Vertex Identifying Code in Infinite Hexagonal Grid

Gexin Yu
gyu@wm.edu

College of William and Mary
Definitions and Motivation

- **Goal**: put sensors in a network to detect which machine failed

- **Bad solution**: put a sensor on each node

- **Assumptions**:
 - Machines fail one at a time
 - Each sensor only sends one bit
 - A sensor at v can see v and its neighbors

- **Problem**: Find a subset $D \subset V(G)$ such that:
 - For all $v \in V(G)$, $N[v] \cap D \neq \emptyset$
 - For all $u, v \in V(G)$ if $u \neq v$ then $N[u] \cap D \neq N[v] \cap D$

- **Definition**: We call such a set D a (vertex identifying) code.
Definitions and Motivation

- **Goal:** put sensors in a network to detect which machine failed

- **Bad solution:** put a sensor on each node

- **Assumptions:**
 - Machines fail one at a time
 - Each sensor only sends one bit
 - A sensor at \(v \) can see \(v \) and its neighbors

- **Problem:** Find a subset \(D \subset V(G) \) s.t.
 - For all \(v \in V(G) \), \(N[v] \cap D \neq \emptyset \), and
 - \(\forall u, v \in V(G) \), if \(u \neq v \) then \(N[u] \cap D \neq N[v] \cap D \)

- **Definition:** We call such a set \(D \) a (vertex identifying) code.
Definitions and Motivation

- **Goal**: put sensors in a network to detect which machine failed

- **Bad solution**: put a sensor on each node

- **Assumptions**:
 - Machines fail one at a time
 - Each sensor only sends one bit
 - A sensor at v can see v and its neighbors

- Problem: Find a subset $D \subset V(G)$ s.t.

\[
\text{for all } v \in V(G), N[v] \cap D \neq \emptyset, \text{ and } \\
\forall u, v \in V(G) \text{ if } u \neq v \text{ then } N[u] \cap D \neq N[v] \cap D
\]

- Definition: We call such a set D a (vertex identifying) code.
Definitions and Motivation

- **Goal**: put sensors in a network to detect which machine failed

- **Bad solution**: put a sensor on each node

- **Assumptions**:
 - machines fail one at a time
 - each sensor only sends one bit
 - a sensor at \(v \) can see \(v \) and its neighbors

- **Problem**: Find a subset \(D \subseteq V(G) \) s.t.
 - \(\forall v \in V(G), N[v] \cap D \neq \emptyset \)
 - \(\forall u, v \in V(G) \), if \(u \neq v \) then \(N[u] \cap D \neq N[v] \cap D \)

- **Definition**: We call such a set \(D \) a (vertex identifying) code.

Gexin Yu gyu@wm.edu

Vertex Identifying Code in Infinite Hexagonal Grid
Definitions and Motivation

- **Goal:** put sensors in a network to detect which machine failed

- **Bad solution:** put a sensor on each node

- **Assumptions:**
 - machines fail one at a time
 - each sensor only sends one bit

- Problem: Find a subset $D \subset V(G)$ s.t.

 - $\forall v \in V(G)$, $N[v] \cap D \neq \emptyset$
 - $\forall u, v \in V(G)$ if $u \neq v$ then $N[u] \cap D \neq N[v] \cap D$

- **Definition:** We call such a set D a (vertex identifying) code.
Definitions and Motivation

- **Goal:** put sensors in a network to detect which machine failed

- **Bad solution:** put a sensor on each node

- **Assumptions:**
 - machines fail one at a time
 - each sensor only sends one bit
 - a sensor at v can see v and its neighbors

- Problem: Find a subset $D \subset V(G)$ s.t.
 - for all $v \in V(G)$, $N[v] \cap D \neq \emptyset$, and
 - $\forall u, v \in V(G)$ if $u \neq v$ then $N[u] \cap D \neq N[v] \cap D$

- Definition: We call such a set D a (vertex identifying) code.
Definitions and Motivation

- **Goal:** put sensors in a network to detect which machine failed

- **Bad solution:** put a sensor on each node

- **Assumptions:**
 - machines fail one at a time
 - each sensor only sends one bit
 - a sensor at v can see v and its neighbors

- **Problem:** Find a subset $D \subset V(G)$ s.t.
 Definitions and Motivation

- **Goal:** put sensors in a network to detect which machine failed

- **Bad solution:** put a sensor on each node

- **Assumptions:**
 - machines fail one at a time
 - each sensor only sends one bit
 - a sensor at v can see v and its neighbors

- **Problem:** Find a subset $D \subset V(G)$ s.t.
 - for all $v \in V(G)$, $N[v] \cap D \neq \emptyset$, and
Definitions and Motivation

- **Goal:** put sensors in a network to detect which machine failed

- **Bad solution:** put a sensor on each node

- **Assumptions:**
 - machines fail one at a time
 - each sensor only sends one bit
 - a sensor at \(v \) can see \(v \) and its neighbors

- **Problem:** Find a subset \(D \subset V(G) \) s.t.
 - for all \(v \in V(G) \), \(N[v] \cap D \neq \emptyset \), and
 - \(\forall u, v \in V(G) \) if \(u \neq v \) then \(N[u] \cap D \neq N[v] \cap D \)

Definition: We call such a set \(D \) a (vertex identifying) code.
Definitions and Motivation

- **Goal:** put sensors in a network to detect which machine failed

- **Bad solution:** put a sensor on each node

- **Assumptions:**
 - machines fail one at a time
 - each sensor only sends one bit
 - a sensor at v can see v and its neighbors

- **Problem:** Find a subset $D \subset V(G)$ s.t.
 - for all $v \in V(G)$, $N[v] \cap D \neq \emptyset$, and
 - $\forall u, v \in V(G)$ if $u \neq v$ then $N[u] \cap D \neq N[v] \cap D$

- **Definition:** We call such a set D a (vertex identifying) code.
Examples: codes and non-codes

![Diagram showing vertex identifying code in an infinite hexagonal grid]

Observation: Every path P_n with $n \geq 3$ has a code.

Gexin Yu gyu@wm.edu Vertex Identifying Code in Infinite Hexagonal Grid
Examples: codes and non-codes

1 2 3

NO!

1 2 3

NO!

1 2 3

NO!

Observation: Every path P_n with $n \geq 3$ has a code.
Examples: codes and non-codes

\begin{itemize}
 \item Every path P_n with $n \geq 3$ has a code.
\end{itemize}

Gexin Yu gyu@wm.edu

Vertex Identifying Code in Infinite Hexagonal Grid
Examples: codes and non-codes

▶ Observation: Every path P_n with $n \geq 3$ has a code.
Examples: codes and non-codes

- **Observation:** Every path P_n with $n \geq 3$ has a code.
Not always possible

Definition: We call such a graph twin-free.

New problem: If G is twin-free, find a smallest code.

We are most interested in infinite grids.
Obstacle: $N[u] = N[v]$, so for any D we have $N[u] \cap D = N[v] \cap D$.
Not always possible

- **Obstacle:** \(N[u] = N[v] \), so for any \(D \) we have \(N[u] \cap D = N[v] \cap D \).

- **Fact:** \(G \) has a code iff for all \(u \neq v \) we have \(N[u] \neq N[v] \).
Not always possible

Obstacle: \(N[u] = N[v] \), so for any \(D \) we have \(N[u] \cap D = N[v] \cap D \).

Fact: \(G \) has a code iff for all \(u \neq v \) we have \(N[u] \neq N[v] \).

Definition: We call such a graph twin-free.
Obstacle: \(N[u] = N[v] \), so for any \(D \) we have \(N[u] \cap D = N[v] \cap D \).

Fact: \(G \) has a code iff for all \(u \neq v \) we have \(N[u] \neq N[v] \).

Definition: We call such a graph twin-free.

New problem: If \(G \) is twin-free, find a smallest code.
Not always possible

- **Obstacle:** $N[u] = N[v]$, so for any D we have $N[u] \cap D = N[v] \cap D$.

- **Fact:** G has a code iff for all $u \neq v$ we have $N[u] \neq N[v]$.

- **Definition:** We call such a graph **twin-free**.

- **New problem:** If G is twin-free, find a smallest code.

- **We are most interested in infinite grids.**
We consider infinite graphs with the following properties:

- Twin-free
- Locally finite (every vertex has finite degree)
- Vertex transitive (graph looks the same from each vertex)

Example: $V(G_{\mathbb{Z}}) = \mathbb{Z}$ and $uv \in E(G_{\mathbb{Z}})$ iff $|u - v| = 1$ (infinite path)

Definition: Rather than the smallest size code, we want the lowest density (fraction) code. We call this the density of G, $\tau(G)$. Question: What is $\tau(G_{\mathbb{Z}})$?
We consider infinite graphs with following properties:

- twin-free

Example: \(V(G) = \mathbb{Z} \) and \(uv \in E(G) \) iff \(|u - v| = 1 \) (infinite path).

Definition: Rather than the smallest size code, we want the lowest density (fraction) code.

We call this the density of \(G \), \(\tau(G) \).

Question: what is \(\tau(G) \)?
We consider infinite graphs with the following properties:
- twin-free
- locally finite (every vertex has finite degree)

Example: \(V(G_{\mathbb{Z}}) = \mathbb{Z} \) and \(uv \in E(G_{\mathbb{Z}}) \iff |u - v| = 1 \) (infinite path)

Definition: Rather than the smallest size code, we want the lowest density (fraction) code.
We call this the density of \(G \), \(\tau(G) \).

Question: What is \(\tau(G_{\mathbb{Z}}) \)?
We consider infinite graphs with following properties:

- twin-free
- locally finite (every vertex has finite degree)
- vertex transitive (graph looks the same from each vertex)
Infinite graphs

- We consider infinite graphs with following properties:
 - twin-free
 - locally finite (every vertex has finite degree)
 - vertex transitive (graph looks the same from each vertex)
- Ex. $V(G_Z) = \mathbb{Z}$ and $uv \in E(G_Z)$ iff $|u - v| = 1$ (infinite path)
We consider infinite graphs with following properties:
 - twin-free
 - locally finite (every vertex has finite degree)
 - vertex transitive (graph looks the same from each vertex)

Ex. \(V(G_Z) = \mathbb{Z} \) and \(uv \in E(G_Z) \) iff \(|u - v| = 1 \) (infinite path)
Infinite graphs

- We consider infinite graphs with following properties:
 - twin-free
 - locally finite (every vertex has finite degree)
 - vertex transitive (graph looks the same from each vertex)
- Ex. \(V(G_Z) = \mathbb{Z} \) and \(uv \in E(G_Z) \) iff \(|u - v| = 1 \) (infinite path)

- **Definition:** Rather than the smallest size code, we want the lowest density (fraction) code.
Infinite graphs

We consider infinite graphs with following properties:
- twin-free
- locally finite (every vertex has finite degree)
- vertex transitive (graph looks the same from each vertex)

Ex. $V(G_{\mathbb{Z}}) = \mathbb{Z}$ and $uv \in E(G_{\mathbb{Z}})$ iff $|u - v| = 1$ (infinite path)

Definition: Rather than the smallest size code, we want the lowest density (fraction) code.

We call this the density of G, $\tau(G)$.
Infinite graphs

- We consider infinite graphs with following properties:
 - twin-free
 - locally finite (every vertex has finite degree)
 - vertex transitive (graph looks the same from each vertex)

- Ex. \(V(G_\mathbb{Z}) = \mathbb{Z} \) and \(uv \in E(G_\mathbb{Z}) \) iff \(|u - v| = 1 \) (infinite path)

- Definition: Rather than the smallest size code, we want the lowest density (fraction) code.
- We call this the density of \(G \), \(\tau(G) \).
- Question: what is \(\tau(G_\mathbb{Z}) \)?
Density of Square and Triangular Grids

- **Triangular Grid:** Karpovsky-Chakrabarty-Levitin (1998) showed that $\tau = \frac{1}{4}$.
Density of Square and Triangular Grids

- **Triangular Grid:** Karpovskiy-Chakrabarty-Levitin (1998) showed that $\tau = \frac{1}{4}$.

- **Square Grid:** Cohen-Hongala-Lobstein-Zémor (2000) showed that $\tau \leq \frac{7}{20}$; and Ben-Haim-Litsyn (2005) showed that $\tau \geq \frac{7}{20}$.
Cohen-Hongala-Lobstein-Zémor (2000) had the following constructions with density $\frac{3}{7}$:
Cohen-Hongala-Lobstein-Zémor (2000) had the following constructions with density $\frac{3}{7}$:
Cohen-Hongala-Lobstein-Zémor (2000) had the following constructions with density $\frac{3}{7}$:
Cohen-Hongala-Lobstein-Zémor (2000) had the following constructions with density $\frac{3}{7}$:
Karpovsky-Chakrabarty-Levitin (1998) showed that $\tau \geq \frac{2}{5}$.

Cohen-Hongala-Lobstein-Zémor (2000) showed that $\tau \geq \frac{16}{39} \approx 0.4102$.

They took a finite portion of the grid, proved a lower bound for the (finite) graph, and then extended that to infinite grid.

We (with Dan Cranston, 2009) used a cake-sharing idea and proved:

Theorem: $\tau \geq \frac{12}{29} \approx 0.41379$.
Karpovsky-Chakrabarty-Levitin (1998) showed that $\tau \geq \frac{2}{5}$.

Cohen-Hongala-Lobstein-Zémor (2000) showed that

$$\tau \geq \frac{16}{39} \approx 0.4102...$$
Karpovsky-Chakrabarty-Levitin (1998) showed that $\tau \geq \frac{2}{5}$.

Cohen-Hongala-Lobstein-Zémor (2000) showed that

$$\tau \geq \frac{16}{39} \approx 0.4102...$$

They took a finite portion of the grid, proved a lower bound for the (finite) graph, and then extended that to infinite grid.
Karpovsky-Chakrabarty-Levitin (1998) showed that $\tau \geq \frac{2}{5}$.

Cohen-Hongala-Lobstein-Zémor (2000) showed that

$$\tau \geq \frac{16}{39} \approx 0.4102...$$

They took a finite portion of the grid, proved a lower bound for the (finite) graph, and then extended that to infinite grid.

We (with Dan Cranston, 2009) used a cake-sharing idea and proved
Karpovsky-Chakrabarty-Levitin (1998) showed that $\tau \geq \frac{2}{5}$.

Cohen-Hongala-Lobstein-Zémor (2000) showed that

$$\tau \geq \frac{16}{39} \approx 0.4102...$$

They took a finite portion of the grid, proved a lower bound for the (finite) graph, and then extended that to infinite grid.

We (with Dan Cranston, 2009) used a cake-sharing idea and proved

Theorem: $\tau \geq \frac{12}{29} \approx 0.41379...$
Forget infinite for now
Forget infinite for now

Suppose that D is a code for G. Put a cake at each $v \in D$ and redistribute so that each $u \in V(G)$ get at least t cake ($0 < t < 1$).
Proving a Lower Bound (sketch)

▶ Forget infinite for now

▶ Suppose that D is a code for G. Put a cake at each $v \in D$ and redistribute so that each $u \in V(G)$ get at least t cake ($0 < t < 1$).

▶ Then $|D| \geq t|V(G)|$, or $\tau(G) = \frac{|D|}{|V(G)|} \geq t$.
Proving a Lower Bound (sketch)

- Forget infinite for now

- Suppose that D is a code for G. Put a cake at each $v \in D$ and redistribute so that each $u \in V(G)$ get at least t cake ($0 < t < 1$).

 - Then $|D| \geq t|V(G)|$, or $\tau(G) = \frac{|D|}{|V(G)|} \geq t$.

- The same idea works for infinite graphs.
Proving a Lower Bound (sketch)

- Forget infinite for now

- Suppose that D is a code for G. Put a cake at each $v \in D$ and redistribute so that each $u \in V(G)$ get at least t cake ($0 < t < 1$).

- Then $|D| \geq t|V(G)|$, or $\tau(G) = \frac{|D|}{|V(G)|} \geq t$.

- The same idea works for infinite graphs.

- **Key**: how should we share the cake?
Theorem: For the hex grid, $\tau \geq \frac{2}{5}$.

Proof. Each vertex in D gives $2\frac{k}{5}$ cake to each neighbor not in D that has k neighbors in D.

We must show that each vertex v has at least $2\frac{2}{5}$ of a cake.

We consider cases, based on what size cluster contains v:

- $v \not\in D$:
 - $k = 2\frac{k}{5} = 2\frac{2}{5}$.

- v in a 1-cluster:
 - $1 - 3(2\frac{k}{5}) = 2\frac{1}{5}$.

- v in a $3+$-cluster:
 - v has 3 neighbors in cluster: $1 - 0 = 1$.
 - v has 2 neighbors in cluster: $1 - 1(2\frac{k}{5}) = 3\frac{3}{5}$.
 - v has 1 neighbor in cluster: $1 - 2\frac{k}{5} - 1 = 2\frac{4}{5}$.

Gexin Yu gyu@wm.edu
Vertex Identifying Code in Infinite Hexagonal Grid
Theorem: For the hex grid, \(\tau \geq \frac{2}{5} \).

Proof. each vertex in \(D \) gives \(\frac{2}{5k} \) cake to each neighbor not in \(D \) that has \(k \) neighbors in \(D \).
Theorem: For the hex grid, $\tau \geq \frac{2}{5}$.

Proof. Each vertex in D gives $\frac{2}{5k}$ cake to each neighbor not in D that has k neighbors in D.

We must show that each vertex v has at least $\frac{2}{5}$ of a cake.
Theorem: For the hex grid, $\tau \geq \frac{2}{5}$.

Proof. Each vertex in D gives $\frac{2}{5k}$ cake to each neighbor not in D that has k neighbors in D.

We must show that each vertex v has at least $\frac{2}{5}$ of a cake.
Theorem: For the hex grid, $\tau \geq \frac{2}{5}$.

Proof. Each vertex in D gives $\frac{2}{5k}$ cake to each neighbor not in D that has k neighbors in D.

We must show that each vertex v has at least $\frac{2}{5}$ of a cake.

We consider cases, based on what size cluster contains v:

1. $v \not\in D$: $\frac{2}{5k} = \frac{2}{5}$.
2. v in a 1-cluster: $1 - 3(\frac{2}{5}) = \frac{2}{5}$.
3. v in a 3+-cluster:
 - v has 3 neighbors in cluster: $1 - 0 = 1$
 - v has 2 neighbors in cluster: $1 - 1(\frac{2}{5}) = \frac{3}{5}$
 - v has 1 neighbor in cluster: $1 - 2(\frac{2}{5}) - \frac{1}{5} = \frac{2}{5}$

Vertex Identifying Code in Infinite Hexagonal Grid
Theorem: For the hex grid, $\tau \geq \frac{2}{5}$.

Proof. Each vertex in D gives $\frac{2}{5k}$ cake to each neighbor not in D that has k neighbors in D.

We must show that each vertex v has at least $\frac{2}{5}$ of a cake.

We consider cases, based on what size cluster contains v:

- $v \notin D$: $k \frac{2}{5k} = \frac{2}{5}$.
Theorem: For the hex grid, $\tau \geq \frac{2}{5}$.

Proof. each vertex in D gives $\frac{2}{5k}$ cake to each neighbor not in D that has k neighbors in D.

We must show that each vertex v has at least $\frac{2}{5}$ of a cake.

We consider cases, based on what size cluster contains v:

- $v \notin D$: $k \cdot \frac{2}{5k} = \frac{2}{5}$.
- v in a 1-cluster: $1 - 3\left(\frac{2}{5(2)}\right) = \frac{2}{5}$.
Proving a Lower Bound (real proof)

- **Theorem:** For the hex grid, \(\tau \geq \frac{2}{5} \).

Proof. each vertex in \(D \) gives \(\frac{2}{5k} \) cake to each neighbor not in \(D \) that has \(k \) neighbors in \(D \).

We must show that each vertex \(v \) has at last \(\frac{2}{5} \) of a cake.

We consider cases, based on what size cluster contains \(v \):

- \(v \not\in D \): \(k \frac{2}{5k} = \frac{2}{5} \).
- \(v \) in a 1-cluster: \(1 - 3 \left(\frac{2}{5(2)} \right) = \frac{2}{5} \).
- \(v \) in a 3\(^+\)-cluster:
Theorem: For the hex grid, \(\tau \geq \frac{2}{5} \).

Proof. Each vertex in \(D \) gives \(\frac{2}{5k} \) cake to each neighbor not in \(D \) that has \(k \) neighbors in \(D \).

We must show that each vertex \(v \) has at least \(\frac{2}{5} \) of a cake.

We consider cases, based on what size cluster contains \(v \):

- \(v \notin D \): \(k \frac{2}{5k} = \frac{2}{5} \).
- \(v \) in a 1-cluster: \(1 - 3(\frac{2}{5(2)}) = \frac{2}{5} \).
- \(v \) in a \(3^{+} \)-cluster:
 - \(v \) has 3 neighbors in cluster: \(1 - 0 = 1 \).
Theorem: For the hex grid, $\tau \geq \frac{2}{5}$.

Proof. Each vertex in D gives $\frac{2}{5k}$ cake to each neighbor not in D that has k neighbors in D.

We must show that each vertex v has at least $\frac{2}{5}$ of a cake.

We consider cases, based on what size cluster contains v:

- $v \notin D$: $k \frac{2}{5k} = \frac{2}{5}$.
- v in a 1-cluster: $1 - 3 \left(\frac{2}{5(2)} \right) = \frac{2}{5}$.
- v in a 3^+-cluster:
 - v has 3 neighbors in cluster: $1 - 0 = 1$
 - v has 2 neighbors in cluster: $1 - 1 \left(\frac{2}{5} \right) = \frac{3}{5}$
Theorem: For the hex grid, $\tau \geq \frac{2}{5}$.

Proof. Each vertex in D gives $\frac{2}{5k}$ cake to each neighbor not in D that has k neighbors in D.

We must show that each vertex v has at least $\frac{2}{5}$ of a cake.

We consider cases, based on what size cluster contains v:

- $v \not\in D$: $k \cdot \frac{2}{5k} = \frac{2}{5}$.
- v in a 1-cluster: $1 - 3(\frac{2}{5(2)}) = \frac{2}{5}$.
- v in a 3^+-cluster:
 - v has 3 neighbors in cluster: $1 - 0 = 1$
 - v has 2 neighbors in cluster: $1 - 1(\frac{2}{5}) = \frac{3}{5}$
 - v has 1 neighbor in cluster: $1 - \frac{2}{5} - \frac{1}{5} = \frac{2}{5}$
Research Problems

- We now know that for infinite hexagon grid, \(\frac{12}{29} \leq \tau \leq \frac{3}{7} \). What’s the exact value of \(\tau \)?

- How about 3-dimensional grids?

- It is NP-hard to find the minimum ID-code for a given graph, even a given connected planar graph with maximum degree 4 and girth at least \(k \geq 3 \). Can we find any good bounds for such graphs?
We now know that for infinite hexagon grid, \(\frac{12}{29} \leq \tau \leq \frac{3}{7} \). What’s the exact value of \(\tau \)?

How about 3-dimensional grids?
We now know that for infinite hexagon grid, $\frac{12}{29} \leq \tau \leq \frac{3}{7}$. What's the exact value of τ?

How about 3-dimensional grids?

It is NP-hard to find the minimum ID-code for a given graph, even a given connected planar graph with maximum degree 4 and girth at least $k \geq 3$.

Can we find any good bounds for such graphs?
Questions?