * *)$	$3(1 * V)$	$4(1 V *)$	$2(10 V)$	-			
$4(1 * V)$	$6(V * 1)$	$3(10 V)$	$3(1 V *)$	$1(1 * V)$	-		
$6(1 V *)$	$4(* 1 V)$	$5(V 1 *)$	$1(1 * V)$	$3(1 V *)$	$1(11 V)$	-	
$5(* 1 V)$	$5(1 V *)$	$2(1 * V)$	$4(V 11)$	$2(11 V)$	$2(1 V 1)$	$1(11 V)$	-

Annihilate the off-diagonal entries of $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$ in columns $1,2,3 \ldots$

- For column 1, use the scheme of the $(n-1)$-qubit case to annihilate the entries in the upper half, and then modify the scheme for the lower half to annihilate the entries in the lower half.

A recursive scheme

Reduction of $U \in M_{8}$ by $3-\mathrm{C}^{0} \mathrm{~V}$ gates, $18-\mathrm{C}^{1} \mathrm{~V}$ gates, and $7-\mathrm{C}^{2} \mathrm{~V}$ gates:

-							
$1(* * V)$	-						
$3(* V *)$	$1(* 1 V)$	-					
$2(* 1 V)$	$2(* V 1)$	$1(* 1 V)$	-				
$7(V * *)$	$3(1 * V)$	$4(1 V *)$	$2(10 V)$	-			
$4(1 * V)$	$6(V * 1)$	$3(10 V)$	$3(1 V *)$	$1(1 * V)$	-		
$6(1 V *)$	$4(* 1 V)$	$5(V 1 *)$	$1(1 * V)$	$3(1 V *)$	$1(11 V)$	-	
$5(* 1 V)$	$5(1 V *)$	$2(1 * V)$	$4(V 11)$	$2(11 V)$	$2(1 V 1)$	$1(11 V)$	-

Annihilate the off-diagonal entries of $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$ in columns $1,2,3 \ldots$

- For column 1, use the scheme of the $(n-1)$-qubit case to annihilate the entries in the upper half, and then modify the scheme for the lower half to annihilate the entries in the lower half.
- For column ℓ with $2 \leq \ell \leq 2^{n-1}$, use the scheme of the ($n-1$)-qubit case to annihilate the entries in the upper half,

A recursive scheme

Reduction of $U \in M_{8}$ by $3-\mathrm{C}^{0} \mathrm{~V}$ gates, $18-\mathrm{C}^{1} \mathrm{~V}$ gates, and $7-\mathrm{C}^{2} \mathrm{~V}$ gates:

-							
$1(* * V)$	-						
$3(* V *)$	$1(* 1 V)$	-					
$2(* 1 V)$	$2(* V 1)$	$1(* 1 V)$	-				
$7(V * *)$	$3(1 * V)$	$4(1 V *)$	$2(10 V)$	-			
$4(1 * V)$	$6(V * 1)$	$3(10 V)$	$3(1 V *)$	$1(1 * V)$	-		
$6(1 V *)$	$4(* 1 V)$	$5(V 1 *)$	$1(1 * V)$	$3(1 V *)$	$1(11 V)$	-	
$5(* 1 V)$	$5(1 V *)$	$2(1 * V)$	$4(V 11)$	$2(11 V)$	$2(1 V 1)$	$1(11 V)$	-

Annihilate the off-diagonal entries of $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$ in columns $1,2,3 \ldots$

- For column 1, use the scheme of the $(n-1)$-qubit case to annihilate the entries in the upper half, and then modify the scheme for the lower half to annihilate the entries in the lower half.
- For column ℓ with $2 \leq \ell \leq 2^{n-1}$, use the scheme of the $(n-1)$-qubit case to annihilate the entries in the upper half, and then modify the scheme for the lower half of Column 1 column to handle the lower half of Column ℓ.

A recursive scheme

Reduction of $U \in M_{8}$ by $3-\mathrm{C}^{0} \mathrm{~V}$ gates, $18-\mathrm{C}^{1} \mathrm{~V}$ gates, and $7-\mathrm{C}^{2} \mathrm{~V}$ gates:

-							
$1(* * V)$	-						
$3(* V *)$	$1(* 1 V)$	-					
$2(* 1 V)$	$2(* V 1)$	$1(* 1 V)$	-				
$7(V * *)$	$3(1 * V)$	$4(1 V *)$	$2(10 V)$	-			
$4(1 * V)$	$6(V * 1)$	$3(10 V)$	$3(1 V *)$	$1(1 * V)$	-		
$6(1 V *)$	$4(* 1 V)$	$5(V 1 *)$	$1(1 * V)$	$3(1 V *)$	$1(11 V)$	-	
$5(* 1 V)$	$5(1 V *)$	$2(1 * V)$	$4(V 11)$	$2(11 V)$	$2(1 V 1)$	$1(11 V)$	-

Annihilate the off-diagonal entries of $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$ in columns $1,2,3 \ldots$

- For column 1, use the scheme of the $(n-1)$-qubit case to annihilate the entries in the upper half, and then modify the scheme for the lower half to annihilate the entries in the lower half.
- For column ℓ with $2 \leq \ell \leq 2^{n-1}$, use the scheme of the $(n-1)$-qubit case to annihilate the entries in the upper half, and then modify the scheme for the lower half of Column 1 column to handle the lower half of Column ℓ.
- To annihilate the entries in U_{22}, use the same procedures as the previous case with a single control gate in the first qubit (equal to 1).

A recursive scheme

Reduction of $U \in M_{8}$ by $3-\mathrm{C}^{0} \mathrm{~V}$ gates, $18-\mathrm{C}^{1} \mathrm{~V}$ gates, and $7-\mathrm{C}^{2} \mathrm{~V}$ gates:

-							
$1(* * V)$	-						
$3(* V *)$	$1(* 1 V)$	-					
$2(* 1 V)$	$2(* V 1)$	$1(* 1 V)$	-				
$7(V * *)$	$3(1 * V)$	$4(1 V *)$	$2(10 V)$	-			
$4(1 * V)$	$6(V * 1)$	$3(10 V)$	$3(1 V *)$	$1(1 * V)$	-		
$6(1 V *)$	$4(* 1 V)$	$5(V 1 *)$	$1(1 * V)$	$3(1 V *)$	$1(11 V)$	-	
$5(* 1 V)$	$5(1 V *)$	$2(1 * V)$	$4(V 11)$	$2(11 V)$	$2(1 V 1)$	$1(11 V)$	-

Annihilate the off-diagonal entries of $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$ in columns $1,2,3 \ldots$

- For column 1, use the scheme of the $(n-1)$-qubit case to annihilate the entries in the upper half, and then modify the scheme for the lower half to annihilate the entries in the lower half.
- For column ℓ with $2 \leq \ell \leq 2^{n-1}$, use the scheme of the $(n-1)$-qubit case to annihilate the entries in the upper half, and then modify the scheme for the lower half of Column 1 column to handle the lower half of Column ℓ.
- To annihilate the entries in U_{22}, use the same procedures as the previous case with a single control gate in the first qubit (equal to 1).
- A Matlab program was written to do the decomposition.

Counting the control gates

Theorem

Let g_{n}^{k} be the number of k-control qubit gates used in our decomposition scheme for an n-qubit unitary gate for $k=0,1, \ldots, n-1$.

Counting the control gates

Theorem

Let g_{n}^{k} be the number of k-control qubit gates used in our decomposition scheme for an n-qubit unitary gate for $k=0,1, \ldots, n-1$.
(1) $g_{n}^{0}=n$.

Counting the control gates

Theorem

Let g_{n}^{k} be the number of k-control qubit gates used in our decomposition scheme for an n-qubit unitary gate for $k=0,1, \ldots, n-1$.
(1) $g_{n}^{0}=n$.
(2) $g_{n}^{1}=n(n-1)\left(2^{n-2}+1\right)$ for all $n \geq 2$.

Counting the control gates

Theorem

Let g_{n}^{k} be the number of k-control qubit gates used in our decomposition scheme for an n-qubit unitary gate for $k=0,1, \ldots, n-1$.
(1) $g_{n}^{0}=n$.
(2) $g_{n}^{1}=n(n-1)\left(2^{n-2}+1\right)$ for all $n \geq 2$.
(3) $g_{n}^{2}=\frac{1}{3}\left(4^{n}-4\right)-2^{n}(n-1)+\frac{n(n-1)(n-2)}{2}$ for all $n \geq 3$.

Counting the control gates

Theorem

Let g_{n}^{k} be the number of k-control qubit gates used in our decomposition scheme for an n-qubit unitary gate for $k=0,1, \ldots, n-1$.
(1) $g_{n}^{0}=n$.
(2) $g_{n}^{1}=n(n-1)\left(2^{n-2}+1\right)$ for all $n \geq 2$.
(3) $g_{n}^{2}=\frac{1}{3}\left(4^{n}-4\right)-2^{n}(n-1)+\frac{n(n-1)(n-2)}{2}$ for all $n \geq 3$.
(9) $g_{n}^{n-1}= \begin{cases}1 & \text { if } n=1 \\ 4 & \text { if } n=2 \\ 7+(n-3) & \text { if } n \geq 3\end{cases}$

Counting the control gates

Theorem

Let g_{n}^{k} be the number of k-control qubit gates used in our decomposition scheme for an n-qubit unitary gate for $k=0,1, \ldots, n-1$.
(1) $g_{n}^{0}=n$.
(2) $g_{n}^{1}=n(n-1)\left(2^{n-2}+1\right)$ for all $n \geq 2$.
(3) $g_{n}^{2}=\frac{1}{3}\left(4^{n}-4\right)-2^{n}(n-1)+\frac{n(n-1)(n-2)}{2}$ for all $n \geq 3$.
(4) $g_{n}^{n-1}= \begin{cases}1 & \text { if } n=1 \\ 4 & \text { if } n=2 \\ 7+(n-3) & \text { if } n \geq 3\end{cases}$
(5) $g_{n}^{k}=g_{n-1}^{k}+g_{n-1}^{k-1}+\binom{n-1}{k}$ for all $3 \leq k<n-1$.

A comparison with previous results

A recursion formula was obtained by Vartiainen et al. ${ }^{1}$

$$
\mathbf{g}_{n}^{k}=\mathbf{g}_{n-1}^{k}+\mathbf{g}_{n-1}^{k-1}+\max \left(2^{n-2}, 2^{k}\right)+\left(2^{2 n-k-2}-2^{n-2}\right) \quad(\text { for } k \geq 1)
$$

with the conditions that $\mathbf{g}_{m}^{0}=2^{m-1}$ for all $m=1, \ldots, n$.

[^0]
A comparison with previous results

A recursion formula was obtained by Vartiainen et al. ${ }^{1}$

$$
\mathbf{g}_{n}^{k}=\mathbf{g}_{n-1}^{k}+\mathbf{g}_{n-1}^{k-1}+\max \left(2^{n-2}, 2^{k}\right)+\left(2^{2 n-k-2}-2^{n-2}\right) \quad(\text { for } k \geq 1)
$$

with the conditions that $\mathbf{g}_{m}^{0}=2^{m-1}$ for all $m=1, \ldots, n$.
Here is a comparison of their results and ours.

[^1]
A comparison with previous results

A recursion formula was obtained by Vartiainen et al. ${ }^{1}$

$$
\mathbf{g}_{n}^{k}=\mathbf{g}_{n-1}^{k}+\mathbf{g}_{n-1}^{k-1}+\max \left(2^{n-2}, 2^{k}\right)+\left(2^{2 n-k-2}-2^{n-2}\right) \quad(\text { for } k \geq 1)
$$

with the conditions that $\mathbf{g}_{m}^{0}=2^{m-1}$ for all $m=1, \ldots, n$.
Here is a comparison of their results and ours.

n	$g_{n}^{0} / \mathbf{g}_{n}^{0}$	$g_{n}^{1} / \mathbf{g}_{n}^{1}$	$g_{n}^{2} / \mathbf{g}_{n}^{2}$	$g_{n}^{3} / \mathbf{g}_{n}^{3}$	$g_{n}^{4} / \mathbf{g}_{n}^{4}$	$T_{1}(n) / T_{2}(n)$
1	$1 / 1$	-	-	-	-	$0 / 0$
2	$2 / 2$	$4 / 4$	-	-	-	$4 / 4$
3	$3 / 4$	$18 / 14$	$7 / 10$	-	-	$32 / 34$
4	$4 / 8$	$60 / 50$	$48 / 40$	$8 / 22$	-	$180 / 196$
5	$5 / 16$	$180 / 186$	$242 / 154$	$60 / 94$	$9 / 46$	$880 / 960$

[^2]
A comparison with previous results

A recursion formula was obtained by Vartiainen et al. ${ }^{1}$

$$
\mathbf{g}_{n}^{k}=\mathbf{g}_{n-1}^{k}+\mathbf{g}_{n-1}^{k-1}+\max \left(2^{n-2}, 2^{k}\right)+\left(2^{2 n-k-2}-2^{n-2}\right) \quad(\text { for } k \geq 1)
$$

with the conditions that $\mathbf{g}_{m}^{0}=2^{m-1}$ for all $m=1, \ldots, n$.
Here is a comparison of their results and ours.

n	$g_{n}^{0} / \mathbf{g}_{n}^{0}$	$g_{n}^{1} / \mathbf{g}_{n}^{1}$	$g_{n}^{2} / \mathbf{g}_{n}^{2}$	$g_{n}^{3} / \mathbf{g}_{n}^{3}$	$g_{n}^{4} / \mathbf{g}_{n}^{4}$	$T_{1}(n) / T_{2}(n)$
1	$1 / 1$	-	-	-	-	$0 / 0$
2	$2 / 2$	$4 / 4$	-	-	-	$4 / 4$
3	$3 / 4$	$18 / 14$	$7 / 10$	-	-	$32 / 34$
4	$4 / 8$	$60 / 50$	$48 / 40$	$8 / 22$	-	$180 / 196$
5	$5 / 16$	$180 / 186$	$242 / 154$	$60 / 94$	$9 / 46$	$880 / 960$

Starting from $n=3$, we get a small advantage in our decomposition.

[^3]
A comparison with previous results

A recursion formula was obtained by Vartiainen et al. ${ }^{1}$

$$
\mathbf{g}_{n}^{k}=\mathbf{g}_{n-1}^{k}+\mathbf{g}_{n-1}^{k-1}+\max \left(2^{n-2}, 2^{k}\right)+\left(2^{2 n-k-2}-2^{n-2}\right) \quad(\text { for } k \geq 1)
$$

with the conditions that $\mathbf{g}_{m}^{0}=2^{m-1}$ for all $m=1, \ldots, n$.
Here is a comparison of their results and ours.

n	$g_{n}^{0} / \mathbf{g}_{n}^{0}$	$g_{n}^{1} / \mathbf{g}_{n}^{1}$	$g_{n}^{2} / \mathbf{g}_{n}^{2}$	$g_{n}^{3} / \mathbf{g}_{n}^{3}$	$g_{n}^{4} / \mathbf{g}_{n}^{4}$	$T_{1}(n) / T_{2}(n)$
1	$1 / 1$	-	-	-	-	$0 / 0$
2	$2 / 2$	$4 / 4$	-	-	-	$4 / 4$
3	$3 / 4$	$18 / 14$	$7 / 10$	-	-	$32 / 34$
4	$4 / 8$	$60 / 50$	$48 / 40$	$8 / 22$	-	$180 / 196$
5	$5 / 16$	$180 / 186$	$242 / 154$	$60 / 94$	$9 / 46$	$880 / 960$

Starting from $n=3$, we get a small advantage in our decomposition.
The discrepancy becomes large as n gets larger.

[^4]
A comparison with previous results

A recursion formula was obtained by Vartiainen et al. ${ }^{1}$

$$
\mathbf{g}_{n}^{k}=\mathbf{g}_{n-1}^{k}+\mathbf{g}_{n-1}^{k-1}+\max \left(2^{n-2}, 2^{k}\right)+\left(2^{2 n-k-2}-2^{n-2}\right) \quad(\text { for } k \geq 1)
$$

with the conditions that $\mathbf{g}_{m}^{0}=2^{m-1}$ for all $m=1, \ldots, n$.
Here is a comparison of their results and ours.

n	$g_{n}^{0} / \mathbf{g}_{n}^{0}$	$g_{n}^{1} / \mathbf{g}_{n}^{1}$	$g_{n}^{2} / \mathbf{g}_{n}^{2}$	$g_{n}^{3} / \mathbf{g}_{n}^{3}$	$g_{n}^{4} / \mathbf{g}_{n}^{4}$	$T_{1}(n) / T_{2}(n)$
1	$1 / 1$	-	-	-	-	$0 / 0$
2	$2 / 2$	$4 / 4$	-	-	-	$4 / 4$
3	$3 / 4$	$18 / 14$	$7 / 10$	-	-	$32 / 34$
4	$4 / 8$	$60 / 50$	$48 / 40$	$8 / 22$	-	$180 / 196$
5	$5 / 16$	$180 / 186$	$242 / 154$	$60 / 94$	$9 / 46$	$880 / 960$

Starting from $n=3$, we get a small advantage in our decomposition.
The discrepancy becomes large as n gets larger.
For example, $T_{2}(10)-T_{1}(10)=30,720$.

[^5]In Figure 1, we plot the difference between T_{2} and T_{1} for n from 1 to 50 . We use the \log scale in the y-axis.

Figure 1

Further research

- Can we further reduce the number of control?
- Can we further reduce the number of control?
- Assign different weights (and other parameters) to the k-control gates based on the difficult level of implementation and consider the new optimization problem.
- Can we further reduce the number of control?
- Assign different weights (and other parameters) to the k-control gates based on the difficult level of implementation and consider the new optimization problem.
- Implement our scheme and see whether it is practical.
- Can we further reduce the number of control?
- Assign different weights (and other parameters) to the k-control gates based on the difficult level of implementation and consider the new optimization problem.
- Implement our scheme and see whether it is practical.
- Study specific problems from experimentalists!
- Can we further reduce the number of control?
- Assign different weights (and other parameters) to the k-control gates based on the difficult level of implementation and consider the new optimization problem.
- Implement our scheme and see whether it is practical.
- Study specific problems from experimentalists!

You are welcomed to talk to me or Diane further if interested!

[^0]: ${ }^{1}$ J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett. 92177902 (2004).

[^1]: ${ }^{1}$ J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett. 92177902 (2004).

[^2]: ${ }^{1}$ J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett. 92177902 (2004).

[^3]: ${ }^{1}$ J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett. 92177902 (2004).

[^4]: ${ }^{1}$ J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett. 92177902 (2004).

[^5]: ${ }^{1}$ J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett. 92177902 (2004).

