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In this paper we investigate the structure of the solution set for a large class 
of nonlinear eigenvalue problems in a Banach space. Our main results demon- 
strate the existence of continua, i.e., closed connected sets, of solutions of these 
equations. Although the emphasis is on the case when bifurcation occurs, the 
nonbifurcation situation is also treated. Applications are given to ordinary and 
partial differential equations and to integral equations. 

INTRODUCTION 

In this paper we investigate the structure of the solution set for 
a large class of nonlinear eigenvalue problems in a Banach space. 
Our main results demonstrate the existence of continua, i.e., closed 
connected sets, of solutions of these equations. Although the emphasis 
is on the case when bifurcation occurs, the nonbifurcation situation is 
also treated. Applications are given to ordinary and partial differential 
equations and to integral equations. 

Let .F : d -+ &r where d and E; are real Banach spaces and 9 is 
continuous. Suppose the equation F( U) = 0 possesses a simple curve 
of solutions V given by {U(t) 1 t E [a, b]). If for some 7 E (a, b), 9 
possesses zeroes not lying on V in every neighborhood of U(T), then 
U(T) is said to be a bifurcation point for 9 with respect to the curve V. 

A special family of such equations has the form 

u = G(h, u) (0.1) 

where h E R, u E E, a real Banach space with norm 11 * I] and G : d 3 
R x E -+ E is compact and continuous. In addition, G(h, U) = 
ALU + H(h, u), where H(h, U) is O(ll u 11) for u near 0 uniformly on 
bounded X intervals and L is a compact linear map on E. A solution 
of (0.1) is a pair (h, u) E &‘. The known curve of solutions {(h, 0 ( X E R} 
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will henceforth be referred to as the trivial solutions. The closure of 
the set of nontrivial solutions of (0.1) will be denoted by Y. 

Equations of the form (0.1) are usually called nonlinear eigenwalue 

problems and arise in many contexts in mathematical physics. It is 
therefore of interest to investigate the structure of the set of their 
solutions. Let r(L) denote the set of p E R such that there exists 
w E E, v f 0, with v = ~Lv, i.e., r(L) consists of the reciprocals of 
the real nonzero eigenvalues of L. Following [I], we call p E r(L) a 
characteristic value of L. 

It is well-known that the possible bifurcations points for (0.1) with 
respect to the curve of trivial solutions lie in ((I”, O)j p E r(L)) [I]. 
In fact if p E r(L) is of odd multiplicity, (CL, 0) is a bifurcation point. 
We will show much more, namely that there exists a continuum of 
solutions of (0.1) in 9’ which meets (p, 0) and either meets co in 8 or 
meets (a, 0), where p # k E r(L). Therefore, bifurcation from charac- 
teristic values of odd multiplicity is a global rather than a local 
phenomenon. Partial results in this direction already appear in [l]. 
We will describe them more fully later. 

The proof of the above theorem as well as related results will be 
carried out in Section 1. Examples are given showing that both 
possibilities of the theorem may occur. Additional results are obtained 
if p is a real simple characteristic value of L. For this case a pair of 
continua in Y can be associated with (p, 0). The main tool required 
for the proofs of these results is the theory of degree of mapping of 
Leray-Schauder [ 1-3, Appendix]. 

Various applications of the results will be given in Sections 2. 
In particular, some problems for second order ordinary differential 
equations and integral equations are treated in which nodal properties 
for solutions implies that the various continua meet co in 8. The 
question of the existence of positive solutions to quasilinear elliptic 
partial differential equations is also considered. 

Lastly in Section 3 it will be shown how some of the ideas used in 
Section 1 can be employed to prove the existence of global continua 
of solutions for problems which need not be a bifurcative nature. 
We treat equations of the form 

24 = T(h, El), (0.2) 

where again T : & --+ E is compact and continuous but T(h, 0) need 
not equal zero. Here (0, 0) is a solution and, as we shall show, lies on 
a pair of continua of solutions of (0.2) meeting co in 8. Applications 
will be given to quasilinear elliptic partial differential equations and 
also nonlinear wave equations. 
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Many people have worked on nonlinear eigenvalue problems; in 
particular, for ordinary differential equations and integral equations. 
See [I, 4 and 51 where several references are given. This paper was 
motivated by our earlier results in [3] and many of the ideas used here 
already appear in that paper within its special context. 

1. THE ODD MULTIPLICITY RESULTS 

We begin with some definitions and technical lemmas. Let d and G 
be as in the Introduction. For 0 C 8, a0 denotes the boundary of 0. 
By a subcontinuum of 0 we mean a subset of 0 which is closed and 
connected in 8. We say a continuum $7 of d meets infinity if %? is not 
bounded. A useful result on continua is [6]: 

LEMMA 1.1. Let K be a compact metric space and A and B disjoint 
closed subsets of K. Then either there exists a subcontinuum of K meeting 
both A and B OY K = K, u K, , where KA , KS are disjoint compact 
subsets of K containing A and B, respectively. 

As norm in &, we take I/(& u)II = (I X I2 + 11 u /j2)li2. Let 99’, and B, 
denote respectively open balls in 8 and E of radius E centered at 
(I”, O), 0. 

LEMMA 1.2. Let TV E r(L). Suppose that there does not exist a sub- 
continuum of Y v {(II, 0)) which meets (p, 0) and either 

(9 meets infinity in 8, OY 

(ii) meets (3, 0), where p # @ E r(L). 

Then there exists a bounded open set 8 C d such that (EL, 0) E 0, 
80 n 9 = rz~, and 8 contains no trivial solutions other than those 
in a’, where 0 < E < E,, , Ed being the distance from p to (r(L) - {p}). 

Proof. Let V, denote the (connected) component, i.e., the maximal 
connected subset, of 9’ u {(CL, 0)) to which (CL, 0) belongs. By (i), 
this is a bounded subset of 8 and, therefore, by the continuity and 
compactness of G, is compact. Let u8 be a S-neighborhood of %,, . 
For S < E,, sufficiently small, by (ii) together with the fact that (h, 0) 
is an isolated solution of (0.1) if h 6 r(L), we can assume 9Ys contains 
no solutions (X, 0) of (0.1) for 1 X - p / > 6. 

Let K z q8 n 9. Then since Y is locally compact in 8, K is a 
compact metric space under the induced topology from d and 
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V, n au, = (ZI by construction. By Lemma 1.1, there exist disjoint 
compact subsets A, B of K such that V, CA, (au,) n 9 C B and 
K = A v B. Let 0 be any E neighborhood in 6 of A where E is less than 
the distance between A and B. Then 0 satisfies the requirements of 
the lemma. 

Suppose /.L E r(L). The multiplicity of /.L is the dimension of 
(Jj”=, N(($ - 1)j) where I is the identity map on E and N(P) denotes 
the null space of P. Since L is compact, p is of finite multiplicity. 

Let Q C E be bounded and open, Y(U) = u - T(u) where T is 
continuous and compact on fi, and b E E, b $ Y(X?). Then the 
Leray-Schauder degree of Y with respect to Sz and b is well defined 
and will be denoted by d(Y, fin, b). [l-3, Appendix]. In what follows, 
6 = 0, and therefore we just write d(Y, Sz). The index of an isolated 
zero u0 of Y will be denoted by z(Y, u,,). 

Next, let @(X, U) = u - G(X, u). When the u dependence of @ is 
not important, we just write G(h). For fixed h, Q(h) is of the appro- 
priate form for the use of Leray-Schauder degree. With the aid of d 
and Lemma 1.2, we can prove our first global result. 

THEOREM 1.3. If p E r(L) is of odd multiplicity, then 9 possesses 
a maximal subcontinuum VU such that (p, 0) E V,, and VU either 

(i) meets injnity in &, or 
(ii) meets ($, 0), where p # @ E r(L). 

Proof. By a maximal V, we mean V, is not a proper subcontinuum 
of any 9? C 9 having the above properties. 

If there does not exist 9?,, as above, there exists 0 and 6 as in Lemma 
1.2. Let 0,, = {U E E / (h, u) E O}. For 0 < / X - p 1 < 6, (h, 0) is an 
isolated solution of (0.1). Therefore there exists p(h) > 0 such that 
(h, 0) is the only solution of (0.1) in {X} x B,,o) . Let p(h) = p(p + 6) 
for h > p + 6 and p(h) = p(p - 6) for h < p - 6. By choosing 
p(p f 6) small enough, it can be assumed that B,(,+, n flA = ~zl if 
1 h - p 1 > 6. For h # p there are no solutions of (0.1) on 
14 x ?@A - Rw) and therefore d(@(X), 0A - B,u)) is well-defined. 
We will show first that 

W(4, 0, - h) = 0 h f t4 (1.4) 

and then that it is not possible for Eq. (1.4) to hold for all h near p. 
With the aid of this contradiction, the theorem is established. 

Let h > t.~. Choose h* > h so large that (Y, u) E 0 implies that 
y < h*. Let p = inf(p(6) 1 h < 0 < h*}. It is easily seen that p > 0. 
Then 9 = 0 - [h, h*] x B, is a bounded open set in 8 = [X, h*] x E 
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and @(8, U) # 0 for (0, U) E a% (in 8). Therefore by the homotopy 
invariance of d, [2 and 3, Appendix], 

d(@(B), 0, - B,) = constant, 8 E [A, x*1. (1.5) 

Since 8,* - B, = 0, 

d(@(A*), up - B,) = 0. (1.6) 

Thus Eqs. (1.5) and (1.6) imply 

d(@(A), 0, - II,) = 0. (1.7) 

Since Q(X) has no zeroes in {A] x (B, - BP(,)), Eq. (1.7) and the 
additivity of d imply Eq. (1.4) for h > p. If X < p a similar argument 
is employed. 

Again using the homotopy invariance of d, 

d(@(;\), 0,) = constant IX-p1 <E. (1.8) 

Let p - E < d < p < X < p + E. By the additivity of d and the 
fact that (X, 0) is an isolated zero of@(h) for h $ r(L), 

4@(h), 0,) = VQ), (X9 0)) + wm 0, - 4Qh 

d(Qi(Q, S,) = i(W), (AON + W(J), fix - Qr,). 
(1.9) 

Combining Eqs. (1.4) and (1.9) gives 

4@(h)> q = @?A~~ (h, ON- 

4@(h @,> = qw9, (XT 0)). 
(1.10) 

So by (1.8) 
@(A), (X, 0) = i(W), (1, ON. (1.11) 

However since p is a characteristic value of L of odd multiplicity, 
i(@(h), (A, 0) = -i(@(x), (x, 0)) # 0. Thus we have a contradiction 
and the proof is complete. 

If G is not globally defined, a somewhat weaker result prevails. 

COROLLARY 1.12. If Q is a bounded open set in 6’ containing (CL, O), 
and G(h, u) is continuous and compact on 0, and p E r(L) is of odd 
multiplicity, then 9 possesses a maximal subcontinuum V, C a such that 
(p, 0) E V, and %?U either 

(i) meets 22, or 
(ii) meets (a, 0), where p # @ E r(L), (fi, 0) E 52. 
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Proof. The proof is essentially the same as that of Lemma 1.2 
and Theorem 1.3 and will be omitted. 

If t.~ E r(L) is of even multiplicity, simple examples show that (p, 0) 
need not be a bifurcation point for Eq. (0.1). Thus no analog of 
Theorem 1.3 is possible for this case without further conditions on G. 

It is of interest to compare Theorem 1.3 to previous results of 
Krasnoselski [l]. For Eq. (0.1) K rasnoselski calls h a character&z2 
value and u an eigenvector, if (in our terminology) (h, U) is a non- 
trivial solution of Eq. (0.1). Th e set of characteristic values of G is 
called the spectrum of G. The set of eigenvectors is said to form a 
continuous branch passing through an eigenvector u,, if every bounded 
open set in E containing u,, and of small diameter possesses an eigen- 
vector on its boundary. It is proved in [I] that if p E r(L) is a charac- 
teristic value of odd multiplicity, then (p, 0) is a bifurcation point for 
Eq. (0.1) corresponding to a continuous branch of eigenvectors passing 
through us = 0. Moreover if some bounded open set in E containing 0 
has no solutions on its boundary, then the spectrum of G is continuous, 
i.e., contains an interval near ,u. If CL, as above, is an isolated point in 
the spectrum of 0, then the set of eigenvectors corresponding to TV 
forms a continuous branch intersecting every bounded open set in E 
containing 0. 

By projecting VU on R or E, it is easily seen that the above results 
are a consequence of Theorem 1.3. In fact, we see if p is not an 
isolated point in the spectrum of G, the spectrum is continuous. 

Next we will illustrate how both alternatives of Theorem 1.3 are 
possible. The simplest example of (i) is the linear case H = 0. 
Examples of (ii) are more complicated. A sufficient condition for (ii) 
to occur is that V, be bounded. We give an example of this nature due 
to M.G. Crandall and the author. Let E = R2. If u = (ur , UJ E E, 
11 u 11 = (ur2 + u22)1/2. Consider the equation 

Au = h(u - B(u) u), (1.13) 

where 
A= ( 1 -2u,u, 

0 
0 1 
2 6u12 + 4us2 1 

By inverting A, Eq. (1.13) may be put in the form (0.1) with L = A-l 
which has characteristic values Q and 1. Taking the inner product of 
Eq. (1.13) with u leads to the estimate 

(u12 + u22)2 < (B(u) 24 u) G U12 + u2. (1.14) 



NONLINEAR EIGENVALUE PROBLEMS 493 

This implies /I u Ij < 1 for all solutions (X, U) of Eq. (1.13). Therefore, 
the projection of Vr,a and V, on E is bounded. If the first alternative 
of Theorem 1.3 were to hold, there would exist a sequence (A, , u,) 
of solutions of (1.13) with X, 3 n. Dividing Eq. (1.13) by X, , letting 
n -+ co, and using the bounds for /( u, 11, a subsequence of the u, 
can be found which converges to a solution v of the “limit equation” 

B(u) u = 7.4. (1.15) 

Moreover, z, # 0 for otherwise dividing Eq. (1.13) by 1) u, 11 and 
letting n -+ co gives a contradiction. The matrix B(u) can be written 
as B(u) = T-l(0) D(r) T(B), where u1 = r cos 8, ug = Y sin 0 and 

D(r) = (‘i2 6r2) and T(0) = 

Rewriting (1.15) as D(r) 5!‘(0)u = T(e)u leads to 1 = 4r2 = 6r2 
which is not possible. Thus since alternative (i) of Theorem 1.3 cannot 
occur here, (ii) must. 

It would be of interest to find general conditions on G which imply 
one or the other of the alternatives of Theorem 1.3. 

Remark. In a recent paper [7], a study was made of a pair of inter- 
locking nonlinear ordinary differential equations arising from a 
problem in the buckling of spherical shells. This problem can be put 
in the form (0.1). All of the characteristic values of the L occuring 
there are simple. Moreover, it was shown numerically that for all cases 
considered (ii) occured, i.e., the solution branches always intersected. 

Remark. Suppose the solutions of Eq. (0.1) are a priori bounded 
in the sense that there exists a continuous function M : [0, co) -+ [0, co] 
such that if (X, u) E Y and h 3 0, I\ u I/ < M(X). Then if p > 0 is as 
in Theorem 1.3, V, cannot meet CQ and have a bounded projection 
on R. Such a priori bounds occur in many problems. For example, 
they often occur in buckling problems in elasticity and in problems 
involving rotating or convecting fluids (see [5]). 

Next we will prove a result about the general odd multiplicity case 
when the first possibility of Theorem 1.3 does not occur as, e.g., in 
the above matrix example. 

THEOREM 1.16. Suppose the hypotheses of Theorem 1.3 are satisfied 
and (i) does not occur. Let r = (7 E r(L) \(r, 0) E V, , y # p}. Then r 
contains at least one characteristic value of odd multiplicity. 
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Proof. Since (i) does not hold, I’ contains finitely many points 
which we order by size: yr < a** < yi . Arguing as in Lemma 1.2, 
a bounded open set Co C 8 can be found such that 0 r> V, , X0 r~ Y = 0, 
and 0 contains no trivial solutions other than those within E of p or 
some y E I’, where e < or , the distance from r u (p} to the rest of 
r(L). We define 8, as in Theorem 1.3 and likewise p(h) which can 
again be taken to be constant outside of E-neighborhoods of p and the 
yr, 1 <r <j. 

Suppose yr ,..., yi are all of even multiplicity. The computations of 
Theorem 1.3 and in particular Eqs. (1.8) and (1.9) show that 

4@(A), q - %r\)) + W(h), (X9 0)) 

= wo, 0, - hi,) + qm, (k 0)). (1.17) 

Sincei(@(X), (A, 0)) = -i(@(X), (A, 0)) # 0, at least one of the integers 
d(@(X), 8, - IQ,,), d(@(X), Ox - Bpoj) is nonzero. 

Let ys be the smallest member of r which is larger than EL. For 
h E (CL, y,), an argument as in Theorem 1.3 yields 

qw), 0, - &A)) = qm, 4 - R(X)). (1.18) 

As in (1.Q 
d(@()r), U,J = constant I x - Ys I < E- (1.19) 

Lety,-• <y cys <r <ys+ c. Since ys is of even multiplicity, 

~P(yh (y, 0)) = 4@(Y), (7, w, and the argument of Eqs. (1.8) and 
(1.9) gives 

4@(y), @y - 4+)) = VW7 07 - Kd- (1.20) 

Combining Eqs. (1.18) and (1.20) an d using the properties of d yields 

d(@@), 0, - &)) = d(@(J), 0, - Rm), x E (Ys 7 Ys+d (1.21) 

Continuing this argument and noting that (IPA = o for h sufficiently 
larger than yi , we find that 

q@(A), ox - B,(i)) = 0. (1.22) 

A similar argument for h < p implies that 

(1.23) 

But Eqs. (1.22) and (1.23) contradict (1.17). Thus the result is estab- 
lished. 

The compactness of L implies that its characteristic values are of 
finite multiplicity, In general, however, it is a very difficult question 
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to determine the multiplicity of a characteristic value of L. In many 
applications, the characteristic value (or values) of interest are simple, 
i.e., of multiplicity 1 (see [5] and section 2.). More can be said about 
V, for this case. In particular, if H(h, U) is FrCchet differentiable 
near (EL, 0), then VU near (p, 0) is given by a curve (A(a), u(a)) = 
(P + O(l), Aw + 00 01 I)) f or 01 near 0 where v is an eigenvector 
corresponding to ,u. Note that we can distinguish between two 
portions of this curve, namely those parametrized by a 2 0 and by 
01 < 0. We shall show that for the general simple characteristic value 
case, FU can be decomposed into two subcontinua which near (p, 0) 
have only (p, 0) as a common point. 

First some preliminaries. Let p be a simple characteristic value of L 
and let v E E, GE E’ (the dual of E) be corresponding eigenvectors of L 
and LT, the transpose ofL, normalized so that (/ v /[ = 1 and (/, v} = 1, 
where (e, *) d eno es t the duality between E and E’. Let El = 
{u E E 1 (8, u) = O}. Th en E = R @ E, with u = aiv + w, where 
01 = (t, u) and w E E, . 

KE.s = {Gt 4 E 6 I I h - P I < 5, I(4 u>l > 71 II u II>- 

Then K,,, is an open subset of d and consists of two disjoint convex 
components KSt, , KEY , where (A, U) E K& implies (/, u) > q I( u I( 
and (A, u) E Kzn implies (8, u) < -7 11 u (I. 

LEMMA 1.24. There exists a c,, > 0 such that for all 5 < c,, 
(9 - {(I*, 0))) n a~2; C K,.n . If (4 4 E (9 - {(CL, 0))) n ar; , then 
u = cxv + w, where [ 01 ( > 7 (/ u I(. Moreover, j X - p ( = o(l), w = 
o(I 01 j)forcwnearO. 

Proof. If there is no 5, as above, there exist sequences i& L 0 
and (A, , u,) E (9 - ((P, 0))) n a5 such that I A, - P I d 5, < 5, 
u, -+ 0, but I(t, u,)l < 17 II U, 11. Dkiding (0.1) by 11 U, /I and letting 
n -+ co, the form and properties of G imply that a subsequence of 
u,/lI u, 11 converges in E to v or -v. Hence I(/, u,)i/l/ u, j( --f 1 > 7 
along this subsequence, a contradiction. Thus there exists lo as above 
and in Br for 5 < 5,, , if (A, u) E Y - {(p, 0)}, u = ov + w with 
I O1 I > rl II 24 II. 

It is clear that / h - p / = O(1) f or ac near 0. To show that w = 0( ( 01/), 
we argue similarly to the above. Note that w = O(l CL I) since 11 w Ij < 
I~I+ll~ll~l~l+~lrlI~I.~~~~~,,~,)~(~,~), 
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Then Wb ) sv + w,)/lI 21, II -+ 0 as n -+ cc and, as above, a sub- 
sequence of u,/]j U, (1 converges to V. Therefore, I(/, u,/jj U, II)1 = 
411 u, II ---t 1 and K/II u, IL W,/OI, --t 0 along this subsequence. Since 
this is true for all such subsequences, and likewise with KAV replaced 
by Kg, , it follows that w = o(j 01 I) for 01 near 0. 

Remark. If we are dealing with a family of maps 0(X, U, t) = 
u - ALU - H(h, u, t), t E [O, 11, and H(X, U, t) possesses the same 
properties as earlier uniformly in t, then 5s can be chosen uniformly 
with respect to t. 

Next using a simple reflection argument, we show near (CL, 0), V, 
consists of two subcontinua which meet only at (p, 0). 

THEOREM 1.25. WW possesses a subcontinuum in KAv u {(p, 0)) and 
in q7) u {(PP w each of which meet (TV, 0) and MC for all 5 > 0 
su@ciently small. 

Proof. By Theorem 1.3 and Lemma 1.24, the result is true for at 
least one of the sets. Suppose it is not true for Kg7 u {(p, 0)). Recall 
u = (e, u)v + w. We define a new mapping &(h, u) z u - Uu - A@, u) 
as follows: for -r) 11 u I/ > (/, u), let A(x, U) = H(h, u); for 0 3 
(4 u> + rl II u II and <4 u> < 0, let 

A@, u) = * H(h, --q 11 u II v + eo); for (8, u) > 0, 

let A(h, u) = -B(h, -u). Then fl(h, u) possesses the same properties 
as does H(X, u) and also is an odd function of u as is &(h, u). Con- 
sequently, for d there exists a continuum 4, satisfying the alternatives 
of Theorem 1.3. By Lemma 1.24, 6, n g!l; C K,,, u {(II, 0)) for all 
0 < 5 < & . Therefore, 

(ig, n aa, n K,., f 0 for all 0 < 5 < & . (1.26) 

On the other hand, since @?, = ER, in KK~ there exists values % < 5, 
such that Q?, n a.9Ye n iYcV = o. The oddness with respect to u 
of 6 then implies that Q,, n &@‘p n KLv = o contradicting (1.26). 
Thus it must be the case that %?# n a&#!, n KEY # m for all 5 > 0 
small and the theorem is proved. 

Let 9,,+(9@-) d enote the maximal subcontinuum of VU which meets 
(p, 0) and lies in KL,(K,,). Let %‘U+(%‘W-) be the maximal sub- 
continuum of VW - 9U-(%‘U - gU+) which meets (CL, 0). Note that 
WU+ I$@,,+, Q,- 3 9YU-, and V, = VU+ u %‘,-. The subcontinua WU+, 
gU- are extensions of those given by Theorem 1.25. A natural question 
to ask is: How global are these extensions ? At least one of them must 
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satisfy the alternatives of Theorem 1.3. If VW+ and V,,- meet outside of 
a neighborhood of (p, 0), then ‘X, contains a “closed loop”. This is 
the case, e.g., in the matrix example given earlier. Generalizing our 
reflection argument, we can give another partial answer to the above 
question. 

THEOREM 1.27. Each of Wu+ and Vu- either satisjies the alternatives 
of Theorem 1.3 OY (iii) contains a pair of points (A, u), (A, -u), u f 0. 

Proof. Suppose V,- does not satisfy any of (i)-(iii). Then we can 
find a bounded open set (ZI! C 8, containing V,- u .B’c , %I n 9 = ~zr, 

and CPI - .@‘< contains no trivial solutions nor pairs of points of the 
form (h, u), (h, -u), 5 < i& being as in Lemma 1.24. Let 0 = 
GZ u {(h, u) ~8 1 (h, -u) E GZ> = QI u 0. Note that GZ r\ d = gr . 
A new mapping 6,(X, u) = u - ALU - rf(X, u) is defined on Q by 
setting A(& u) = A(x, u) in a’r , A as in Theorem 1.25, a(& ZJ) = 
H(h, u) in GZ - gr and a(& u) = -H(h, -ZJ) in d - g<. Then 
l? possesses the same properties in 0 as does H and is odd in u as in (a. 
Then 8 has no zeroes on kW. But by Corollary 1.12 this is not possible. 
Thus V,- satisfies (i), (ii), or (iii). 

Theorem 1.27 suffices for some of the applications given in Section 2. 
However, a stronger result is valid here, viz., each of $Yu+, V,- satisfy 
the alternatives of Theorem 1.3. This does not imply that %?@ consists 
of two globally distinct subcontinua since %‘,,f and PZu- may meet 
outside of a neighborhood of (II, 0). If this does not happen, then we 
have globally distinct subcontinua. Unable to give a proof of this by 
using the previous theory, we proceed to present an independent 
proof of this result. This, in fact, amounts to an alternate proof of 
Theorem 1.3 for the simple characteristic value case and is related to 
the local theorem when H is Frechet differentiable mentioned after 
Theorem 1.16. 

Recalling that E = R @ E, , (0.1) can be rewritten in an equivalent 
form as an equation in R @ El . Thus, 

and 

a = $ + (e, H(A, av + w)) (1.28) 

w=XLw+(I-P)H(A,lYw+w), (1.29) 

with u = w + w, 01 = (8, u), w E E, , and Pu = MI. Since (I - pL)-1 
exists as a bounded operator on El , Eq. (1.29) is equivalent to 

w = (h - p)(I - pL)-lLw + (I - pL)-l (I - P) H(h, otv + w) = T(oI, A, w). 

(1.30) 
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Let 6 = R x R x El and E = R x E, . We define 

where 

Y(&, A, w) = (A - t(a, A, w), w - T(ff, x, w)), 

t(a, A, w) = ah/p + (8, H(h, cm + w)) - a + A. 

Then Y : 6 + l?. Since (t, T) : 6 -+ 3 is continuous and compact, 
for fixed a, Y is of the appropriate form for the use of the theory of 
Leray-Schauder degree. Note that any zero of Y is a solution of (0.1) 
and conversely. The trivial solutions of (0.1) correspond to the solu- 
tions (0, A, 0), X E R, of Eqs. (1.28) and (1.30). In what follows, when 
the (A, y) dependence of Y is not important, we just write Y(a). 

Let Y denote the closure of the set of nontrivial solutions of Eqs. 
(1.28) and (1.30). 

First we find subcontinua of 9 near (0, p, 0). Let 

@ = {(A 4 E e I I h -P I < El7 llw II < Pd. 

By Lemma 1.24 it can be assumed that all nontrivial solutions 
(a, A, w) of Eqs. (1.28) and (1.30) near (0, p, 0) have (A, w) E & if 
1 LY j < oil provided that 01 i , hi , pi are sufficiently small. Therefore 
Y((~,h,w) # Oona@forO ==zz 1011 < 01~ . (The trivial solutions pierce 
&Z! at 01 = 0). Consequently, d(Y((ol), %, (0,O)) = d(Y(oc), @) is well- 
defined for 0 < j (Y 1 < 01~ . Since for any 01s E (0, (YJ, [as , ai] x % 
is a bounded open set in [aa , ai] x ,??, as in Theorem 1.3, the homo- 
topy invariance of d implies that 

d(Y(cu), Q) = constant = c, , (1.31) 

forO<voI<o1i,y= +,-. 
To evaluate c, , consider the family of operators YO(~, A, w) = 

(A - (ff/p + 1)h - @(z!, H(h, ffzI + w)) + cy, w - eT(or, A, w)). It can 
be assumed that Y,(a) # 0 on~~forO<B,<l,O<Ia:~ <ai. 
Using the homotopy invariance of d again gives 

Wd4, @I = C” ode<<, (1.32) 

with 0 < VCL < cyi , v = + , -. Hence to calculate c, , it suffices to 
take 0 = 0, when Y,,(a, A, w) = (A - (a/p + 1)X + 01, w) is linear 
(and inhomogeneous). The only zero Y,,(a) possesses is X = p, w = 0. 
Moreover, Y,,(a) is an isomorphism on e. Hence 

c, = i(Y,(a), (p, 0)) = 1 or -1. 
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For what follows it is important to know that C+ # c- which will 
be shown next. Observe that 

%(% 4 4 = (A - (4P + 1) A, 4, i.e., PO(~) 

is the homogeneous linear operator corresponding to Y&a). Since 
p,,(a) is an isomorphism (a # 0), 

d(P,(lx), e2, (-a, 0) = i(Po(a), (-01)O)) = i(!lqx), (0,O)). (1.34) 

Since (h - r(a/p + l)h, W) p assesses no characteristic values y in the 
interval (0, 1) for (II < 0 and one characteristic value in this interval 
for a > 0, the basic theorem on change of index, [l-3, Appendix] and 
Eqs. (1.32) and (1.34) imply that c- = 1, c+ = - 1. 

By a slight modification of the arguments of Theorem 1.3, it follows 
that 9 contains a pair of continua JZUy, v = +, -, each of which 
meets (0, II, 0) and {v(wr} x %‘, and lies in ((a, a!) C d 1 0 < VOL < ai>. 
These continua can essentially be identified with gUv as defined 
earlier. Let MsV be the maximal subcontinuum of 9 - JZ;” which 
meets (0, p, 0) and let MU = NU+ u X0-. Then J$, MUV can be 
identified with VU , VU” via the isomorphism (01, h, w) +-+ (h, U) = 
(4 cm + 4. 

Next we show each of M@+, Jv;- meets co in 6 or meets (0, p, 0), 
where p # fi E r(L). Suppose, e.g., MM+ does not satisfy either of 
these alternatives. There are two cases to consider. First assume that 
Jv;+ meets XU- outside of a neighborhood of (0, p, 0). As in Lemma 
1.2, we can find a bounded open set 0 3 Jv; such that a0 A 9 = o 
and 0 consists of [--a r , ai] x 4 near (0, I*, 0). In addition, it can be 
assumed that 0 contains no trivial solutions other than those in 

= {0} x %. Let 0, = {(h, w) E &’ 1 (OL, X, w) E 01. Then 0, = 
sufficiently large and by the homotopy invariance of d, 

d(Y(4, 0,) = 0 ct # 0. 

For0 <c-u <01r, the additivity of d implies 

qq4, @J = q+), @) + qq4, 0, - @). 

Hence Eqs. (1.32), (1.35), and (1.36) yield 

d(Y(ct), 0, - @) = -c+ = 1 0 < a < cdl. 

0 for 1011 

(1.35) 

(1.36) 

(1.37) 
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Since Y(a) # 0 on a(0 - [--ai, f~i] x %) (a in [-CQ, ai] x E) 

d(Y(a), 8, - @) = 1 /El<%. (1.38) 

But then (1.36) implies 

d(Y(ct), 8,) = 2 # 0 (1.39) 

for0 > 01 >/ -(or, contradicting Eq. (1.35). 
Next assume that NU+ does not meet XL- outside of a neighborhood 

of (0, p, 0). Then 0 as above can be chosen with the modifications that 
UZ = {--01,/2} x 9 C X0, [-ai , --(w,/2] x @ n 0 = 0, and 
(80 - a) n 9 = ia. Note that 02 n 9 C &-. Equation (1.35) is 
now valid for 01 > 0 and cy. < --(w,/2. The computations (1.36)-(1.38) 
are unchanged. Since 0, - % = 0, for a = -3~~~14, Eqs. (1.35) and 
(1.38) are inconsistent. Thus MU+ satisfies the above alternatives. 

Identifying & with b, we have shown 

THEOREM 1.40. Each of V&f, Vu- meets (p, 0) and either 

(9 meets 03 in &, or 

(ii) meets (fi, 0), where p f fi E r(L). 

Remark. We suspect that there is an analog of this theorem for 
the general odd multiplicity case. 

2. SOME APPLICATIONS 

Here we will give some applications of the theory of Section 1 to 
ordinary differential equations and integral equations as well as to 
quasilinear elliptic partial differential equations. 

Our first application to nonlinear Sturm-Liouville problems for 
second-order ordinary differential equations has already been done in 
[3] but the proof given here is simpler. Consider 

224 = -(pu’)’ + qu = F(x, 24, u’, A) o<x<7r (2.1) 
and 

a,u(O) + b,u’(O) = 0, a,u(n-) + b,u’(7r) = 0, 

where (ao2 + bo2)(ai2 + br2) # 0. The boundary conditions of Eq. (2.1) 
will henceforth be denoted by B.C. The function F(x, f, 7, A) = 
w+f + f&G 5, T, 4, and H is O((f2 + q2)l12) near (t, v) = (0,O) 
uniformly on bounded h intervals. In addition, p, 4, a are assumed 
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respectively to be continuously differentiable and positive, continuous, 
continuous and positive on [0, ~1, and F is assumed to be continuous 
in its arguments on [0, n] x R3. 

IfH=O,Eq.(2.1)b ecomes a linear Sturm-Liouville problem: 

6414 = Aau, O<x<a; u E B.C. (24 

As is well-known, Eq. (2.2) possesses an increasing sequence of simple 
eigenvalues h, < *a* < h, < **. with h, -+ co as n -+ co. Any eigen- 
function v, corresponding to h, has exactly n - 1 simple nodal zeroes 
on (0,~). (By a nodal zero we mean the function changes sign at the 
zero and at a simple nodal zero, the derivative of the function is 
nonzero). 

To exploit these nodal properties an appropriate family of sets is 
introduced. Let E denote the Banach space P[O, 7r] n B.C. with the 
usual norm /I u Ill = max,,[,,,l / u(x)1 + max,,t,,,l I u’(x)I. Let S,+ be 
the set of u E E which have exactly k - 1 simple nodal zeroes on 
(0, n) and which are positive for 0 # x near 0; then, S,- = -Sk+, 
and S, = S,+ u S,-. The sets Sk+, Sk+, S, are open in E. The 
eigenfunction vuk corresponding to h, in Eq. (2.2) is made unique by 
requiring that ok E S,+ and 11 ok Ill = 1. 

Let & = R x E, Yk+ = R x Sk+, Yk- = R x S,-, and Y;, = 
R x S, . The linear existence theory for Eq. (2.2) can be stated as: 
For each integer k > 0 and each v = + or -, there exists a half line 
of solutions of Eq. (2.2) in YkV of the form (h, , wJ, (Y E R. This 
half line joins (h, , 0) to infinity in 8. (Here R = (h E R I 0 < VA < co}, 
v= +,-). 

An analogous result holds for Eq. (2.1). 

THEOREM 2.3. For each integer k > 0 and each v = + or -, 
there exists a continuum of solutions of Eq. (2.1) in Ykv v ((A, , 0)) which 
meets (Ak , 0) and co in 8. 

Proof. Note first that if (h, U) is a solution of Eq. (2.1) and u has 
a double zero, then the growth estimate on H near the double zero 
and linearity of 3 and au implies that u z 0 on [0, ~1. Therefore, 
in particular, any solution (X, U) of Eq. (2.1) with u E aS,u has u = 0. 

Assume that 0 is not an eigenvalue of 9. Then using the Green’s 
functiong(x, y) of 9 with respect to the B.C. of Eq. (2.1), the equation 
can be converted to the equivalent integral equation 

u(x) = s’g(x, Y> qy, U(Y), U’(Y), 4 dr = G(A 4. (2.4) 
0 
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It is easily seen that G is a continuous compact map of & -+ E. Hence 
Eq. (2.4) is of the form (0. 1) with Lu = gg(x, y) a(y) u( y) dy. The 
eigenvalues of 9 are the characteristic values of L and are simple. 
Therefore the hypotheses of Theorem 1.3 are satisfied and there 
exists a continuum %?,,k E V, as in Theorem 1.3. Lemma 1.24 implies 
that if (h, U) E 9, and is near (X, , 0), u = avk + w with w = O([ (Y I). 
Since Sky is open and vuk E S, , then 

for all 0 < 5 small. By an above remark, (Vk - {(& , 0))) n au;, = a. 
Consequently, V, lies in 9, u {(& , 0)) and alternative (ii) of Theorem 
1.3 is not possible. 

It remains to decompose %?k into two subcontinua which meet 
(h, , 0) and co in &+ u ((& , 0)) and Yk- u ((X, , 0)), respectively. 
Again writing u = avk + w for (X, U) E %Yk - {(& , 0)) and near 
(h, , 0), we have avk E Yky if 0 # CY E RY and, therefore, 

(C+ - {(b , 0))) n .% C Z+, 

Vk- - ((Ak , 0)) n ,Bc C Yk- for all 0 < 5 small. Since Vk” - ((X, , 0)) 
cannot leave Ykv outside of a neighborhood of (h, , 0) and Ykv does 
not contain a pair of points of the form (h, u), (X, -u), it follows from 
Theorem 1.27 or Theorem 1.40 that VkY meets infinity in YkV, 
v = +, -. 

If 0 is an eigenvalue of 9, the result is trivial if h, = 0. If X, # 0, 
then replacing 9 by 9 + EU, and passing to a limit using the already 
established result and the compactness of G, completes the proof of 
Theorem 2.3 (see [3]). 

Remark. It is possible to generalize Theorem 2.3 by permitting 9 
to depend on X and on u in a nonlinear fashion (see 131). Likewise F 
could be a map of Ci[O, ~1 x R --+ CIO, 7~1. However, then, the form 
of F must be such that Eq. (2.1) has the property that whenever (h, U) 
is a solution of (2.1) with u having a double zero, then u = 0 (see [lo]). 

Next we show how nodal properties can likewise be exploited for 
a class of nonlinear integral equations. Consider 

44 = X I ’ K(x, y>F(y, U(Y)) U(Y) dr = G@, 4, (2.5) 
0 

where K(x, y) is a continuous symmetric oscillation kernel on [0, 11” 
and F( y, z) is a positive continuous function on [0, l] x R. Let 
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E = C[O, I] under 11 u Ij = max,,[,,r] 1 u(~)l. Then G is continuous and 
compact on & = R x E as is 

Lu = s R WG Y> F(Y> 0) 4~) dy 
0 

and H(X, U) = G(h, u) - XLu is O(lj u 11) for II u Ij near 0. 
Since K(x, y) F(z, 0) is also a symmetrizable oscillation kernel, 

the linear characteristic value problem 

u=ALu (2.6) 

possesses an increasing sequence of positive simple characteristic 
values h, < 0.. < X, < a** with X, -+ co as n -+ co (see [9]). Any 
eigenfunction vk corresponding to h, has exactly k - 1 nodal zeroes 
on (0, 1). Let Nk + denote the subset of u E E such that u has exactly 
k - 1 nodal zeroes on (0, 1) and is positive near x = 0; Nk- = -Nk+, 
and Nk = Nk+ v Nk-. Then vk E NI, . We normalize vok by requiring 
I/ vkI/ = 1 and vkENk+. 

As was the case with Eqs. (2.1) and (2.2), there is a nonlinear 
analog for Eq. (2.5) of the linear theory for Eq. (2.6). Let Jv;.u = 
RxNjVforv==+,-,andMj=RxNi. 

THEOREM 2.7. For each k > 0 and each v = + or -, there 
exists a continuum of solutions of Eq. (2.5) in Nkv which meets (A, , 0) 
and co in 8. 

Proof. By Theorem 1.3, there exists a continuum ?$‘A, = %?k C 9 
meeting (h, , 0) and satisfying the alternatives of Theorem 1.3. Let 
a = ((A, U) E %?k 1 (A, U) E &$ u {(hk , 0))). We Will show that @ iS 

both open and closed in Vk under the induced topology from d and 
therefore since Vk is a continuum, 6?! = gk . (Certainly G?? # 0). 

Suppose (h, 24) E Q!, (X, 1.4) # (& , 0). Since K(x, y) F( y, u(y)) is 
a symmetrizable oscillation kernel, and (h, u) is an eigenpair of Eq. (2.5) 
with u E Nk , it follows that X is the k-th characteristic value of 
W,Y)F(Y, U(Y))- L’k I ewise, this is the case if (X, u) = (X, , 0). 

NOW we show C! is closed, for if (CL, , z+J C a and (pn , u,) -+ (CL, u), 
then (p, U) E %?k since it is a closed set.The kernels KF(y,u,)-+KF(y,u) 
in E and therefore the corresponding integral operators converge in 
the operator norm. Consequently the respective sets of characteristic 
value of these operators converge uniformly on compact subsets of R. 
Hence p being the limit of k-th characteristic values must be the k-th 
characteristic value of KF( y, u). Therefore, u is a k-th eigenvector 
and u E Nk unless u = 0 in which case X = X, . Thus a is closed. 

5W7/3-10 
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A similar argument shows GZ is open. Let (h, U) E CY. Since h is 
the K-th characteristic value of KF( y, u), given any E > 0, there 
exists a p > 0 such that if jl u - w jl < p the K-th characteristic 
value p of KF(y, w) satisfies 1 h - p 1 < E. Moreover, since the 
kernels KF( y, q) possess only simple eigenvalues, given any pi > 0 
there exists p1 > 0 such that 11 u - w I/ < p1 implies all eigenvalues 7 
of KF( y, w) other than the K-th satisfy / y - h 1 >, e1 . Taking 
E - 2~, we see that if (p, w) E V, and 1 p - X 1 < E, j/ w - u 11 < 
mi,(p, pl), then (p, w) E Nk u ((X, , 0)). Hence G? is open. 

By our foregoing remark it follows that Gl? 3 $5, . Therefore, if 
k # j, Vk n Vj = 0 and alternative (ii) of Theorem 1.3 is not 
possible. Thus alternative (i) prevails. 

Next Vfi is decomposed into two subcontinua lying in 

respectively, each meeting 00. By the remarks following Theorem 1.16, 
we can break up Vk into Vk+, V,-. It will be shown that 

%P,” c 4” u w* 3 ON, Y = +, -. 

Hence 9?,+ does not meet V,- outside of a neighborhood of (hk , 0) 
and neither of Vk+, V,- contains a pair of points (X, u), (h, -u). 
Therefore, by Theorem 1.27 or Theorem 1.40, Vky meets co in MkV, 
u = +, -. 

Thus to complete the proof, we show V,” C J+$” u {(A,, 0)), 
u = +, -. First observe that V,+ cannot have nonempty intersection 
with both J$$+ and Jr/-,- for otherwise since Wp,+ is a continuum, we 
could find a point (h, u) on gkf with u E Nj , j < k, which is not 
possible. Therefore ‘Zk+ lies either in M,+ u ((& , 0)) or in 

JfL- ” &b 9 ON. SUPP ose Vk+ C A$- U {(Ah , 0)). Let (h, u) E qk+, (h, u) 
near (X, , 0). Then u = clwk + w, where 0 < OL = (/, u) and w E E1 . 
Since u E Nk-, U/U = ok + w/a E Nk+. Letting 01 ---t 0 and using 
Lemma 1.24, we find u/ 01---t ok E N,-. But ok E Nk+ and 

Nk+nNk- = 0. 

Thus Vk+ C Mk+ u {(hk , 0)). Similarly V,- C Nk- u ((& , 0)}, and 
the proof is complete. 

Remark 1. The only point in the above proof in which the sym- 
metry of K has played a role is in guaranteeing that certain linear 
operators have positive simple eigenvalues and corresponding eigen- 
functions with nodal properties. Thus Theorem 2.7 is also valid if K 
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is an arbitrary oscillation kernel provided its eigenvalues and eigen- 
functions have these properties as, e.g., in [19]. 

Remark. 2. The ideas used in the above proof can readily be 
generalized to include the case in which F is a map depending also on 
h [lo]. Likewise it is possible to generalize the results of Parter on 
interlocking pairs of ordinary differential equations of a special 
form [20]. 

The last application in this section treats a nonlinear eigenvalue 
problem for a class of quasilinear elliptic partial differential equations. 
Let 9 be a smooth bounded domain in R”. Consider the boundary 
value problem: 

+ c(x, u, Du) u = A(a(x) u + F(x, u, Du, A)) XELB (2.8) 

u=o on a9. 

Here Du denotes arbitrary first partial derivatives of U. The functions 
aij , bi , c, a, F are assumed to be continuously differentiable functions 
of their arguments. In addition, we assume c > 0, a > a,, > 0, 
F > 0, F(x, u, p, A) = O((u2 + 1 p 12)lj2) near (u, p) = (0,O) ( p E R”) 
uniformly on bounded h intervals, and that Eq. (2.8) is uniformly 
elliptic, i.e., 

for all x E $3, r] E R, p, 5 E R” with p a positive constant. 
Let 01 E (0, 1) and let E be the Banach space: E = {u E U1+a(6) 1 u = 

0 on Z33> under the norm 

LetP+ = @GE/U > Oin53andazljaw < OonX@)andP- = -P+, 
where w is the outward pointing normal to Z3. P+ and P- are open 
subsets of E. 

Let d = R x E, @’ = R x Py, v = +, -. We will prove the 
existence of a continuum of solutions of Eq. (2.8) with u E P+. 
We define a mapping of d -+ E as follows: For (A, U) E b, let o = 
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G(h, u) be the solution of the linear uniformly elliptic partial differen- 
tial equation: 

,$, 45 up W vxdxj + i bi(X, u, Du) vzi + c(x, u, Du) v 
i=l 

= h(a(x) u +F(x, u, Du, A)) XEL2 (2.9) 
v=o on Z-9. 

The standard linear existence theory for such equations implies there 
exists a unique z, E %?z+a(g) satisfying Eq. (2.9) (see [ll]). The 
Schauder estimates imply that the mapping G is continuous and 
compact. Any solution (X, u) of Eq. (2.8) satisfies u = G(h, u), and 
conversely. 

For (X, u) E d, let w E T(h, ZL) denote the solution of 

-#I, a&, 0, 0) wzizj + gl 4(x, 0, 0) w,& + c(x, 0, 0) w = ku x E 9 

w=o on 89. 

(2.10) 

Then T(h, u) = ALU, where, as above, L is the linear compact map of 
E -+ E. It is easily seen that H(X, u) = G(h, ZJ) - ALU is O(ll u lli+J 
for u near 0 uniformly on bounded X intervals. 

Consider the linear characteristic value problem v = XV, i.e., 

,gl a&, O,O) vzirj + gl Ux, (40) v,( + 4x, 0, 0) v = Wx) v x E 23 

v=o on LB. 

(2.11) 

Using the maximum principle and the linear theory for L, it is easily 
seen that L is a strongly positive operator (in the sense of Krein- 
Rutman [l I]) on the cone P 7. Therefore by a theorem of Krein- 
Rutman, the smallest characteristic value h, of L is positive and simple 
and possesses a corresponding eigenfunction v1 E P+. vi is made 
unique by taking 11 wr Ijl+rr = 1. 

Thus we see that all of the hypotheses of Theorem 1.3 are satisfied 
for Eq. (2.8) with p = h, and by that theorem, there exists a continuum 
+?A1 - Q?r of solutions (h, ZJ) of Eq. (2.8) in d satisfying the alternatives 
of that theorem. If (X, u) E %‘I and is near (h, , 0), then u = ynr + w 
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where 1 y 1 is small and w = o( 1 y I). Hence as for Eq. (2.1), u E Py 
ifyERY,V = +, -, and 1 y 1 small. Thus 9?iV n 9Y< C 9” u {(Xi , 0)) 
for0 < <small,V = +, -. 

Next we claim Vi+ C 9+ and therefore as in Theorem 2.3 or 2.7, 
Vi+ meets co in 8. To prove this, note first we can assume (h, U) E V, 
implies X > 0 for otherwise X = 0 is an eigenvalue of an equation 
of the form (2.8). But this is impossible via the maximum principle. 
If Vi+ Q 8+, there exists (h, U) E Vi+ n (R+ x aP+), (X, U) # (X, , 0), 
such that (X, U) is the limit in d of (X, , UJ E 9+. The function u has 
either an interior zero in 9 or au/& = 0 at some point on Z9, 
a/& denoting the outward normal derivative to a9. Then from Eq. 
(2.Q dpu >, 0 and the strong maximum principle [13] implies u = 0. 
Therefore (X, 0) E V,+ and is the limit of solutions of Eq. (2.8) in 8+. 
An argument similar to that of Lemma 1.24 then shows that X = X, 
contrary to hypothesis. Thus we have proved 

THEOREM 2.12. There is a continuum of solutions V,+ of Eq. (2.8) 
in 8+ u {(A, , 0)) which meets (A, , 0) and CO in b. 

Remark. Actually for this theorem all we need is that F > 0 if 
u > 0. If further F < 0 when u < 0, the above argument gives a 
second continuum Vi- in 8- u ((h, , 0)) which meets (hi , 0) and 00 
in 8-. Appropriate growth conditions on aii , bi , etc. imply a priori 
bounds (depending on h) for solutions of Eq. (2.8) (see [12]). This 
implies the projection of V,+ on R contains (hi , co). 

COROLLARY 2.13. If F is independent of Du, Theorem 2.12 
obtains for V,+ and V,- without the positivity of F. 

Proof. The proof is the same as that of Theorem 2.12 modulo 
showing that Vi” C P u {(hi , 0)), v = +, -. We treat the + case. 
If this is not the case, we can find (A, U) E V1+ n R+ x aP+ where u 
has an interior zero in 9 or au/&J = 0 at some boundary point of 9. 
Suppose u(x,,) = 0 at x,, E 9. Consider a small neighborhood 52 of x,, . 
It can be assumed that 1 F(x, U, h)/ < a, 1 u l/2 in 52. Therefore 
Z?u > 0 in D and the maximum principle implies u = 0 in 52 and 
therefore in g by a simple continuation argument. A similar argument 
works if x,, E a9 and &J(x,,)/&J = 0. The proof continues as earlier. 

Remark. In some work in progress, R.E.L. Turner has shown the 
existence of continua (in another sense) of solutions of a class of 
quasilinear elliptic equations. 
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3. RELATED RESULTS 

In this last section we shall show how some of the ideas developed 
in the previous sections can be used to prove the existence of continua 
of solutions for nonlinear eigenvalue problems where bifurcation need 
not occur. Let d and E be as earlier and let & = {(X, u) E 6 1 X E RY}, 
Y = +, -. Consider the equation 

u = T(X, u), (3.1) 

where T : d -+ E is continuous and compact, and T(0, u) = 0. It is 
not assumed that T(A, 0) f 0 and in fact the case of interest is when 
T(X, 0) # 0 for 0 # X near 0. 

Note that (0,O) is a solution of Eq. (3.1). Use of the Schauder fixed 
point theorem in a straightforward fashion shows that Eq. (3.1) 
possesses a solution (h, u(h)) f or each j h 1 small. However a global 
result actually obtains here. Let 9 denote the set of solutions of 
Eq. (3.1). 

THEOREM 3.2. If T is continuous and compact on 8 and T(0, u) s 0, 
then 9 contains a pair of continua 9f, Y- lying in b+, b-, respectively, 
and meeting (0, 0) and co. 

Proof. If h, > 0 is sufficiently small, the continuity of T implies 
that T : [--A0 , A,] x B, + B, . Let @(A, u) = u - T(X, u). Then 
WV), & , 0) = 4@(4,4) is well defined for 1 X 1 < h,; and by the 
homotopy invariance of d, 

d(@(h), B,) = constant for 1 h j < h, . 

For X = 0, Q(h) = I, the identity map on E. Hence 

(3.3) 

q-w, 4) = 44 B,) = 1, 1x1 <A,. (3.4) 

Let 9~ denote the (maximal) sub-continuum of 9’ lying in c”y, 
v = f, -9 and which meets (0,O). S ince (0,O) is the unique solution 
of Eq. (3.1) for h = 0,9+ n 9- = (0,O). If P does not meet infinity 
in &, as in Lemma 1.2 a bounded open set Oy C & can be found such 
that 0’ 1 P and 0 n (0) x E C (0) x B, . The argument used in 
the proof of Theorem 1.3 together with Eq. (3.4) shows that this is 
not possible. Thus the proof is complete. 

An obvious corollary which shall not be formalized results when 
the solutions of Eq. (3.1) are a priori bounded as a function of h. The 
projection of P on RY is then RY, Y = +, -. 
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If T(h, 0) = 0, Theorem 3.2 tells us nothing new since the trivial 
solutions (X, 0) are present. 

To illustrate Theorem 3.2, consider the nonlinear integral equation 

u(x) = h I qx, Y> F(Y, U(Y), 4 dY = w 4, (3.5) 
9 

where x E a’, a bounded domain in Rn, E = U(g), K is continuous 
on d x 6, and F is a continuous map of g x E x R into E which 
is bounded on bounded sets. Then T(h, u) satisfies the hypotheses of 
Theorem 3.2 on d and there exists a pair of continua as in that 
theorem. If 1 F( y, U, A)1 < M(h) for ally E g, u E E, X E R, with M(X) 
continuous on R, then Eq. (3.5) p ossesses solutions for all X E R. 

A second example is provided by the quasilinear elliptic partial 
differential equation 

L?u = Q(x, u, Du, A) in .5@ u=o on a9, (34 

where P’u is as in Eq. (2.8), the coefficients having the same properties 
as earlier. The function Q is assumed to be continuously differentiable 
in its arguments and Q(x, U, p, 0) E 0. Let E be as earlier and define 
T(& U) just as G(h, U) was defined before Eq. (2.9). Then Eq. (3.6) is 
equivalent to the equation u = T(h, U) in E with T satisfying the 
hypotheses of Theorem 3.2. Hence we obtain 9+, 3-. If Q > 0 for 
X > 0 then the maximum principle implies that T(X, u) C P+ for 
X > 0 and $+ C 8+ u ((0, 0)). Similarly, if Q > 0 for X > 0, 
T(h, U) C P+ for h > 0 and 4+ C 8+ u (0,O). 

By formalizing the above, we have 

THEOREM 3.7. Equation (3.6) p ossesses a pair of continua of solution 
9+, 9- which meet (0, 0) and infinity in b+, b-, respectively. If Q > 0 
(3 0) for X > 0, then 9+ C 9+ u (0,O) (g+ u (0,O)). 

Remark. It is easily shown that these results are valid under more 
general boundary conditions. Some results related to Theorem 3.7 
have been obtained by D. Cohen and H. Keller [5, 141 for the case in 
which the coefficients of 9 are independent of U, Du; Q = Q(x, u) > 0, 
and Q is monotonic increasing in u. 

Next we investigate a situation related to but somewhat different 
from that of Eq. (3.1). 

9u = q/l, #), (3.8) 

where dp is a linear map on E and 9 a nonlinear map of 8 -+ E with 
9-(0, 24) S 0. If 2-i exists as a bounded map on E, then Eq. (3.8) can 
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be put into the form (3.1). However, this may not be the case and, 
in particular, $P may have a null space N. Despite this if Eq. (3.8) 
possesses sufficient structure, it may be still possible to convert it 
to an equation of the form (3.1) such that Theorem 3.2 can be used. 
Rather than develop a general theory here, we will restrict ourselves 
to one problem, viz., the question of the existence of time periodic 
solutions of a nonlinear wave equation. 

Consider, then, 

%t - %z = AF(x, t, 24) O<X<P, O<t<27r (3.9) 

together with the boundary and periodicity conditions: 

u(0, t) = u(Tr, t) = 0 o<t<27r 

u(x, t + 24 = z&(x, t) o<x<Tr. 
(3.10) 

The function F is assumed to be k (33) times continuously differen- 
tiable in its arguments, 27~ periodic in t, and aF/at & 0. In addition, 
we assume F is strongly monotonic increasing in U, i.e., 

aF(x, t, u)/au 3 /3 > 0 for all x, t, 24. 

This problem was studied in [15] where the existence and local 
uniqueness of classical solutions of Eqs. (3.9) and (3.10) was shown 
for h sufficiently small. By converting these two equations into an 
equation of the form (3.1), and verifying the conditions required for 
Theorem 3.2, we shall show that a global result actually obtains here. 
Free use shall be made of some of the preliminary results of [15]. 

First some notation. The completion of C” functions in x, t on 
[O, 31 x [0, 27~1, 27~ periodic in t, with respect to 

will be denoted by Hi . (Here @ denotes an arbitrary derivative of v 
of order / 0 /, the usual multi-index notation being employed.) 
Similarly fij denotes the completion as above of C” function having 
support contained in (0,~) with respect to x. Hj and fij are Hilbert 
spaces with respect to the inner product associated with 1 * Ii . Let C, 
denote the closure of C” with respect to 1197 [Ii = ClOIGj max ( 00~ 1. 

The closure N in Ho of the null space of the wave operator 
0 = ayat2 - as/a x under the boundary and periodicity conditions 2 
of Eq. (3.10) is the set of ‘p E Ho such that 

p)(x, t) = P(X + t) -H-x + 9, 
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where p is 27~ periodic and Jr p2(s) a? < co. Let NJ- denote the 
orthogonal complement of N in Ho and let P be the projector on N. 
Observe that N is infinite dimensional and if q~ E N is smooth (0, v) 
is a classical solution of Eqs. (3.9) and (3.10). Thus any solutions of 
these equations with h # 0 bifurcate from (0, N). 

Let E = NJ- n Hk . It is shown in [15] that for each w E E, there 
exists a unique z, = V(w) E N n Hk such that PF(-, a, TI + w) = 0, 
i.e., 

c 
ss 

2n 

F(x, t, v + w) y dx dt = 0 
0 0 

(3.11) 

for all q~ E N. Theorems 1 and 3 of [15] further show that 

I v Ik G c(w) (3.12) 

where c(w) is a constant depending on bounds for 11 w ]I1 and ] w Ik . 
Since k 2 3, bounds on [ w jk imply corresponding bounds on 11 w ]I1 
via the Sobolev inequality [16]. Th us we can consider c as depending 
only on I w Ik . 

The mapping w -+ V(w) is continuous as a map from E -+ N n like1 
for if (w,) C E and I w, - w Ik -+ 0 as n -+ co, then Eq. (3.12) gives 
uniform bounds for ( V(wn)) in I * Ik . By the Sobolev inequality again, 
we get uniform bounds for ( V(wn)) in II * l/i . Therefore by the Arzela- 
Ascoli theorem a subsequence of the V(w,) converges in Co to V 
satisfying 71 ss 277 

F(x, t, tr + w) v dx dt = 0, 
0 0 

(3.13) 

for all F E N. The uniqueness of solutions V to Eq. (3.13) implies that 
V = V(w) and l’k 1 ewise that the entire sequence V(wn) converges to 
V(w) in C, . Taking u = V(wn) - V(w) and p = K in the inter- 
polation inequality [ 161, 

where cr is a constant and using the uniform boundedness of 
(I Vwn) - v(w)lJ and th e convergence of V(wJ to V(w) in Co , the 
continuity of V(w) in I . IkP1 follows. 

In [15] it is proved that iff E E, there is a unique w E E n Hk+l n fil 
such that q w = f and / w Ik+i < c2 /f Ik, where ca is a constant. 
Therefore 0-i exists and by the Rellich theorem [17] is a compact 
map on E. 
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The “composition of functions ” inequality implies that if u E Hk , 
F(x, t, U) E Hk (see [15] or [18-j). Combining these results, we see that 
if w E E I-I H,,, n 1-4; and satisfies 

w = Apqx, t, V(w) + w) SE q/l, w), (3.15) 

then V(w) + w is a classical solution of Eqs. (3.9) and (3.10) (see 
also [15]). Thus to solve Eqs. (3.9) and (3.10), it suffices to deal with 
Eq. (3.15) which is of the form (3.1). 

If we show that T(h, w) is continuous and compact on 8, then 
Theorem 3.2 can be employed here. Since V : E -+ N n Hk , and 
F : V(w) + w -+ E for w E E via the composition of functions 
inequality and the lemma cited above, the compactness of T follows 
from that of 0-l : E ---t E n H,,, . To prove the continuity of T, 
let (An, wn) -+ (h, w) in 8. As was shown above, V(w,) -+ V(w) in C,, 
and therefore X,F(x, t, V(wJ + wn) -+ hF(x, t, V(w) + w) in C,, . 
Hence h,u-lF(x, t, V(w,) + w,) = T(A, , w,) -+ T(h, w) in H, . By 
the interpolation inequality (3.14) with p = k + 1, j = k, and 
u = T(X, , wn) - T(X, w), it follows that T(X, , w,) + T(A, w) in 
I - Ik. 

Thus Theorem 3.2 is applicable here. Since the map w -+ V(w) + w, 
E --+ Hkpl n a1 is continuous, we have proved the global result: 

THEOREM 3.16. There exist a pair of continua of solutions of Eqs. 
(3.9) and (3.10) in Hkel n fil which meet (0, V(0)) and 00. 
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