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Quantum Computing

a0 %0
0 Quantum Computing Unit 0
Optical lattices, NMR, Anyons

Quantum bit (Qubit)

@ Store and process information using quantum states (qubits).
@ Apply suitable quantum gates (unitary transformations) to the system

@ Apply measurements (unitary transformation) to extract useful
information.
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Mathematical formulation

Consider a quantum system with two physically measurable states:

m=m=o] e =m= ]
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Mathematical formulation

Consider a quantum system with two physically measurable states:
1 0
m=m=o] e =m= ]

A quantum state is in the superposition

|¢>:a\0>+b\1>: |:Z:| ’ a7b€(c7‘a‘2+‘b‘2:1'
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Mathematical formulation

Consider a quantum system with two physically measurable states:
1 0
m=m=o] e =m= ]

A quantum state is in the superposition

|¢>:a\0>+b\1>: |:Z:| ’ a7b€(c7‘a‘2+‘b‘2:1'

Schrédinger cat interpretation

@ |0) represents a dead cat, |1) represents an alive cat,
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Mathematical formulation

Consider a quantum system with two physically measurable states:
1 0
m=m=o] e =m= ]

A quantum state is in the superposition

|¢>:a\0>+b\1>: |:Z:| ’ a7b€(c7‘a‘2+‘b‘2:1'

Schrédinger cat interpretation

@ |0) represents a dead cat, |1) represents an alive cat,

@ |¢)) = a|0) + b|1) represents a cat in the sate of both dead and alive with
a probability |a|® dead and a probability |b|? alive.
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@ For two quantum states, |i1) =

Z ,and |i2) = cci] the tensor state of
the joint (bipartitle) system is represented by i

1) ® [tha) = [nipn) = |92
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@ For two quantum states, |i1) = {Z} ,and |i2) = ;] the tensor state of

the joint (bipartitle) system is represented by

ac

ad

Y1) @ |vh2) = [Preh2) = |

bd |

@ The four measurable states are:

1 0 0 0
0 1 0 0
|00>:61: 0 ,‘01)262: 0 ,‘10)263: 1 ,‘11>:€4: 0
0 0 0 1
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a c
@ For two quantum states, |i1) = bl and |¢2) = d]' the tensor state of

the joint (bipartitle) system is represented by

ac

ad

Y1) @ |vh2) = [Preh2) = |

bd |

@ The four measurable states are:

1 0 0 0
0 1 0 0
|00>:61: 0 ,‘01)262: 0 ,‘10)263: 1 7‘11>:€4: 0
0 0 0 1

@ A general (vector) state is a unit vector in C*, which is a linear
combination of the four measurable states.
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A large data set!

@ To simulate a quantum system with n qubits, say, n = 100, a classical
computer has to deal with N = 2" measurable states: [i1---in).
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A large data set!

@ To simulate a quantum system with n qubits, say, n = 100, a classical
computer has to deal with N = 2™ measurable states: |i1---in).

@ A simulation of simple system in C is a difficult (impossible) task.
@ A quantum computer can handle a general
state | ) of n qubits in CV by a
single quantum operation (unitary gate),
leading to high speed computation.
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A large data set!

@ To simulate a quantum system with n qubits, say, n = 100, a classical
computer has to deal with N = 2™ measurable states: |i1---in).

@ A simulation of simple system in C is a difficult (impossible) task.
@ A quantum computer can handle a general
state | ) of n qubits in CV by a
single quantum operation (unitary gate),
leading to high speed computation.

@ But, general unitary gates are difficult to generate!

@ So, one needs to decompose a general unitary gate to the product of
“simple” unitary gates.
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A general procedure

@ Suppose U € My with N = 2™ is a unitary matrix acting on n-qubit
states.
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A general procedure

@ Suppose U € My with N = 2™ is a unitary matrix acting on n-qubit
states.

@ We want to write U = Vi - - -V}, for some elementary quantum gates
(single qubit gates, CNOT gates, etc.)
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A general procedure

@ Suppose U € My with N = 2™ is a unitary matrix acting on n-qubit
states.

@ We want to write U = Vi - - -V}, for some elementary quantum gates
(single qubit gates, CNOT gates, etc.)

@ One often does that by finding Us,...,Ux so that Uy --- U U = In.
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A general procedure

@ Suppose U € My with N = 2™ is a unitary matrix acting on n-qubit
states.

@ We want to write U = Vi - - -V}, for some elementary quantum gates
(single qubit gates, CNOT gates, etc.)

@ One often does that by finding Us,...,Ux so that Uy --- U U = In.
@ Then we have U = Uf-~~U,I.

Chi-Kwong Li Decomposition of unitary gates



A scheme in numerical linear algebra (Givens transform)

Suppose U = (u;;) € My. Consider the first column of U.
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A scheme in numerical linear algebra (Givens transform)

Suppose U = (u;;) € My. Consider the first column of U.
Let d31 = {|U31|2 + |’LL41|2}1/2 and

1 Uil
_ 1 _ | w21
Un = u31/d3z1  @a1/ds1 so that UnU = d31

—uq1/d31 wuzi/ds1 0

FEE Y

* ¥ ¥ ¥
* ¥ ¥ ¥
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A scheme in numerical linear algebra (Givens transform)

Suppose U = (u;;) € My. Consider the first column of U.

Let d31 = {|U31|2 + |’LL41|2}1/2 and

1 wip % % x
Un = ( ' u31/d31 u41/d31> so that UnU = (Z?,i i : i) ’
—uaq1/d31  uz1/dz1 0 = x
Let do1 = {|u21]® + d3,}'/? and
1 wip % ok ok
Us = ( Ry ) o that UsnUnlU = ( s :) :
1 0 * * *
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Let

u11 da1

Usy = —da1 wi 1 so that U21U31Un1U =

oo or
* ¥ kX
* ¥ X ¥
* ¥ % ¥

Chi-Kwong Li



Let

11 d21
—d
Usy = 21w 1 so that U21U31Un1U =
1

oo or
* ¥ kX
* ¥ X ¥
* ¥ % ¥

Note that the (1,2),(1,3), (1,4) entries will be 0 as well.
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Let

u11 da1 1 % % %
—d 0
Usy = 2w sothat Ua1UsiUnU = (g © & =
1 [ * *
Note that the (1,2),(1,3), (1,4) entries will be 0 as well.
Then consider the second column and construct
1 1
1 * *
U42 = * * | U32 = * *
* 1
so that
1 0 0 0
0 1 0 o0
Us2Us2Ua Us1UnnU = | o . .
0 0 * *
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Let

1
U43: * *
* *
so that
1 0 0 0
UssUs2UsoUs1 UsnUnU = | o 9 0 | =D
0 0 0 det(U)
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Let

1
U43: * *
* *
so that
1 0 0 0
UssUs2UsoUs1 UsnUnU = | o 9 0 | =D
0 0 0 det(U)
Thus,

U= UI1U3T1U;1UIQU3T2UI3D'
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Let

1
U43: * *
* *
so that
1 0 0 0
UssUs2UsoUs1 UsnUnU = (0 o 9 o | =D.
0 0 0 det(U)
Thus,

U= UI1U3T1U;1UIQU3T2UI3D'

Number of 2-level matrices used is at most 3 + 2 + 1 = 6.
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Let

so that
1 0 0 0
UssUs2UsoUs1 UsnUnU = (0 o 9 o | =D.
0 0 0 det(U)
Thus,

U= UI1U3T1U;1UIQUBT2UI3D'

Number of 2-level matrices used is at most 3 + 2 + 1 = 6.

Every N-by-N unitary matrix is the product of m 2-level matrices with

m<(N—1)+ - +1= <N>

2
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We only need 2-level matrices of the form:

1
1
v11
v21
Type 1

vil V12 1
vl v22 Vi1
viz | 1 » or v21
v29 1
Type 2

Chi-Kwong Li

Type 5
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v22




We only need 2-level matrices of the form:

1 v11 V12 1
1 v21 V22 or vil V12
V11 V19 ’ 1 ’ v21 v22
v21 V22 1 1
Type 1 Type 2 Type 5

However, not all of them are simple quantum gates!
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We only need 2-level matrices of the form:

(00) 1 vi1 12 1

(01) 1 va1l w22 or vil V12

(10) v11 vy | 0 1 ) v21 v22

(11) V21 V22 1 1
Type 1 Type 2 Type 5

However, not all of them are simple quantum gates!

Label the rows and columns of a 4-by-4 unitary matrix by (00), (01), (10), (11).
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We only need 2-level matrices of the form:

(00) 1 vi1 12 1
(01) 1 va1l w22 or vil V12
(10) v11 vy | 0 1 ) v21 v22
(11) v21 V29 1

Type 1 Type 2 Type 5

However, not all of them are simple quantum gates!
Label the rows and columns of a 4-by-4 unitary matrix by (00), (01), (10), (11).

v21 v22

)
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We only need 2-level matrices of the form:

(00) 1 V11 v12 1

(01) 1 va1 w22 vl vi2

(10) vip  wvi2 |7 1 » or va1 w22 .
(11) V21 V22 1 1

Type 1 Type 2 Type 5

However, not all of them are simple quantum gates!
Label the rows and columns of a 4-by-4 unitary matrix by (00), (01), (10), (11).

Let V = (”“ “12). Then Type 1 and Type 2 matrices correspond to

v21 V22
controlled qubit gates changing one qubit, namely,

a0|00> —+ a1‘01> + a2|10) =+ a3\11>

to:
a0|00) + a1]01) + 1)V (a2|0) + as3|1)), (1V) — gate

and
[0)V (aol0) + a1|1)) 4+ a2|10) + as|11), (0V') — gate.
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Other 2-level and controlled single qubit gates

A Type 5 matrix is not so easy to implement because it changes both qubits.
(00) (01) (10) (11)

0 o 0\ (00)
vi1  wviz 0] (01)
0
1

v21  v22 (10)
0 0 (11)

[=NeNaNH
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Other 2-level and controlled single qubit gates

A Type 5 matrix is not so easy to implement because it changes both qubits.

(00) (01) (10) (11)

1 0 o 0\ (00)
0 w11 wviz 0] (01)
0 w21 V29 0 ) (10) -
0o 0 0 1/ (11)

There are two other types of controlled qubit gates on 2 qubits:

(00) /1 0 0 o0 vi1 0 wiz O
(01) [ 0 w1 0 w2 0 1 0 0
(10) | O 0 1 0 ’ vy 0 w2 O]
(11) \O w21 0 wap 0 0 1

Type 3: (V1)-gate Type 4: (VO) - gate

corresponding to Io ® [0)(0] + V ® [1)(1] and V ® |0)(0] + I2 ® |1)(1].

o
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The 4 types of controlled qubit gates with the following circuit diagrams:

ov) av) (vo) (v1)
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The 4 types of controlled qubit gates with the following circuit diagrams:

(ov) (1V) (Vo) (V1)

For n = 3, we have fully-controlled qubit gates of the types:

(00V'), (01V), (10V), (11V), (0V0), (0V1), (1V0), (1V1), (V00), (VO1), (V10), (V11).
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The 4 types of controlled qubit gates with the following circuit diagrams:

(ov) (1V) (Vo) (V1)

For n = 3, we have fully-controlled qubit gates of the types:

(00V'), (01V), (10V), (11V), (0V0), (0V1), (1V0), (1V1), (V00), (VO1), (V10), (V11).

One easily extends this idea and notation to define fully-controlled gates
acting on n-qubits.
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Decomposition using only controlled qubit gates

Type 1 (1V) Type 2 (0V) Type 3 (V1)

(00) 1 * * 1

(01) 1 * * * *
(10) * * | 1 ’ 1 .
(11) * * 1 * *
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Decomposition using only controlled qubit gates

Type 1 (1V) Type 2 (0V) Type 3 (V1)

(00) 1 * * 1

(01) 1 * * * *
(10) * * | 1 ’ 1 .
(11) * * 1 * *

1. Use Type 1 matrix to make the (3, 1) instead of the (4,1) entry zero;
then use the Type 3 matrix to make the (4, 1) entry zero;
then use the Type 2 matrix to make the (2, 1) entry zero.
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Decomposition using only controlled qubit gates

Type 1 (1V) Type 2 (0V) Type 3 (V1)

(00) 1 * * 1

(01) 1 * * * *
(10) * * | 1 ’ 1 .
(11) * * 1 * *

1. Use Type 1 matrix to make the (3, 1) instead of the (4,1) entry zero;
then use the Type 3 matrix to make the (4, 1) entry zero;
then use the Type 2 matrix to make the (2, 1) entry zero.

2. Use Type 1 matrix to make the (3, 2) instead of the (4, 2) entry zero zero;
Use Type 3 matrix to make the (4, 2) entry zero.
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Decomposition using only controlled qubit gates

Type 1 (1V) Type 2 (0V) Type 3 (V1)

(00) 1 * * 1

(01) 1 * * * *
(10) * * ’ 1 ’ 1 .
(11) * * 1 * *

1. Use Type 1 matrix to make the (3, 1) instead of the (4,1) entry zero;
then use the Type 3 matrix to make the (4, 1) entry zero;
then use the Type 2 matrix to make the (2, 1) entry zero.

2. Use Type 1 matrix to make the (3, 2) instead of the (4, 2) entry zero zero;
Use Type 3 matrix to make the (4, 2) entry zero.

3. Use type 1 matrix to make the (3,4) instead of the (4,3) entry zero.

Theorem [Vartiainen et al., 2004]

We can always use single fully controlled single qubit gates to do the
decomposition.
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A General Result

@ In some QC models, one uses the —3/2,—1/2,1/2,3/2 states of a
spin-1/2 systems to represent the 2-qubit states |00), |01), |10}, |11).
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A General Result

@ In some QC models, one uses the —3/2,—1/2,1/2,3/2 states of a
spin-1/2 systems to represent the 2-qubit states |00), |01), |10}, |11).

@ In such a case, it is easier to apply changes between

(1) |00) and |01); (2) |01) and |10); (3) |10) and |11).
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A General Result

@ In some QC models, one uses the —3/2,—1/2,1/2,3/2 states of a
spin-1/2 systems to represent the 2-qubit states |00), |01), |10}, |11).

@ In such a case, it is easier to apply changes between
(1) |00) and |01); (2) |01) and |10); (3) |10) and |11).

In general, let P = (j1,j2,...,j~) be a permutation of (1,...,N).
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A General Result

@ In some QC models, one uses the —3/2,—1/2,1/2,3/2 states of a
spin-1/2 systems to represent the 2-qubit states |00), |01), |10}, |11).

@ In such a case, it is easier to apply changes between
(1) |00) and |01); (2) |01) and |10); (3) |10) and |11).
In general, let P = (j1,j2,...,j~) be a permutation of (1,...,N).

A P-unitary matrix is a 2-level unitary matrix obtained from I by changing its
rows and columns indexed by:

(j17j2)7 (j27j3)7 A (jn,17jn)~
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A General Result

@ In some QC models, one uses the —3/2,—1/2,1/2,3/2 states of a
spin-1/2 systems to represent the 2-qubit states |00), |01), |10}, |11).

@ In such a case, it is easier to apply changes between
(1) |00) and |01); (2) |01) and |10); (3) |10) and |11).
In general, let P = (j1,j2,...,j~) be a permutation of (1,...,N).

A P-unitary matrix is a 2-level unitary matrix obtained from I by changing its
rows and columns indexed by:

(j17j2)7 (j27j3)7 ) (jn,17jn)~
Examples P = (1,2,3,4), P = (1,2,4, 3).
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A General Result

@ In some QC models, one uses the —3/2,—1/2,1/2,3/2 states of a
spin-1/2 systems to represent the 2-qubit states |00), |01), |10}, |11).

@ In such a case, it is easier to apply changes between
(1) |00) and |01); (2) |01) and |10); (3) |10) and |11).

In general, let P = (j1,j2,...,j~) be a permutation of (1,...,N).

A P-unitary matrix is a 2-level unitary matrix obtained from I by changing its
rows and columns indexed by:

(j17j2)7 (j27j3)7 ) (jn,17jn)~
Examples P = (1,2,3,4), P = (1,2,4, 3).

Theorem [Li, Roberts, and Yin, 2013]

Let P = (j1,j2,...,J~) be a permutation of (1,2,...,N).
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A General Result

@ In some QC models, one uses the —3/2,—1/2,1/2,3/2 states of a
spin-1/2 systems to represent the 2-qubit states |00), |01), |10}, |11).

@ In such a case, it is easier to apply changes between
(1) |00) and |01); (2) |01) and |10); (3) |10) and |11).

In general, let P = (j1,j2,...,j~) be a permutation of (1,...,N).

A P-unitary matrix is a 2-level unitary matrix obtained from I by changing its
rows and columns indexed by:

(j17j2)7 (j27j3)7 ) (jn,17jn)~
Examples P = (1,2,3,4), P = (1,2,4, 3).

Theorem [Li, Roberts, and Yin, 2013]

Let P = (j1,j2,...,J~) be a permutation of (1,2,...,N).
Then every N-by-N unitary matrix U can be written as a product of no more
than N(N — 1)/2 P-unitary matrices.
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Further simplification

For two qubit system, it is easier to apply the unitary gates of the form:

(00)
_(V (01) ~ (vila vzl
LRV = ( V) (o and Vel— (7 T
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Further simplification

For two qubit system, it is easier to apply the unitary gates of the form:

(00)
_(V (01) ~ (vila vzl
LRV = ( V) (o and Vel— (7 T

They will change the vector states
|’¢> = a0|00> =+ a1‘01> + a2|10) =+ a3‘11>

to:
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Further simplification

For two qubit system, it is easier to apply the unitary gates of the form:

(00)
_(V (01) ~ (vila vzl
LRV = ( V) (o and Vel— (7 T

They will change the vector states
|’¢> = a0|00> =+ a1‘01> + a2|10) =+ a3‘11>

to:
0) ® V(a0|0) + a1]1)) + [1) ® (V(a1|0) + a2|1)),

and
V(ao|0) + a2(1)) ®[0) + (V(a1]0) + as|1)) ® |1).
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Further simplification

For two qubit system, it is easier to apply the unitary gates of the form:

(00)
_(V (01) ~ (vila vzl
LRV = ( V) (o and Vel— (7 T

They will change the vector states
|’¢> = a0|00> =+ a1‘01> + a2|10) =+ a3‘11>

to:

10) ® V(aol0) + a1(1)) + [1) ® (V(a1|0) + a2[1)),
and

V(ao|0) + a2(1)) ®[0) + (V(a1]0) + as|1)) ® |1).

In many (?) QC models, it is less expensive to implement for some quantum
systems.
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Further Reduction

Reduction of U € My by 2-C°V gates and 4-C'V gates:

1 (:v) =
3(Ve) | 1T(AV) =
2(1V) | 2(VD) | T(1V) =

* * * * * * * * * * * * * 0 0 0
* * * * 0 * * * 0 * * * 0 * * *
* * * * - * * * * - * * * * - 0 * * *
* * * * * * * * 0 * * * 0 * * *

* 0O 0 O * 0 O 0 * 0 O 0

N 0 * * * N 0 * 0 0 N 0 * 0 0

0 0 = * 0 0 * 0O 0 == O

0 = * * 0 0 = * 0O 0 0 =
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A recursive scheme

Reduction of U € Mg by 3-C°V gates, 18-C'V gates, and 7-C2V gates:

1(xxV) —
3 (xVx) 1(x1V) —
2(+x1V) | 2(+VI) | 1(x1V) =
T(Vex) | 3(1xV) | 4(1Vx) | 2(10V) =
T(1=V) | 6(V*1) | 3(10V) | 3(1V#) || 1(1xV) =
6 (1Vx) 4(x1V) 5 (V1) 1(1xV) 3 (1V*) 1(11V) —
5(x1V) | 5(1V=) | 2(1=V) | 4(ViD) || 2(11V) | 2(AvV1) | 1(11V) =
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A recursive scheme

Reduction of U € Mg by 3-C°V gates, 18-C'V gates, and 7-C2V gates:

1(xxV) —
3 (xVx) 1(x1V) —
2(+x1V) | 2(+VI) | 1(x1V) =
T(Vex) | 3(1xV) | 4(1Vx) | 2(10V) =
T(1=V) | 6(V*1) | 3(10V) | 3(1V#) || 1(1xV) =
6 (1Vx) 4(x1V) 5 (V1) 1(1xV) 3 (1V*) 1(11V) —
5(x1V) | 5(1V=) | 2(1=V) | 4(ViD) || 2(11V) | 2(AvV1) | 1(11V) =

Annihilate the off-diagonal entries of U :(g“ 512) in columns 1,2,3. ..
21 22
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A recursive scheme

Reduction of U € Mg by 3-C°V gates, 18-C'V gates, and 7-C2V gates:

1(xxV) —
3 (xVx) 1(x1V) —
2(+x1V) | 2(+VI) | 1(x1V) =
T(Vex) | 3(1xV) | 4(1Vx) | 2(10V) =
T(1=V) | 6(V*1) | 3(10V) | 3(1V#) || 1(1xV) =
6 (1Vx) 4(x1V) 5 (V1) 1(1xV) 3 (1V*) 1(11V) —
5(x1V) | 5(1V=) | 2(1=V) | 4(ViD) || 2(11V) | 2(AvV1) | 1(11V) =

Annihilate the off-diagonal entries of U :(g“ 512) in columns 1,2,3. ..
21 22

@ For column 1, use the scheme of the (n — 1)-qubit case to annihilate the
entries in the upper half,

Chi-Kwong Li Decomposition of unitary gates



A recursive scheme

Reduction of U € Mg by 3-C°V gates, 18-C'V gates, and 7-C2V gates:

1(xxV) —
3 (xVx) 1(x1V) —
2(+x1V) | 2(+VI) | 1(x1V) =
T(Vex) | 3(1xV) | 4(1Vx) | 2(10V) =
T(1=V) | 6(V*1) | 3(10V) | 3(1V#) || 1(1xV) =
6 (1Vx) 4(x1V) 5 (V1) 1(1xV) 3 (1V*) 1(11V) —
5(x1V) | 5(1V=) | 2(1=V) | 4(ViD) || 2(11V) | 2(AvV1) | 1(11V) =

Annihilate the off-diagonal entries of U :(g“ 512) in columns 1,2,3. ..
21 22

@ For column 1, use the scheme of the (n — 1)-qubit case to annihilate the
entries in the upper half, and then modify the scheme for the lower half
to annihilate the entries in the lower half.
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A recursive scheme

Reduction of U € Mg by 3-C°V gates, 18-C'V gates, and 7-C2V gates:

1(xxV) —
3 (xVx) 1(x1V) —
2(+x1V) | 2(+VI) | 1(x1V) =
T(Vex) | 3(1xV) | 4(1Vx) | 2(10V) =
T(1=V) | 6(V*1) | 3(10V) | 3(1V#) || 1(1xV) =
6 (1Vx) 4(x1V) 5 (V1) 1(1xV) 3 (1V*) 1(11V) —
5(x1V) | 5(1V=) | 2(1=V) | 4(ViD) || 2(11V) | 2(AvV1) | 1(11V) =

Annihilate the off-diagonal entries of U :(g“ 512) in columns 1,2,3. ..
21 22

@ For column 1, use the scheme of the (n — 1)-qubit case to annihilate the
entries in the upper half, and then modify the scheme for the lower half
to annihilate the entries in the lower half.

@ For column £ with 2 < £ < 2", use the scheme of the (n — 1)-qubit case
to annihilate the entries in the upper half,
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A recursive scheme

Reduction of U € Mg by 3-C°V gates, 18-C'V gates, and 7-C2V gates:

1(xxV) —
3 (xVx) 1(x1V) —
2(+x1V) | 2(+VI) | 1(x1V) =
T(Vex) | 3(1xV) | 4(1Vx) | 2(10V) =
T(1=V) | 6(V*1) | 3(10V) | 3(1V#) || 1(1xV) =
6 (1Vx) 4(x1V) 5 (V1) 1(1xV) 3 (1V*) 1(11V) —
5(x1V) | 5(1V=) | 2(1=V) | 4(ViD) || 2(11V) | 2(AvV1) | 1(11V) =

Annihilate the off-diagonal entries of U :(g“ 512) in columns 1,2,3. ..
21 22

@ For column 1, use the scheme of the (n — 1)-qubit case to annihilate the
entries in the upper half, and then modify the scheme for the lower half
to annihilate the entries in the lower half.

@ For column £ with 2 < ¢ < 2"~ !, use the scheme of the (n — 1)-qubit case

to annihilate the entries in the upper half, and then modify the scheme for
the lower half of Column 1 column to handle the lower half of Column 4.
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A recursive scheme

Reduction of U € Mg by 3-C°V gates, 18-C'V gates, and 7-C2V gates:

1(xxV) —
3 (xVx) 1(x1V) —
2(+x1V) | 2(+VI) | 1(x1V) =
T(Vex) | 3(1xV) | 4(1Vx) | 2(10V) =
T(1=V) | 6(V*1) | 3(10V) | 3(1V#) || 1(1xV) =
6 (1Vx) 4(x1V) 5 (V1) 1(1xV) 3 (1V*) 1(11V) —
5(x1V) | 5(1V=) | 2(1=V) | 4(ViD) || 2(11V) | 2(AvV1) | 1(11V) =

Annihilate the off-diagonal entries of U :(g“ 512) in columns 1,2,3. ..
21 22

@ For column 1, use the scheme of the (n — 1)-qubit case to annihilate the
entries in the upper half, and then modify the scheme for the lower half
to annihilate the entries in the lower half.

@ For column £ with 2 < ¢ < 2"~ !, use the scheme of the (n — 1)-qubit case

to annihilate the entries in the upper half, and then modify the scheme for
the lower half of Column 1 column to handle the lower half of Column 4.

@ To annihilate the entries in Uz, use the same procedures as the previous
case with a single control gate in the first qubit (equal to 1).
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A recursive scheme

Reduction of U € Mg by 3-C°V gates, 18-C'V gates, and 7-C2V gates:

1(xxV) —
3 (xVx) 1(x1V) —
2(+x1V) | 2(+VI) | 1(x1V) =
T(Vex) | 3(1xV) | 4(1Vx) | 2(10V) =
T(1=V) | 6(V*1) | 3(10V) | 3(1V#) || 1(1xV) =
6 (1Vx) 4(x1V) 5 (V1) 1(1xV) 3 (1V*) 1(11V) —
5(x1V) | 5(1V=) | 2(1=V) | 4(ViD) || 2(11V) | 2(AvV1) | 1(11V) =

Annihilate the off-diagonal entries of U :(g“ 512) in columns 1,2,3. ..
21 22

@ For column 1, use the scheme of the (n — 1)-qubit case to annihilate the
entries in the upper half, and then modify the scheme for the lower half
to annihilate the entries in the lower half.

@ For column £ with 2 < ¢ < 2"~ !, use the scheme of the (n — 1)-qubit case
to annihilate the entries in the upper half, and then modify the scheme for
the lower half of Column 1 column to handle the lower half of Column 4.

@ To annihilate the entries in Uz, use the same procedures as the previous
case with a single control gate in the first qubit (equal to 1).

@ A Matlab program was written to do the decomposition.
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Counting the control gates

Let g¥ be the number of k-control qubit gates used in our decomposition
scheme for an n-qubit unitary gate for k =0,1,...,n — 1.
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Counting the control gates

Let g¥ be the number of k-control qubit gates used in our decomposition
scheme for an n-qubit unitary gate for k =0,1,...,n — 1.

Qg =n
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Counting the control gates

Let g¥ be the number of k-control qubit gates used in our decomposition
scheme for an n-qubit unitary gate for k =0,1,...,n — 1.

Q gn=n
Q g.=n(n—1)(2"?+1) for all n > 2.
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Counting the control gates

Let g¥ be the number of k-control qubit gates used in our decomposition

scheme for an n-qubit unitary gate for k =0,1,...,n — 1.
Qg =n
Q g.=n(n—1)(2"?+1) for all n > 2.
O ¢:= %(4"74)—2"(n71)+w for all n > 3.
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Counting the control gates

Let g¥ be the number of k-control qubit gates used in our decomposition
scheme for an n-qubit unitary gate for k =0,1,...,n — 1.

Q gn=n
Q g.=n(n—1)(2"?+1) for all n > 2.

1 ifn=1
Qg =<4 if n =2
T+(n—3) ifn>3
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Counting the control gates

Let g¥ be the number of k-control qubit gates used in our decomposition
scheme for an n-qubit unitary gate for k =0,1,...,n — 1.

Qg =n

Q g, =n(n—1)(2" % +1) for all n > 2.

n(n —1)(n — 2)
2

Q@ 2=-4"-4)-2"(n—1)+ for all n > 3.

1 ifn=1
Qg =<4 if n =2

T+(n—3) ifn>3
Q@ui=gi1+g 1+ (") forall3<k<n-—1.
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A comparison with previous results

A recursion formula was obtained by Vartiainen et al.!
g =gh gl max(@ 2N (222 2" (fork > 1)

with the conditions that g0, = 2™ forall m = 1,...,n.

1J. Vartiainen, M. Métténen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett.
92 177902 (2004).
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A comparison with previous results

A recursion formula was obtained by Vartiainen et al.!
g =gh gl max(@ 2N (222 2" (fork > 1)

with the conditions that g0, = 2™ forall m = 1,...,n.

Here is a comparison of their results and ours.

1J. Vartiainen, M. Métténen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett.
92 177902 (2004).
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A comparison with previous results

A recursion formula was obtained by Vartiainen et al.!
g =gh gl max(@ 2N (222 2" (fork > 1)

with the conditions that g0, = 2™ forall m = 1,...,n.

Here is a comparison of their results and ours.

n | g0 /g’ | gl /eb g2 /g2 | a5 /g | g0 /g | Ti(n) / Ta(n)
1 1/1 — — 0/0

2 2/2 1/4 — 1/4

3 3/4 18 / 14 7/ 10 — — 32 / 34

4 1/8 60 / 50 48 / 40 8/ 22 180 / 196
5 | 5/16 | 180 /186 | 242 / 154 | 60 / 94 9 / 46 880 / 960

1J. Vartiainen, M. Métténen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett.
92 177902 (2004).
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A comparison with previous results

A recursion formula was obtained by Vartiainen et al.!
g =gh gl max(@ 2N (222 2" (fork > 1)

with the conditions that g0, = 2™ forall m = 1,...,n.

Here is a comparison of their results and ours.

n | g0 /g’ | gl /eb g2 /g2 | a5 /g | g0 /g | Ti(n) / Ta(n)
1 1/1 — — — — 0/0

2 2/2 1/4 — — — 1/4

3 3/4 18 / 14 7/ 10 — — 32 / 34

4 1/8 60 / 50 48 / 40 8/ 22 — 180 / 196
5 | 5/16 | 180 /186 | 242 / 154 | 60 / 94 9 / 46 880 / 960

Starting from n = 3, we get a small advantage in our decomposition.

1J. Vartiainen, M. Métténen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett.
92 177902 (2004).
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A comparison with previous results

A recursion formula was obtained by Vartiainen et al.!
g =gh gl max(@ 2N (222 2" (fork > 1)

with the conditions that g0, = 2™ forall m = 1,...,n.

Here is a comparison of their results and ours.

n | g0 /g’ | gl /eb g2 /g2 | a5 /g | g0 /g | Ti(n) / Ta(n)
1 1/1 — — 0/0

2 2/2 1/4 — — 1/4

3 3/4 18 / 14 7/ 10 — — 32 / 34

4 1/8 60 / 50 48 / 40 8/ 22 180 / 196
5 | 5/16 | 180 /186 | 242 / 154 | 60 / 94 9 / 46 880 / 960

Starting from n = 3, we get a small advantage in our decomposition.
The discrepancy becomes large as n gets larger.

1J. Vartiainen, M. Métténen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett.
92 177902 (2004).
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A comparison with previous results

A recursion formula was obtained by Vartiainen et al.!
g =gh gl max(@ 2N (222 2" (fork > 1)

with the conditions that g0, = 2™ forall m = 1,...,n.

Here is a comparison of their results and ours.

n | g0 /g’ | gl /eb g2 /g2 | a5 /g | g0 /g | Ti(n) / Ta(n)
1 1/1 — — — 0/0

2 2/2 1/4 — — 1/4

3 3/4 18 / 14 7/ 10 — — 32 / 34

4 1/8 60 / 50 48 / 40 8/ 22 180 / 196
5 | 5/16 | 180 /186 | 242 / 154 | 60 / 94 9 / 46 880 / 960

Starting from n = 3, we get a small advantage in our decomposition.
The discrepancy becomes large as n gets larger.
For example, T>(10) — T3 (10) = 30, 720.

1J. Vartiainen, M. Métténen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett.
92 177902 (2004).
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In Figure 1, we plot the difference between 75> and T3 for n from 1 to 50. We
use the log scale in the y-axis.

Commparison of the total nurber of controls of our scherme and that of [7]
20 T T T T T T T T T

T2(n)-T1{n) in logarithm base 10




Further research

@ Can we further reduce the number of control?
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Further research

@ Can we further reduce the number of control?

@ Assign different weights (and other parameters) to the k-control gates
based on the difficult level of implementation and consider the new
optimization problem.
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Further research

@ Can we further reduce the number of control?

@ Assign different weights (and other parameters) to the k-control gates
based on the difficult level of implementation and consider the new
optimization problem.

@ Implement our scheme and see whether it is practical.
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Further research

@ Can we further reduce the number of control?

@ Assign different weights (and other parameters) to the k-control gates
based on the difficult level of implementation and consider the new
optimization problem.

@ Implement our scheme and see whether it is practical.

@ Study specific problems from experimentalists!
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Further research

@ Can we further reduce the number of control?

@ Assign different weights (and other parameters) to the k-control gates
based on the difficult level of implementation and consider the new
optimization problem.

@ Implement our scheme and see whether it is practical.

@ Study specific problems from experimentalists!

You are welcomed to talk to me or Diane further if interested!
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