(17.8) (a) consider two cases of $f \geq g$ and $f < g$; (b) use $\min(f, g) = (f + g)/2 - |f - g|/2$ and $\max(f, g) = (f + g)/2 + |f - g|/2$; (c) Use 17.3 and 17.4.

(17.9d) Assume that $|x - x_0| \leq 1$, then $|x| \leq |x_0| + 1$, and $|x^2 + x_0x + x_0^2| \leq |x^2| + |x_0x| + |x_0^2| \leq ((|x_0| + 1)^2 + (|x_0| + 1)|x_0| + |x_0|^2 = 3|x_0|^2 + 3|x_0| + 1$. So $|x^3 - x_0^3| = |x - x_0| \cdot |x^2 + x_0x + x_0^2| \leq (3x_0^2 + 3|x_0| + 1)|x - x_0|$. For any $\varepsilon > 0$, select $\delta = \min\{1, \varepsilon/(3|x_0|^2 + 3|x_0| + 1)\}$. Then when $|x - x_0| < \delta$, $|x^3 - x_0^3| = |x - x_0| \cdot |x^2 + x_0x + x_0^2| \leq (3x_0^2 + 3|x_0| + 1)|x - x_0| < \varepsilon$. Hence $g(x) = x^3$ is continuous at x_0.

(17.10) (a) Take $x_n = 1/n$, then $\lim x_n = 0$, but $\lim f(x_n) = \lim 1 = 1 \neq 0 = f(0)$, so it is not continuous from Definition 17.1; (b) Take $x_n = (2n\pi + pi/2)^{-1}$, then $\lim x_n = 0$, but $\lim g(x_n) = \lim 1 = 1 \neq 0 = g(0)$, so it is not continuous from Definition 17.1; (c) Take $x_n = 1/n$, then $\lim x_n = 0$, but $\lim \text{sgn}(x_n) = \lim 1 = 1 \neq 0 = \text{sgn}(0)$, so it is not continuous from Definition 17.1; (d) Consider at an integer p. Take $x_n = p - 1/n$, then $\lim x_n = p$, but $\lim P(x_n) = \lim 13p + 2 = 13p + 2 \neq 13p + 15 = P(p)$, so it is not continuous at $x = p$ from Definition 17.1.

(17.12a) If x is rational then $f(x) = 0$ from assumption. If x is irrational, then there exists a sequence (x_n) which is rational and $\lim x_n = x$ from 4.7 (the density of rational numbers). Since f is continuous, then $f(x) = \lim f(x_n) = \lim 0 = 0$. So $f(x) = 0$ for all $x \in (a, b)$.

(17.14) For each rational number $x \in \mathbb{R}$, there is a sequence of irrational numbers (x_n) so that $x_n \to x$ as $n \to \infty$, but $f(x_n) = 0$ while $f(x) = 1/q$ for some $q \in \mathbb{Z}$, so $f(x)$ is not continuous at x from Theorem 2.2.

If x is irrational, for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for $n > N$, $1/n < \varepsilon$. There are only finitely many rational numbers p/q in the interval $(x - 1, x + 1)$ with $q \leq N$, and let δ be the smallest distance from x to any such rational numbers in $(x - 1, x + 1)$. Then for any rational number y in $(x - \delta, x + \delta)$, $f(y) = 1/n < \varepsilon$, and any irrational y in $(x - \delta, x + \delta)$, $f(y) = 0 < \varepsilon$. Then $|f(y) - f(x)| = |f(y)| < \varepsilon$ if $|y - x| < \delta$. This proves the continuity of $f(x)$ at irrational x.

(18.4) Consider the function $f(x) = 1/(x - x_0)$. Then it is continuous for $x \neq x_0$. Yet it is unbounded since $\lim x_n = x_0$, and there must be subsequence x_{n_k} which is all larger than or all smaller than x_0. In either case, $f(x)$ is unbounded from Theorem 9.10.

(18.5) see back of book

(18.6) Let $f(x) = x - \cos x$. Then $f(0) = -1 < 0$ and $f(\pi/2) = \pi/2 > 0$. $f(x)$ is continuous, so the IVT (18.2) implies that $f(x)$ can take any values between -1 and $\pi/2$. In particular, there exists $x_0 \in (0, \pi/2)$ such that $f(x_0) = 0$, then $x_0 = \cos x_0$.

(18.10) Consider $g(x) = f(x + 1) - f(x)$. Then $g(x)$ is continuous. Note that $f(x + 1)$ is continuous since $f(x)$ and $x + 1$ both are. Now $g(0) = f(1) - f(0)$ and $g(1) = f(2) - f(1) = f(0) - f(1) = -[f(1) - f(0)]$. If $f(1) - f(0) = 0$, then $x = 0$ and $y = 1$ are desired solutions. If not, $g(0)$ and $g(1)$ must have opposite signs, then from IVT (18.2), there exists $x_0 \in (0, 1)$ such that $g(x_0) = 0$, then $x = x_0$ and $y = x_0 + 1$ are desired solutions.

(A-17) Suppose that a function $f : \mathbb{R} \to \mathbb{R}$ is continuous and it satisfies $f(x + y) = f(x) + f(y)$ for all $x, y \in \mathbb{R}$. Prove that there exists $a \in \mathbb{R}$ such that $f(x) = ax$ for all x.

From $f(0) = f(0 + 0) = f(0) + f(0)$, we get $f(0) = 2f(0)$, so $f(0) = 0$. Let $a = f(1)$, then from induction, $f(n) = an$ for all $n \in \mathbb{N}$. From $f(0) = f(n) + f(-n)$, $f(-n) = -an$ for all $n \in \mathbb{N}$. Now for every $p/q \in \mathbb{Q}$, $f(p/q) = pf(1/q)$; and $qf(1/q) = f(1) = a$, so $f(1/q) = 1/q \cdot a$. So we have proved
\[f(x) = ax \text{ for all } x \in \mathbb{Q}. \] Let \(g(x) = f(x) - ax \). Then \(g(x) = 0 \) for all \(x \in \mathbb{Q} \), and \(g(x) \) is continuous. From Exercise 17.12, \(g(x) = 0 \) for all \(x \in \mathbb{R} \). Thus \(f(x) = ax \) for all \(x \).

(A-18) Prove that there is no continuous function \(f : \mathbb{R} \to \mathbb{R} \) such that, for each \(c \in \mathbb{R} \), the equation \(f(x) = c \) has exactly two solutions.

Suppose, by way of contradiction, that \(f : \mathbb{R} \to \mathbb{R} \) is a continuous function such that, for each \(c \in \mathbb{R} \), the equation \(f(x) = c \) has exactly two solutions. Then there are real numbers \(a < b \) such that \(f(a) = f(b) = 0 \), and \(f(x) \neq 0 \) for all \(x \) such that \(x < a \) or \(a < x < b \) or \(b < x \). Therefore, by the Intermediate Value Theorem, \(f \) cannot take on both positive and negative values on the interval \((-\infty, a)\) (else it would have to take on the value 0 as well), and the same applies to the interval \((a, b)\) and to the interval \((b, \infty)\).

Suppose that \(f \) is positive on the interval \((a, b)\). By Theorem 18.1, \(f \) must be bounded on the closed interval \([a, b]\), and in fact must take on some maximum value, say \(f(c) = M \) for some positive number \(M \), with \(a < c < b \), so that \(f(x) \leq M \) for all \(x \in [a, b] \). Then by the Intermediate Value Theorem, there must be numbers \(x_1 \in (a, c) \) and \(x_2 \in (c, b) \) such that \(f(x_1) = f(x_2) = M/2 \). Moreover, \(f \) does not take on the value \(2M \) on the interval \([a, b]\) (as \(M \) is an upper bound), so by assumption there must be some \(d \) in \((-\infty, a) \) or \((b, \infty)\) such that \(f(d) = 2M \). Then again by the Intermediate Value Theorem, there must be some \(x_3 \) in \((-\infty, a) \) or \((b, \infty)\) such that \(f(x_3) = M/2 \). (Here \(x_3 \in (d, a) \) if \(d \in (-\infty, a) \), while \(x_3 \in (b, d) \) if \(d \in (b, \infty) \).) In any case, the numbers \(x_1 \), \(x_2 \), and \(x_3 \) must be distinct, because they come from the disjoint intervals \((a, c)\), \((c, b)\), and \((d, a)\) or \((b, d)\), respectively. Since \(f(x_1) = f(x_2) = f(x_3) = M/2 \), this contradicts the assumption on \(f \).