Homework 2 solution
Math 311, Spring 2009

(A-7) Prove that if \(b > 0 \), then there exist only finitely many positive integers \(n \) such that \(0 < n \leq b \). Hence the set \(\{ n : n \in \mathbb{N}, n \leq b \} \) is a finite subset of \(\mathbb{N} \), and it has a maximum element if it is nonempty.

For \(b > 0 \), there exists \(k \in \mathbb{N} \) such that \(b < k \). Then for any \(n > k \) and \(n \in \mathbb{N} \), \(n > k > b \). So if \(0 < n \leq b \) then \(n \in \{ 1, 2, 3, \ldots, k-1 \} \), which is a finite set. So there exist only finitely many positive integers \(n \) such that \(0 < n \leq b \).

(A-8) It is known that \(\mathbb{C} = \{ a + bi : a, b \in \mathbb{R} \} \) (where \(i^2 = -1 \)) is a field. Prove that \(\mathbb{C} \) is not an ordered field, that is, one cannot define an order relation on \(\mathbb{C} \) which satisfies (O1)-(O5).

If there is such an order, then either \(i < 0 \) or \(i > 0 \) since \(i \neq 0 \). If \(i > 0 \), then \(-1 = i \cdot i > 0 \) from Theorem 3.2. But from \(-1 > 0 \) we can get \(-1 + 1 > 0 + 1 \) that is \(0 > 1 \), and from \(-1 > 0 \) we also get \(1 = (-1)^2 > 0 \) from Theorem 3.2. So \(0 > 1 > 0 \) which is impossible. If \(i < 0 \), then \(i + (-i) < 0 + (-i) \) so \(0 < -i \), again \(-1 = (-i) \cdot (-i) > 0 \) from Theorem 3.2. Again we obtain \(0 > 1 > 0 \) which is impossible. Therefore there exists no order for complex field.

(A-9) The floor function is defined by \(\lfloor x \rfloor = \max \{ n \in \mathbb{Z} \mid n \leq x \} \). And the fractional part function is \(\{ x \} = x - \lfloor x \rfloor \). For all \(x \), \(0 \leq \{ x \} < 1 \). For example, \(\{ 2.3 \} = 2 \), \(\{ 2.3 \} = 0.3 \); and \(\{ -2.3 \} = -0.3 \). Prove that if \(a \) is an irrational number, then

(a) For any \(\varepsilon > 0 \), there exist \(m, n \in \mathbb{N} \) such that \(|na - m| < \varepsilon \);

(b) For any \(a, b \) satisfying \(0 < a < b < 1 \), there exists \(n \in \mathbb{N} \) such that \(\{ na \} \in (a, b) \).

See http://en.wikipedia.org/wiki/Pigeonhole_principle,
http://www.cms.math.ca/Students/Problems/PigSol.pdf

(4.1-4.4) (b) \((0,1)\): upper bound: 1, 2, 3, lower bound: \(-2, -1, 0\); sup = 1, inf = 0.

(i): \(\bigcap_{n=1}^{\infty} [-1/n, 1 + 1/n] \): upper bound: 2, 3, lower bound: \(-2, -3, -1\). sup = 1, inf = 0.

(n): \(\{ r \in \mathbb{Q} : r^2 < 2 \} \): upper bound: 2, 3, lower bound: \(-2, -3, -4\). sup = \(\sqrt{2} \), inf = \(-\sqrt{2} \).

(v): \(\{ n(\pi/3) \} : n \in \mathbb{N} \} \): upper bound: 1, 2, 3, lower bound: \(-2, -3, -1\). sup = 1, inf = -1.

(4.6) proof: Since \(S \) is not empty, then there exists \(s \in S \). From definition of infimum and supremum, inf \(S \leq s \leq \sup S \). Then inf \(S \leq \sup S \). If inf \(S = \sup S \), then \(S \) has only one element.

(4.8) (a) Given \(a \in T \), then for any \(s \in T \), \(s \leq t \). So \(t \) is an upper bound of \(S \). Similarly any \(s \in S \) is a lower bound of \(T \).

(b) Let \(s_0 = \sup S \) and \(t_0 = \inf T \). Suppose that \(s_0 > t_0 \). Then from Archimedean property, there exists \(\varepsilon > 0 \) such that \(s_0 - t_0 > 4\varepsilon \). Since \(s_0 = \sup S \), then there exists \(s_1 \in S \) such that \(s_1 > s_0 - \varepsilon \), and since \(t_0 = \inf T \), there exists \(t_1 \in T \) such that \(t_1 < t_0 + \varepsilon \). Then \(t_1 < t_0 + \varepsilon < s_0 - \varepsilon < s_1 \) (here \(t_0 + \varepsilon < s_0 - \varepsilon \) is because \(s_0 - t_0 > 4\varepsilon \)). But \(t_1 < s_1 \) contradicts with the assumption that \(s \leq t \) for all \(s \in S \) and \(t \in T \). Hence \(s_0 < t_0 \) holds.

(c) \(S = (0,1], T = [1,2) \); (d) \(S = (0,1), T = (1,2) \).

Alternate proof of (b): Let \(s_0 = \sup S \) and \(t_0 = \inf T \). Suppose that \(s_0 > t_0 \). Then from Archimedean property, there exists \(x \) satisfying \(s_0 > x > t_0 \). Since \(s_0 \) is the smallest upper bound of \(S \) and \(x < s_0 \), then \(x \) is not an upper bound of \(S \) and there exists \(s_1 \in S \) such that \(s_1 > x \). Similarly \(x \) is not a lower bound of \(T \), then there exists \(t_1 \in T \) such that \(t_1 < x \). Hence \(s_1 > t_1 \) but that contradicts with \(s \leq t \) for any \(s \in S \) and \(t \in T \).

(4.14a) Let \(s = \sup S \), \(a = \sup A \) and \(b = \sup B \). First we prove \(s \geq a + b \). If not then we have \(s < a + b \). From Archimedean property, there exists \(\varepsilon > 0 \) such that \((a + b) - s > 4\varepsilon > 0 \). Since \(a = \sup A \), then there exists \(a_1 \in A \) such that \(a_1 > a - \varepsilon \), and since \(b = \sup B \), there exists \(b_1 \in B \) such that \(b_1 > b - \varepsilon \). Then \(a_1 + b_1 > (a + b) - 2\varepsilon > s + 2\varepsilon > s \). But \(s = \sup S \) then \(s \geq a_2 + b_2 \) for any \(a_2 \in A \) and \(b_2 \in B \). That is a contradiction. Hence \(s \geq a + b \). Second we prove \(s \leq a + b \). If not then we have \(s > a + b \). From Archimedean property, there exists \(\varepsilon > 0 \) such that \(s - (a + b) > 4\varepsilon > 0 \). Since \(s = \sup S \), then there exists \(a_3 \in A \) and \(b_3 \in B \) such that \((a_3 + b_3) > s - 2\varepsilon \) or \(a_3 + b_3 > s - 2\varepsilon > a + b + 2\varepsilon \). Then either \(a_3 > a + \varepsilon \) or \(b_3 > b + \varepsilon \) holds (otherwise \(a_3 \leq a + \varepsilon \) and \(b_3 \leq b + \varepsilon \) will imply \(a_3 + b_3 \leq a + b + 2\varepsilon \)). But \(a_3 > a + \varepsilon \) contradicts with \(a = \sup A \), and \(b_3 > b + \varepsilon \) contradicts with \(b = \sup B \). Therefore \(s \leq a + b \). Now we must have \(s = a + b \) since \(s \geq a + b \) and \(s \leq a + b \).

(4.15) see solution on page 314

(5.1-5.2) (c) \([0,\infty), \inf = 0 \) and \(\sup = \infty \); (d) \((-\infty, \sqrt{8}), \inf = -\infty \) and \(\sup = \sqrt{8} \).

(6.4) From that definition, \(0^* \cdot 1^* = \mathbb{Q} \), but that is not reasonable since we expect to get \(0^* \cdot 1^* = \{ r \in \mathbb{Q} : r < 0 \} \).